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Simple cases in fluid flow - Rectangular coordinate system

Welcome to the session on simple case in fluid flow, as part  of the NPTEL, MOOC on

Transport Phenomena in Materials. In this session we will be looking at simple cases where

the problem can be reduced to one diffusion term on the right hand side of the Navier Stokes

equation and so that the analytical solutions are very easy for us to see with just couple of

steps of integration. We will be taking to the rectangular coordinate system in this session.

So, the cases that we are looking at are as follows.

(Refer Slide Time: 00:44)

So, we will take a very trivial case where we will get the Newton’s law back which we have

put in at the stage where the constitutive equation is require and we will then take couple of

problems which are very popular in the metallurgical  materials  curricula namely the film

flow on inclined plane, flow between two plates and the mixing film flow.
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So, here is the first case. So, here is the trivial case reproducing the Newton’s law. So, the

situation is as follows. We have got liquid between two parallel rigid plates and the top plate

is then moved at a velocity u1,max and because of the motion the liquid is taking to the top

plate. So, we have got basically the fluid moving in the right hand side direction that is in the

x1 direction.

So, the fluid is only due to the motion of the top wall and there is no other term that is active.

In other words there is no pressure drop we are talking about there is no body force we are

talking about, and the boundary conditions are as follows. At the top wall we have got no slip

condition with a moving wall. So, the velocity at the top surface will be the same as that of

the wall and at the bottom we have got no slip condition for a stationary wall then we have

got the velocity equal to 0 at the bottom.

So, in this case then what we are always do for many of these problems is as follows.
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We start with the Navier Stokes equation for the velocity component that is relevant. So, we

always write the full equation. So, we are conscious of all the terms and then we start striking

all the terms as we do not need them later on. So, u1 is the component that is relevant. So, that

is what is written here.

So, the equation is already assuming that it is a Newtonian fluid, it is a incompressible fluid

and it has constant viscosity. So, the top 3 assumptions are already made. And so we are

going to make some more assumptions which will reduce this equation to extremely simple

form. So, first assumption here is a steady states, which means that we can strike off this term

because of the assumption number 4 and unidirectional velocity along x1 direction which we

mean by saying that u2 and u3 are 0, which means that we cut out this term and the this term

being dropped off because of the assumption number 5. And then we also say that in this

situations the velocity variation of u1 can be along the x2 or x3 direction. So, we choose that it

is  varying only along the x2 direction,  which means that the variation  of u1 along the x3

direction can be dropped that is because of the assumption number 6.

And then we say that the fluid flow is well developed along the x1 direction, which means

that the  
∂u1
∂x1

=0 . So, we drop this term because of this assumption 7 and also this term goes

away it is the second derivative of the same term. So, this one also goes away. And then we

say that there is no body force or pressure drop in this particular problem it is a very simple



problem. So, we basically knock off these two terms also because of the assumption 8, which

leaves us with only one term here and that is equal to 0 and therefore, the equation appears in

the simple form as written here.
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And you can immediately see that the solution should be a straight line and that is what is

solution that is given here then we integrate this twice we get Ax2 + B and the integration

constants  are  to  be  found  from  the  boundary  conditions  which  we  have  already  been

mentioned. So, at the top wall  the x2 = δ value you have got velocity equal to u1,max, the

bottom it is 0 so when you substitute you get the functional form for the velocity which is

basically proportional to the distance in the y direction and scaling of the maximum velocity

with the factor δ that is at the denominator.

So, this is the solution which gives you straight line profile which is a simplest profile that is

possible for any solution of Navier Stokes equation.



(Refer Slide Time: 04:58)

So, we see this plot, the plot actually shows that it is a straight line. So, here I am marking the

profile of the velocity u1 as a function of x2 or y, which means you want to show this on the

schematic itself then you could also do that. So, you could do that here in this manner the axis

can be drawn and then this is x2 and this is u1 and then we show what is a maximum velocity

there and so velocity would look like that which means that as you go up in the thickness of

the layer, the velocity is picking up upto a maximum value given by this term.

And we can also see that the Newton’s law we have retrieved because when we now see that

the shear stress is calculated as per the same formula then it comes out to be a constant and

we can see that here it comes as a constant because u1 is constant and δ is in the denominator.

And u1 is positive because it is along the direction of x1, which means that τ21 is positive and

it is constant. So, that is why the plot τ with respect to x2 is just a constant line vertical line

that is going like this, which actually means that what is it when we say τ  is positive. Of

course, when we substitute any value of x or y if it is a functional form and then see that it

goes to negative or positive there must be a meaning for that. So, for that we introduce the

convention by which we define how the value of τ should be interpreted. The convention is

different from the book bird (Refer Time: 06:44) Stewart these take through so called positive

convention.
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Here and it is as follows. So, these definition will be repeated every problem in this session,

so that we can commit it to a memory. The shear stress τ  is basically the stress exerted on a

plane y, you can see the τ  is written as this, so τyx. So, we just, so this and this. So, one of

them is plane and another is a direction.

Of course,  so, one of the plane and other is direction we can swap them because of the

symmetry. So, the τ exerted on a plane y is in the direction positive direction x and it is

exerted by the layer at a greater y on the layer at a lesser y. So, if that is the case then the

shear stress is positive, in case it is the other way then it becomes negative. So, this is the

convention by which the mathematical way it comes out when we substitute different values

x or y as a case maybe it all come to be the same convention because we are using the same

expression for the Newton’s law. So, in this case when you take the plane x2= 0, you would

see that, you see here this plane this plane is here it is its shown here in this orange line.

So, if you take that plane for example, at greater y that is at a higher value of x 2. So, here this

is the higher value that is liquid and lower value of y is basically the wall. So, the force or the

stress that is exerted by the liquid on wall if it is in the positive x direction then this stress is

positive which is actually is true the reason is that the top wall is moved along the x direction

and therefore, the liquid is flowing in this manner and therefore, liquid is trying to move in

the plus x direction the stationary wall is trying to stop it, the wall is exiting a stress in this

manner the liquid is exiting in that manner and therefore, the tau that you get at the value x2 =



0 would then be deemed as positive that is what we have also got from the a mathematical

expression.

So, we check this kind of a convention even in other quadratic systems and very useful to

remember this convention to apply in other situations also.

(Refer Slide Time: 09:13)

So, we now got to another problem which is quite popular and these also from the industrial

application because when we want to transfer some liquid metal or slag from one place to

another place then you may have inclined planes where the liquid would flow and usually the

liquid is an exposed to the atmosphere. So, you have got here gaseous atmosphere and what

would happen to the top surface would there be a pickup of oxygen or release of hydrogen

etcetera these are all issues of concern for a metallurgist. So, you have got here basically a

wall which is stationary and then liquid is exposed to the gas. So, if this is a problem then

how do we arrive at the functional form for the velocity as a function of distance.

So, we choose that the coordinate system. So, that the velocity is single component. So, we

see that velocity should be only along the x1 direction.  So, the flow is basically u1 and it

should be a function of x2. So, this way we choose so that the problem is simplified. The

driving force, reason why the flow is happening because of the body force term that is gcosθ

along this direction.



So, if you take the component in this direction. So, you have got gcosθ and there is a body for

that is acting because of which the flow is taking place and the boundary conditions as we

discuss  in  the  previous  session  are  as  follows.  On  the  bottom  surface  you  have  got  a

stationary wall. So, the liquid does not move is related to that. So, the no slip condition would

come of use which means that this velocity is 0 at the bottom wall. And at the top you have

got  the  liquid  layer  in  contact  with  the  gas  the  gas  has  very  less  density,  so  it  cannot

withstand any stress on the surface. So, the free surface you will have the stress is 0 and

which  means  that  according  to  the  Newton’s  law

μ×
∂u
∂ y

=0

which means the slope of the velocity with respect to the y direction is 0 at the top surface.

So, we have got the boundary conditions and we have got the reason why the fluid flow is

taking place. So, we then can start the solution by writing the Navier Stokes equation with the

component for the component u1 ok.

(Refer Slide Time: 11:27)

So, here we have the same situation we have got the equation written already for this  3

assumption. So, these already done because of which the equation appears in that form and

we assume that this flow is taking place for a long time and at steady state. So, we knock of

the first term because of the assumption 4. And we say that the velocity is only along x1, so x2



and x3 directions there is no velocity which means that u2 = u3 = 0, which means that I can

remove these two terms according to the assumption 5.

And then the velocity variation can also be chosen along either x2 or x3. So, in the depth

direction of the plane we do not want to look at any variation. So, we would like to knock off

this  term. So, there is  no variation along x3 direction.  And then we say that the velocity

profile is fully developed that is as the liquid is falling down the plane it does not accelerate

which actually is not true actually if the plate is quite long, but we may make the problem

simpler by assuming this. So, we knock off this term from the assumption 7 and secondary

rate of this term will also be vanishing. So, that should go away and we also say in addition to

the assumption that we have listed till now there is no pressure drop. So, this will be going

away because of this, which means that now our equation has reduced to having only two

terms. So, we have got this term and this term the F1 term is already known to us as gcosθ

because of which it is flowing. So, with this we can now write the equation that we need to

solve appearing in this form.

(Refer Slide Time: 13:17)

So, you can see that we have taken the μ and ρ to the other side multiply with the gcosθ  and

so we have got this. So, we can see that the integration can be done once and the way we

have chosen the coordinate is such that the wall is at x = δ and the gas is at x = 0. So, that is

very convenient because when we integrate once and see the integration constant C1 then the



first boundary condition for the gas liquid interface would said that constant to be 0, which

means that the form of the velocity is going to be very simple.

So, when we integrate a second time then we can see that it comes to x2
2/2 and then from a

integration constant  C2 we have and we need to  substitute  the boundary condition  at  the

stationary wall, u1 = 0 at x2 = δ and that will give you the value of C2. So, what we do is that

this value we then substitute into this and therefore, we get the variation of the velocity of the

function of x2. So, u1 as a function of x2 is given here.

(Refer Slide Time: 14:22)

And we have intentionally take  δ as a common term so that we can see the functional form

with two parts of it. The first part is actually problem specific and the second part is basically

the profile. And what would be the maximum velocity? Maximum velocity should be on the

top surface and you could see that when you set x2 = 0 you get the maximum velocity and

that is given here. And once the maximum velocity is given we put the maximum velocity

here and therefore, we can do the scaling which means that what is a velocity scale with the

maximum velocity that is giving you the profile. So, the profile is then coming out neatly and

that basically can recognize with the square term that it must be a parabola.

So, we have a parabola coming out as a solution for fluid flow when you have got this kind of

a boundary condition. So, earlier problem that trivial case we looked it with a straight line,

but here we have got a parabola. And once you have got the velocity distribution. So, you

have basically got the velocity as a function of the distance. So, you could then from there,



use the Newton’s law to write for example,  
∂u1
∂x2

 and that should give you the τ. So, that is

what actually we used here and you can substitute and get the expression for the shear stress

also. So, once you have these functional forms then you can plot, plot and see how they vary

and also see whether they are meaningful.

(Refer Slide Time: 16:00)

So, when we plot it looks like this the parabola has shifted is bit. So, this is how the velocity

profile  should  look  like.  And  here  I  have  drawn  the  parabola  in  a  flipped  direction

intentionally to show you the nature as a parabola and you can see only half of the parabola is

actually applicable and the slope here is 0 when you look at here in this direction. So, 
∂u1
∂x2

=0

and the slope here will have some value; that means, that a shear stress at the x2= δ  which is

basically here on this side will have some value. So, here the shear stress is 0 and here the

shear stress has some value and the maximum velocity is here and the velocity at the interface

between this wall and liquid you at this location will be 0.

So, you could actually see that the parabola and the straight line are evident and we now

again look at the definition of shear stress and see what we meant by the shear stress being

negative or positive. So, you could see that at x2 = δ which basically as at the wall we are

saying the τ is negative now what is it mean. So, it means that here we say that this is tau and

this is a negative value. So, you are actually having x2 this way and τ this way. So, it has a



negative value. And why what is it mean by saying that it is negative. So, you could see that

when we apply the definition we see that the wall is exerting stress in the minus x1 direction.

So, the minus has come here because the wall is trying to prevent the liquid from flowing, the

liquid is trying to flow this way and wall is trying to prevent and the way the x 2 direction is in

this way, which means that what is the layer at a higher value of x2, that is a wall. So, what is

the layer at the lower value of x2? That is the liquid. So, wall on the liquid is exerting the

stress in the - x direction. So, therefore, the shear stress should be negative. So, that is how it

is actually given.

So, in that sense the this consistency is there with us to the definition and we could also then

imagine that the stress at x = 0 should be 0 here and that is also because you have got the

slope of the parabolic profile also giving you 0 there because it is a maximum value of the

velocity  which  is  also  at  the  top  surface.  So,  from here  the  then  can  derive  some more

quantities which are very useful in metallurgical problems because we want to look at what

would be the average velocity what is the volumetric flow rate of the liquid slag or liquid

metal over that inclined plane and what is the mass flow rate etcetera. So, very often these

flow rates are available and then we are then require to find out the average velocity there

time durations spent on the plane and the oxygen pick up and so on.

(Refer Slide Time: 19:12)

So, average velocity is always defined in this manner, you have any functional form if you

have then you have the ratio of the integrations. So, the numerator will have the velocity the



denominator will not have it rest of them should cover the entire domain. So, in this case the

domain is 1D, so therefore, there is only one distance variable. So, in the case of cylindrical

coordinate  system which we will  do in the next session we will  see that we will  have a

differentiation that is done twice because of the way area is defined. So, you will have 2D

access coming up here dr and dθ in this case of simple rectangular coordinate system we have

only one dx that is coming here. So, you then substitute the u1 as a function of u1  as a

function of x2 substitute and then perform the integration and you would see that it would

come out to be a ratio which is basically 2/3 of the maximum ok.

So,  it  is  very interesting  to  note  that  for  a  parabola  in  rectangular  coordinate  system or

rectangular coordinate system problems you will see that whenever other solution is parabola

then you would see that the average is 2/3 of max. So, this actually will be evident when we

do more and more problems and then it would also help us take a guess about the nature of

the variations without even actually solving the problem. Now, volumetric flow rate is then

available when we look at  the cross sectional  area through which the velocity is actually

happening. So, the cross sectional area is this. So, you basically see that this is the height of

the film thickness of that, film of the liquid film and this is the width that is the z directional

width of the plate. So, that area you have got the velocity that is happening and therefore,

volumetric flow rate is given by this expression which you can then substitute and see that the

delta is coming as a cube here, here it is square it is cube here which means that when we

substitute the values we must be very careful because often the thickness of the liquid layer is

in millimeters  which when we see here is cubed. So, if we do not make the substitution

correctly then the volumetric flow rate can be quite off because of the cubic nature of the

thickness of the film coming here.

The mass flow rate it is nothing, but the volume flow rate times the density. So, you can see

that here density × volume flow rate and therefore, if you see the expression you will have

density square coming and the thickness cube coming. So, here the thickness is generally in

mm and the density in SI units with kg /m3will generally will be in the order of 103 kg /m3.

So, you can see that there is a large number that is coming here in rho and there is only a

small number that is come in the cube, which means that while we substitute numbers for this

expressions  we  must  pay  attention  to  the  units  and  do  not  make  any  mistakes  because

otherwise the values that we get for the Ṁ  could be quite off.
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So we have also in metallurgy other expressions that are of importance for us. So, we are

often required to find out what is the average time spent by the liquid on the inclined plane.

So, average time spent is basically the time taken for the liquid to go through the entire plane

and we take the average velocity and divide that below the length of the plane then you get

the average time. So, length is available. So, the width is in the other direction the z direction.

So, this expression will give you the average time spent by the liquid and if you substitute the

velocity average velocity expression then you would get that.

Now, the time of exposure to the ambient gas. So, the ambient atmosphere is gas here this is a

liquid and we have got the wall here. So, the time of exposure means that the liquid which is

actually exposed here and that is actually moving at the maximum velocity. So, the time of

exposure calculation would require that we divide the length with the maximum velocity and

therefore,  you  have  got  this  slightly  different  expression  from  here  and  that  would  be

basically two-thirds of the average time that is spent less than the average time spend time

spend.

And when we substitute all the numbers we must always ensure that the solution we obtained

is valid. So, that is from the Reynolds number. So, we see that Reynolds number as defined

here can then be used to see that it is less than a critical number. So, this is a critical Reynolds

number and here in this problem it turns out to be 25, so smaller better always. So, if you

ensure that the numbers that we got are within this particular limit 25 then; that means, that



the solution you got is reasonable. So, you could actually use those numbers as meaningful

solutions or other problem that we have.
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So, the other problem that we will look at is flow between two plates here again the solution

is not going to be different from what we have seen till now, but we want to see that the

similarity nature depending upon the term that we choose the solution can still  look very

much similar. So, that is what we want to illustrate from this. So, here we have got two plates

and the two plates are stationary and the liquid is flowing mainly because of the pressure

gradient. So, here is the pressure gradient that is given. So, PH is the high pressure that is

applied at this end and PL is the low pressure that is present at the other end over the length

L. So, (PH – PL)/L is a basically the gradient pressure you could see that the gradient is

negative because it is decreasing with increasing x1 and which actually also means that when

you apply higher pressure on the left hand side the liquid should move in the right hand side

which means that u1 is actually in the plus 1 direction; that means, the velocities are positive.

And y direction is x2. So, you are asking this. So, this is what we want to seek.

So, boundary conditions are given as follows the velocity at the top wall and the bottom wall

are both 0 because both are stationary walls and from the no slip condition you have that 0.

Now, we need to choose how to place our access. So, the coordinate access are placed in the

center. So, that the plus delta and minus delta will become the two walls. So, this you could

say is at  + δ  and this will be at - δ. So, there is certain symmetry in this problem we want to



exploit that by simply also choosing the distances appropriately. It is not important when you

plot it, but while deriving actually such simplifications make the algebra little easier.
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So again we go through this exercise of looking at the entire Navier Stokes equation and that

is written for the 3 assumption that we have written here and making the simplification. So,

we again assume that the pressure gradient is  applied and the fluid flow is happening at

steady state. So, we knock off this term because of the assumption 4 and we say the velocity

is along x1, which means that u2 = u3 = 0. So, then I knock off this term and this term from the

assumption 5 and then the velocity is varying only along x2, so we do not have variation

along x3 direction.  So, we can knock off this term also and we say that the fluid flow is

happening at fluid developed manner which means there is no gradient of the flow along the

flow direction, which means that we knock off this term and this term is actually secondary

rate of the same one. So, we knock that off also.

And now we have got only two terms here and we want to state that there is no body force

term, which means that these are the only two terms that are coming of use. And of course,

we also make an assumption that there is a pressure drop term is actually constant. So, we

want to say that this is a constant because it could technically be a function of distance, but

for our problem to we made simple we want to take that is a constant. So, the differential

equation have only two terms and that is what we have written here.



∂2u1
∂ x2

2 =
−Δ p
μL
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So, now, for we can an integrate it twice to see that it would have x2
2/2 coming here x2 and

then constant should be there. So, these are the integration constants. So, these constants are

to be evaluated by using the boundary conditions. So, there are two boundary conditions that

are available and we substitute them and we can immediately see that the solution will come

quite symmetric such that the velocity immediately can be seen as 0 at x2 = + δ as well as - δ

and this is a functional form that we have sort. Now, we could see that again it is a parabola

and when we scale it also turns out to be similar to what we have seen earlier.
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Now, the maximum velocity is at x2 = 0 which is at the central plane, which will give you the

expression here the pressure gradient × δ2/2μ. Now, when we divide the solution with the

maximum velocity we get the scaled velocity profile and we see the scaled velocity profile is

actually giving you just the profile alone on the right hand side which is a parabola.  So,

interestingly the solution on the right hand side is identical to the previous solution, but the

reason why the flow is happening is different if the earlier situation it was a body force term

in this situation its actually the pressure gradient term. So, they both have the same way of

affecting the solution and we also see the earlier problem had half a parabola, here you have a

complete parabola its only matter of the domain definition from 0 to δ versus - δ to + δ

otherwise the solution is identical, which means that sum of the solutions when we know we

could actually transfer them to new problems by looking at the similarities.

The average velocity is calculated in the same way and you would also see that the same

relationship is coming here also that is the average velocity to the maximum velocity has a

ratio of 2 : 3. And we could also then apply the Newton’s law to get the stress profile and you

could see the stress profile comes as a linear function with a minus sign.
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So, similarly we can also see that it comes in this manner and the stress profile will cross over

the  0, τ =0 at x2 = 0 and you could see that it is at the center plane that the velocity has a

maximum. So, here you would have the slope 0 if you want to look  
∂u
∂x2

=0 at here is 0. So,

you would then see this stress is too 0.

Now, you could also see that at the bottom layer then you have got a positive slope and you

have got positive stress here, here I have a negative slope you have got a negative stress value

there. So, you could actually see that you could predict the profile of stress profile from the

velocity profile, you could also plug in the mathematical expression and arrive at the same

thing. And you could also apply the definition here and convince yourself that the reason why

the stress is given in this particular manner is actually valid.
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Now, the last problem we actually not going to solve we are only going to just combine the

solutions from what we have done till now. Here is a situation where there are two walls

these walls are fairly long in the bidirectional. So, the liquid that is in between the walls is

getting mixed, the reason why it is getting mixed is because one wall is stationary the other

wall is actually moving vertically in the direction of + y at a velocity v0. So, this would mean

that the flow is due to two reasons. So, earlier problems had the flow because of only one

reason, but here it is because of two reasons, one reason is that is the body force that is acting

which is in the - y direction is - g and the other reason is because of the wall being moved at a

velocity v0. So, these are the reasons why the fluid flow is happening the boundary conditions

are as follows on the left wall you have got u1=0 because of the no slip condition on the right

wall you have got u2 = v0 again due to no slip condition.

So, this problem we could actually see that if you look at the one combination that is if you

look at this and this we saw this must be a straight line solution and when we saw this and

this together we saw that it should be a parabola, which means that we can predict already

what the solution should look like.
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And we would actually do the same exercise and we see that the equation is written for them

and we knock off the terms in the same way. So, that is because of the velocity being in only

x direction whereas, variation along x2 which means that I remove this fully developed flow

then I remove this term, this term and then there is no pressure drops. So, I remove this term.

So, you have got only this term and this term and this is already available there is - g there.

So, that will it substituted. So, you can actually then integrate it twice.

(Refer Slide Time: 33:11)



So, this is the solution and when you integrate a twice you get two constants of integration of

C1  and C2 and these can be ablated using the boundary conditions x1 = 0, you have got u2 = 0

at x1 is equal to B the right hand side wall which is moving at velocity v0 in the + y direction.

So, that would be here. So, then you could actually arrive at the integration constant. So, this

will give you the velocity profile and, so u2 as a function of x1 is available. So, this as you can

see it has the parabolic term that is coming here and there is linear term that is coming here.

So, you can already see that from our analysis just slide behind we can see that it must be a

mixture of a parabola and a straight line and that is how it looks like. So, when you plot it

would the profile would look like that.

(Refer Slide Time: 34:00)

So, that the velocity in the left part of the domain would look going down and the on the right

hand part you see that it should go up and reaching the velocity exactly v0  on the wall. So,

you could see that fall down no. So, this is a plane over which the velocity profile is actually

shifting going down on the left hand side and up on the right hand side which means that very

far below if you had a closed wall. So, then the liquid has to mix it has to take a turn.

So, you could see that this kind of a arrangement would actually make the liquid mix up

which is actually the principle that is used in apple juice mixtures or orange juice mixtures

that are available in the vending shops in daily life that you notice. So, here we will not solve

this on the slide now, but I want you to try this out in your leisure where is the maximum

velocity you could evaluate it. So, you could actually check where is the slop going to 0 and



find out the maximum velocity downwards and then where is the flow direction reverse. So,

you could also check at what value of x1 does that happen and. So, you could actually ask

those things and then you could see that you have got variability that is across v0 and B. So,

by tuning v0 and B you could then change these two conditions at your know wish.

So, we could actually go further by taking more and more terms, but at this moment we have

already you know done enough to just check how the values variation of velocity profile

would come like. So, basically we are looking at solutions that are coming from only the

diffusion term and only one at a time and then getting the solutions in a simple form. And

you can then see that the solution is applicable to and the entire domain and this is something

that we are going to relook whether this is usable or not later on. But at this moment the

diffusion profile  is  actually  applicable to  the entire  domain and that requires  the laminar

assumption to be valid and that is the reason why we want to look at the critical Reynolds

number so that the solution is valid.

And we are also going to then look at the reason why this is called the diffusion profile of

velocity  field  the  reason  is  actually  what  is  being  diffused  is  the  momentum.  So,  the

momentum that is actually being dispersed within the medium because of the wall conditions

are the reasons why the viscosity is playing a role. So, these are all basically solutions for

viscous  liquids  only  which  luckily  ferrous  in  metallurgical  domain  is  applicable  because

liquid metals and slags are generally very viscous.

So, with that we close this session at this moment and then we will have some numerical

problems that will be made available to you as part of the course which you can plug in and

then check whether you are getting those numbers right, some sample problems also will be

available for you to practice.


