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Lecture - 11
Flow Problem Statements

Welcome  to  the  session  on flow problems  statements  as  part  of  the  NPTEL MOOC on

transport phenomena in materials.
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The objective of this session is to define the problem in a way that will help us arrive at the

spatial distribution of velocity very often when the maximum velocity or average velocity are

required usually we can use some empirical correlations or some energy balance equations to

arrive at it; however, when we need spatial distribution of velocity we normally will need to

solve Navier Stokes equation to arrive at the solution. So, what we will cover in this session

is a strategy to arrive at the exact solutions a discussion about the domain how we choose and

make it simpler. 

So, that we can solve the problem easily and then what are the various assumptions that we

can take so that, the problem will become a well defined problem and then some discussion

on the  boundary  conditions.  So,  that  we can  actually  use  it  integrate  the  PDE is  partial

differential equations that will be coming in a simple form in the end, so that we can come

with the solution.



(Refer Slide Time: 01:25)

So,  here  we  have  the  problem solutions  strategy.  So,  these  are  steps  that  we  would  be

following for most of the problems which will  be at  the undergraduate level  in transport

phenomena courses in metallurgical and materials engineering curricula. So, first thing we

need to do is list all the assumptions that can be made in that particular problem. So, we have

to make the assumptions to make the problem as simple as possible and then we need to draw

the schematic of the domain and then identify the boundaries and what are the conditions that

are specified at these boundaries half of the problem is actually solved by the time we come

up to this stage and then we write the Navier Stokes equation for the appropriate velocity

component and the appropriate coordinate system.

And then we look at all the terms and drop the terms that are not required because of the

assumption that we made and then the equation will reduce to just a couple of terms which

we can then integrate over the entire domain to arrive at the solution and while writing the

solution we will always usually have integration constants, which we can determine using the

boundary conditions. 

And once we have this solution in the analytical form we can plot the velocity distribution

over the entire domain and examine whether the distribution looks reasonable and appropriate

for the problem that we started off and then in the end we validate the solution because the

entire process is subject to assumptions that the velocity distribution is given by solution of

Navier Stokes equation and this is usually when the laminar assumption is valid. So, we need



to check the Reynolds number being within the range that is applicable for that particular

problem.

(Refer Slide Time: 03:07)

So, some assumptions that are usually made are listed. So, these are the assumptions that we

no longer discuss for every problem because these are there for almost all the problems in the

metallurgical material scenario. So, most of the liquid metals and slags are Newtonian fluids

under  normal  circumstances  in  industrial  applications.  So,  we  normally  assume  that

Newtonian fluid assumption is valid. 

So, which actually means that this is the assumption that you are making which means that

the Navier Stokes equation, we are writing is taking the Newtonian fluid assumption which

we already done that  and it  also means that  once we have the velocity  distribution  as  a

function of the spatial coordinates for example, in this case let us say x2 is y. So, once you

have the velocity distribution then the slope of it multiplied by the viscosity will give you the

shear stress.

So,  we can also use this  assumption to arrive at  the shear  stress distributions  within the

domain  the  second  assumption  that  will  be  made  which  is  again  very  common  in

metallurgical scenario is that the liquid metals or slags or incompressible fluids. So, which

again is very common and what this implies is that the rate of dilation given by this symbol δ

is 0 which means that the divergence of the velocity is 0 this actually helps us in making



some simplifications on the type of velocities forms that we can take and we will come to it

in a moment.

We will also make the assumption that the properties are constant which actually means that

the diffusion term on the right hand side of the Navier Stokes equation can be written in

simpler manner and usually this is reasonable and where specifically we want the viscosity to

be a function of location or any other parameter then we will have to watch out, but otherwise

by default  we are assuming that  the properties are all  constant they are also making one

assumption implicitly whenever we try to solve the velocity distribution using Navier Stokes

equation and then that is that the flow regime is laminar and normally the laminar regime is

when the Reynolds number is very small. 

So, small Reynolds number and it also acts as if one layer of a liquid is smoothly flowing

over the other layer. So, that the wall effects the effects due to the boundaries are penetrating

in the entire domain.  So, this actually means that the velocity distribution we arrive at is

applicable  for  the  whole  domain  and that  is  exactly  the  purpose of  coming through this

particular exercise.

(Refer Slide Time: 05:46)

So, here we start of by looking at what is the equation that we are solving. So, most often

when we simplify the Navier Stokes equation and look at the terms and then use them for the

solution, we often lose track of what is an equation that we started off. So, as a practice in this

particular course we will always start with the Navier Stokes equation. So, that we are a very



conscious of what equation we are solving whenever we want flow distribution as a function

of the distance in the domain. So, here is the equation that we are solving and if you notice

the equation is written for ui which means that it is for the 3 components of the velocities you

could actually write this for other coordinate systems we have already seen those equations in

the previous sessions and which means that we now have basically 3 equations.

And you can see that the velocity is appearing both in the absolute manner as well as in the

differential manner on left hand side as well as on the right hand side. So, it is a very strongly

coupled equation and there are many many terms. For example, you have the body force term

you have the pressure gradient term and you have got the Laplacian term and the advection

term and the transient term. So, you can actually imagine that the analytical solution for such

an equation in 3 dimensions will be formidable.  In fact,  it  is impossible for many of the

situations. So, what we are going to do is reduce the situation much simpler by assuming a

list of conditions that we will discuss as you go along ok.

(Refer Slide Time: 07:31)

So, the equations are going to be made simpler as follows the first thing is that instead of

solving 3 equations for 3 components we will see whether we can actually limit the number

of components. So, by saying that we just see whether just one component is enough for the

problem that we are looking at and if that is the case then we can arrive at unidirectional

velocity  profile.  So,  very  often  this  is  actually  sufficient  and  in  situations  where  the

cylindrical or spherical coordinate system is taking up then we can actually also change the



coordinate system and still retain the unidirectional nature of the velocity profile and instead

of having. So, many terms that are playing a role we can actually inspect if some of these

terms can be dropped.

So, we also going to consciously see how we can limit the number of terms in the Navier

Stokes equation and then the domain. So, often problems that are actually correctly solved in

let us say cylindrical coordinate system can be simplified to rectangular coordinate system by

inspecting the domain the size and the curvature effects etcetera. So, we actually going to

spend some time on looking at the geometry of the domain and seeing how we can actually

make it  as simple as possible  and symmetry principles  sometimes help us.  For example,

asymmetry will help us reduce the number of variables in cylindrical coordinate system the θ

can be just dropped out of our problem because the solution appears to be axisymmetric in

nature.

And by scale we mean whether some of the features of the domain can be ignored or not. So,

this  are  the  discussion  that  we  will  go  through  as  we  solve  the  problems.  So,  that  the

objective is to make the equation as simple as possible and we know that simple equations

need to  simple  solutions  which  is  the objective  of  arriving  at  the  analytical  solutions  of

Navier Stokes equation and of course, we are going to make a lot of assumptions which will

actually form the problem statement. So, in defined problem which is the realistic scenario

will  be rendered as a well-defined problem by coming up with a list  of assumptions and

which means that this is going to be very important.

So, what we are going to now take up is this the domain.  So, we will  make little bit of

discussion about the domain.
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How do we choose the domain for a given problem? So, what we mean by domain is as

follows domain is basically the region of interest. So, it just means that it is the region in

space where the velocity profile is being sought we are not interested in the velocity profile

outside of the domain and that is how we limit out problem to the domain and whatever is

actually going to play a role on the modification of the velocity from elsewhere from the rest

of the universe is only going to happen through the boundary of the domain. So, we draw the

domain and once we say that this is my domain and which means that whatever happens

elsewhere  I  do  not  bother  it  is  effect  through  the  boundary  is  only  that  is  going  to  be

important for me.

So, identifying the right domain in a given problem is also half the problem solved. So, we

must  actually  take  this  very  seriously  and  see  how simple  we can  make  the  domain  as

possible. So, sometimes it may happen that in a single physical scenario you have different

problems that will be addressing different domains for example, I will just scribble something

here you could actually see that let us say a container you have the liquid that is coming out

and then you are trying to fill it in to a casting system.

Now, what happens is that you could actually look at the flow in the melting furnace you

could actually flow through the cylindrical tap hole you could also look at the flow into the

caster.  So,  you could  actually  have  the  same problem,  but  look  at  different  domains  at

different  situations  and that  actually  changes  the problem also.  So,  often we have to  ask



which part of this problem is of interest for me and that would be the domain that we will

take and then rest of the details will be all merged in the boundary conditions and often we

also say that end effects should be ignored. 

So, what we mean by that is whenever let us say for example, you are looking at a situation

where a  flow due through a tube is  actually  being looked at.  So,  in  the initial  and final

portions of the tube what will actually happen in making the flow stabilized is going to be

ignored and most of our analysis is valid for a length where the start and the end effects are

actually negligible. So, this kind of a assumption will actually help us make the steady state

condition also possible  and we are going to make this  in almost all  the problems in this

particular course.

(Refer Slide Time: 12:14)

 

So, just for practice; I am now showing you some domains and looking at how we actually

define. So, here is a situation of a flow of liquid between 2 plates. So, this could be a situation

where the slag is being tapped and it is being flown into another container from a furnace and

it is then covered with another plate on top. So, realistically how closely it represents a given

problem is not our discussion at this moment, but let us just look at what the domain is to be

looked at as here. For example, you have got the 2 plates and the domain is basically the

liquid that is in between. So, if you notice the coordinates systems are placed in a way that is

extracting the symmetry out.



So, you have the spacing between the 2 plates  is  2 δ.  So,  I  place the coordinate  system

midway. So, that the distance here is δ  which means that the domain is going from - δ to +δ.

So, this way the symmetry is captured in a way that the solution also will look symmetric and

because there is nothing that is happening in this direction you have only the flow in this

direction because pressure here is high and here is low. So, which means that the flow is

going to be from left to right, which means that there is nothing happening in this vertical

direction, there must be a symmetry that is happening.

So, we normally define the domain in terms of the distance variable across the domain in this

manner. So, the variable is x2 which is y and is going from - δ to + δ. So, that is our domain

and everything else is of no relevance for us at this momentum.

(Refer Slide Time: 13:52)

So, take another problem which for example, is flow of slag over inclined plane. So, let us

look at another situation where we are seeing slag flowing over inclined plane. So, here if you

see the plane it certain angle to the vertical axes. So, if I were to for example, choose the

coordinate  system in this manner then we have a problem because the velocity is in this

direction which means that there are horizontal components as well as vertical components

which is unnecessary because the flow is only down the inclined plane.

So, if you then rotate the coordinate system in such a way that one of the axes is parallel to

the inclined plane then we can see that the flow is actually only unidirectional. So, in this

case for example, x and y, if I write, then the flow is only along the x direction and then we



can also choose the origin of the axes to be at the surface of the plane or at the free surface of

the liquid slag; so that is a choice that we can exercise it we are free to choose either way. 

So, you could actually make the axes either this way or the way that is shown in the red color.

So, between these 2; the one in the red color actually gives the solution in a more symmetric

form. So, that is what we write, but we are free to choose this way this way is wrong. So, we

should not do in this manner because it unnecessarily make the velocity come up with more

components then necessary now the domain is defined here again you can see that the domain

is defined in a very simple way from 0 to δ. So, you can then see that this distance is δ. So,

the domain is only from 0 to δ.

(Refer Slide Time: 15:35)

So, now another problem that we look at here is a squeegee device tapping a liquid on to 2

drums over a plate. So, you can see that again here you have a choice of the domain you

could actually look at the problem of how the liquid is pouring from the bottom tap hole or

how it  is actually  flowing on the plate below that and how it is actually  flowing on this

cylindrical rods that are rotating in this manner. So, you have a choice and in our case this is

what we are actually choosing and if you chose like that then the domain will then be from

the surface of this rod to the free surface which is given by this. So, which means that this is a

distance x and the flow is actually happening in this direction ok.

So, it happening in the y direction and x is a distance over which the variation is happening.

So, you have let us see if I want to call this as x3 and this is x1 the velocity will be u3 and the



variation is along the x1 and that defines the component and the direction over the which it in

varies.

(Refer Slide Time: 16:51)

So, here one more problem to look at you can see that here we are looking at the flow in a

annular tube. So, the where is the liquid the liquid is here? So, it is in this annular tube and if

you now want to look at from the side, so the liquid actually is here in the annular region and

it is actually flowing in this annular region because the rod is actually being pulled out. So,

because of this the liquid in between the shaft and the annular hole is actually moving in the

in this direction the direction I have indicated. So, if I want to call this direction as z, then the

velocity will then become uz.

And the domain is the annular region which actually can be defined in cylindrical coordinate

system in this manner this is going from kR to r. So, it is only this gap that is our domain. So,

rest of it is not of our concern at this moment. So, sometimes it may happen that the value of

k is very close to one which means that the gap is very small compare to the diameter of the

rod which means that the curvature is actually not very significant in such a situation, you can

actually also make an assumption that a rectangular coordinate system can also make this

particular domain possible which means that if you look at this region alone then you can

think of it as here you have a motion here and this is stationery and you have got the liquid.

So, you can actually pretend that the domain is rectangular in nature and say that the domain

is going from 0 to one minus k R where the 0 actually starts on this surface of this shaft and



one minus k R actually ends here. So, this gap is now our domain and the variation in the

aerial direction which actually is in this case x2 variable. So, we choose that this is the x2

direction and this is the uz flow. So, that is now our problem in the case of an axial film flow

where the gap annular gap is very small compare to the diameter of the rod ok.

(Refer Slide Time: 19:01)

Here is one last scenario for us to practice the domain. So, we are now looking at the flow of

liquid metal around a spherical oxide. Now what it implies is that the flow is actually of our

interest in the region that is going from r to infinity which means that the everywhere else

except the blue region is our domain; obviously, we cannot have an infinite domain you know

to depict, but mathematically it is actually very simple to do. So, you could actually think of

the domain as very large kind this is all our domain and this is not part of our domain.

So, what our boundaries the boundaries are basically the infinite distance and also the surface

of the spherical oxide. So, that is our domain. So, this is all our domain and this is not our

domain. So, like this you could actually choose the domain and solve the problem. So, in this

case, for example, if the flow is around the sphere then anything outside the sphere is our

domain. Now we are also choosing the R to be the variable over which the domain is refined

and we can also choose θ to be one of the variables for which the velocity is varying and we

do not have to take both the angles because we can assume that the velocity is symmetric

over the vertical axes.



So, that the  can be dropped off and θ will be there and R will be there. So, like that we canϕ

reduce the problem from a 3 dimensional one to an axisymmetric one in this case and then

look at the problem solution, like this in a given situation we make the domain as simple as

possible and without losing the essence of the problem.

(Refer Slide Time: 20:42)

So, here what we are now looking at is to check how the assumptions can now lead to some

help in reducing the complexity. So, we have actually seen that the equation will have large

number of a components and you can see that there are many many terms. So, how do we

reduce?  So,  we  need  to  make  many  assumptions  to  make  this  kind  of  a  simplification

possible. So, we are going to make some more discussion on the assumptions.

So, we it is also clear that by now we have already seen that this actually means that we have

got  3  velocity  components.  So,  we  are  already  assuming  that  we  are  interested  in

unidirectional velocity problems which means that the only u1 for example, or u2 only one

velocity component we are interested. So, we write only one equation not 3 equations as we

have written here and in that one equation we have already got. So, many terms, we want to

reduce a number of terms. So, how do we go about that is the discussion?
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So, the very first assumption that we will do in most of the metallurgical problems means

because  of  the  long duration  over  which  the  flow takes  place  in  many of  the  industrial

problems. So, the problem is actually over such a long duration that we can assume that the

steady state is prevalent. So, steady state prevalence means that the time derivative of the

velocity  is 0 so; that means,  this  is actually applicable and what this actually means that

immediately in the Navier Stokes equation we will drop the first term off. 

So,  which means that  the steady state  assumption  has  been used and we are writing the

Navier  Stokes  equation  for  the  u1 component  of  the  velocity  which means  that  we have

already chosen to have unidirectional velocity. So, steady state if it is possible immediately it

means that one of the velocity equation terms the very first one the transient term can be just

dropped.
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The other assumption that course is important as I just mentioned is unidirectional flow. So,

unidirectional flow does not only mean that the number of equations has reduced from 3 to

one it also means that the u2 and u3 are 0. So, what this implies is that here we have got u2 and

here you have got u3. So, which means that the terms here are also going to be dropped off,

which actually makes the number of terms in the Navier-Stokes equation much smaller. So,

you can already see that the first term is dropped in case it is steady state. So, the third and

fourth terms will be dropped in case u1 is the only velocity u2 and u3 are to be dropped ok.

So, we have got simplification in terms of the number of equations it becomes one and also it

also helps us in the functional form. So, what we mean by that is as follows the continuity

equation for incompressible fluids we already know that it is written in the following manner.

So,

∂u1
∂x1

+
∂u2
∂ x2

+
∂u3
∂ x3

=0

and we are already now saying that it is unidirectional velocity which means this is this terms

and this term does not exist which immediately means that; the u1 does not vary with respect

to x1 which means that it can vary u1 can vary as a function of x2 and x3. 



So, you can already see what kind of a functional form is applicable whenever we choose the

flow to be unidirectional assuming that it is an incompressible fluid. So, immediately we can

see that simplifications are coming up.

(Refer Slide Time: 24:28)

Now,  let  us  look  at  the  other  assumption  which  is  generally  not  discussed  much  in

metallurgical text books, but it is an important assumption that has been made in most of the

problems that is we assume that the flow is fully developed. So, what we mean by fully

developed is that the spatial derivative along the direction of the flow is 0. So, it just means

that if the velocity is along the x direction then the spatial direction is x whether is   
∂u
∂x

=0.

So, whichever component you take for example, if you take u2 as a component that is along

the x2 directions. 

So, if you say that 
∂u2
∂x2

=0 it means that the velocities fully developed along the x2 direction

this does not mean that there is no variation with respect to other spatial variables like x1 and

x3.  So,  it  can still  be there  it  is  just  that  along the flow the flow does not  accelerate  or

decelerate it has already achieved a particular value and stays put. So, this actually means that

you can make this particular simplification which means that you can see that it is actually

helping us in reducing this term and also this term. So, you can see that if a flow being fully

developed  implies  that  there  are  2  terms  from the  Navier-Stokes  equation  that  could  be

dropped off.
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And we go further and see how it can be combined along with the other assumptions. So, we

then make  the  flow a  little  more  restricted  we can  say that  not  only it  is  unidirectional

velocity;  it  is  also  varying  only  in  one  other  direction;  that  means,  that  the  problem is

essentially 2 dimensional problem. So, let us say if u1 is the velocity we are talking about and

it can vary as we have just now seen as a function of x2 and x3 and we choose that it varies to

only along x2. It does not vary along x3. 

This  is  a choice,  we are making with which means that  our domain  is  in  this  particular

coordinate  system x1 x2 and  x3 direction  nothing  is  happening  ok.  So,  if  we  make  that

assumption then it means that you can drop the derivative of the u1 velocity as a function of

x3 distance. So, it immediately means that you could actually drop this term off you can also

drop this term off. 

So, you could see that the variation of u1 with respect to x3 appears twice and that you can

drop off and you could already see that we have already strategized to reduce the Navier

Stokes  equation  to  very  very  simple  form the  first  term  is  dropped  for  the  steady  state

assumption and then you can see that the unidirectional flow will actually make the second

and third terms drop off and then you can also drop one of them because it is a 2D domain

and you can drop from the fully developed flow this term. So, we can actually see that we are

actually seeing only these 2 term are going to survive. So, if you make all those assumptions

ok.
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So, let us just see how a typical flow problem appears in most of the U.G. level text books in

metallurgical curricula. So, these are all the assumptions that we will make so many many

times actually, we are not making this assumptions very consciously we just simply make the

assumptions and then write the equations without realizing that we have actually started from

the Navier Stokes equation and then reduced it. So, here we are making it very conscious. So,

first of all the equation that we wrote is assuming that it is a Newtonian fluid and that is an

incompressible fluids. So, we are already made that assumption and then if you look at the

diffusion term the viscosity is coming of this terms and then you have got a Laplacian here.

So, which actually means that you are assuming that the properties are constant with respect

to the spatial coordinate systems, they are not changing. So, that is why μ  has come out. So,

we have made this free assumptions the moment we wrote this Navier Stokes equation and if

we make the steady state assumption then we can strike it off and that is because of the

assumption four and if we say that it is a unidirectional velocity for example,; that means, u2

and u3 are not there. So, I strike off here and here saying that it is because of the assumption 5

that I have taken and then we say velocity variation is only in one direction. So, let us say it

varies only along the x2 direction. So, it does not vary along the x3 direction. So, I could then

take the assumption 6 here. So, because of which that term is going off.

And then we can say it is a fully developed flow. So, the moment I want to say it is a fully

developed flow then the velocity equation is written for u1 component. So, which means that



∂u1
∂x1

=0. So, we then make this term drop off and that is because of the assumption 7. So, it is

done; now you can say that the constant body force or pressure terms. So, which means that

these are all constants, this is how the equation will turn out to be many of the problems that

is you basically end up with only the terms like this ok.

So, you have got this and this only 2 terms will be there in many of the times the problems

are solved in the U.G. level metallurgy courses. So, you have seen that this is how it will turn

out to be and which means that the equation would look like this just have a look at here we

have got 
∂2u
∂x2

2  is equal to something that is a constant or a function.

(Refer Slide Time: 30:10)

So, which means that it is going to look like this and this as you can recognize is like a

diffusion problem. So, the function can be of anything. So, it has to be a function of x2, but it

can be in any polynomial order that we want to choose, but it has to satisfy this equation and

then we can get the solution.

So, if you just pay attention to this let us say on the right hand side you have got 0 which

means that the velocity variation would be like a straight line and here it is RHS is 0 RHS is

constant and you would have a cubic polynomial if RHS is a function of only let us say x2

and so on. So, you could have sinusoidal functions exponential functions and. So, on as a

case may be for example, if your right hand side is a function of u1, u itself then you can have



sinusoidal  or  exponential  functions.  So,  you  can  have  a  various  elementary;  elementary

functions that could be looked as possible solutions of the velocity field.

So, what we do is that we actually go and seek solutions for this particular problem under

various boundary conditions and see whether they can be used for the flow problem that we

have at hand ok.

(Refer Slide Time: 31:32)

So, we what we do now is that once the differential equation is available in that particular

form it is a very simple PDE. So, you can then go ahead and it is a simple PDE. So, you can

actually go ahead and see what kinds of solutions are available for that. So, we basically then

integrate and while integrating we always ensure that we exploit the symmetry what we mean

by that is at the center of the domain is the problem symmetric, if it is symmetric then the

slope of the variation of velocity will be at the center. So, some such observations we will

make. So, that our problem solution is easier. So, we will do that.

And we will also see whether the domain is semi-infinite or infinite etcetera. So, that we will

see  what  functional  forms  are  valid  for  example,  if  it  is  infinite  domain  then  as  length

variable goes to infinity you must not have the velocity blowing up which means that the

length will  becoming as 1/x or so on.  So, some such insights will  help us in arriving at

possible solutions and if there are periodic conditions that are available which actually means

that we will also use periodic functions to model the solution and whenever we do all this

things we eventually end up with some integration constants and we have to actually use



boundary conditions  to  arrive  at  what  the  integration  constants  are  now just  a  couple of

minutes on the boundary condition that we encounter in flow problems.

(Refer Slide Time: 32:55)

So, normally we have a container in which the liquid is flowing. So, most popular boundary

condition  that  we encounter  is  that  liquid is  present  near  a  solid wall.  So,  this  boundary

condition is very important and it is often to refer to as no slip condition the reason is as

follows the liquid usually because of the Vander Waals interaction because of the wetting

phenomena and any other problems that are associated at the atomic scale we can actually

assume that the liquid actually stuck to the solid. So, if the liquid is stuck to the solid it means

that the velocity of the liquid is not different from that of the solid there is no relative motion.

So, this actually is captured by stating here; here that is at the velocity of the liquid at the

interface is same as the velocity at the solid and very often the solid wall is stationary which

means that the velocity of the liquid at the wall is 0. So, sometimes the students are confused

to assume that the no sleep condition means the velocity of the liquid is 0 at the wall it is true

only when the wall is stationary if the wall is moving at a particular velocity then the velocity

of the liquid is same as the velocity of the solid. So, this is very important there is no relative

motion. 

So, the idea is always that there is no relative motion.  So, this is the idea of the no slip

condition and most of the walls if you look at pipe flow for example, the pipe is actually solid

material which does not allow the liquid to slip out. So, you can actually assume that the solid



walls are also impenetrable which means that the velocity of the liquid normal to the solid

wall is 0. So, you have a boundary condition both along the wall and along the wall and also

normal to the wall. So, if both the components you actually have a way to actually limit the

velocity  at  the wall.  So,  wall  is basically  of the boundary.  So, it  is a basically  boundary

condition.

(Refer Slide Time: 34:52)

So, now there are situations where there are 2 different liquids that are present in the domain.

So, in metallurgical scenario it will be for example, liquid metal with liquid slag on top of it

and both of them are flowing down in inclined plane for example. So, we may have such

situations  again and again 2 different liquids which do not mix are actually  flowing. So,

whenever there is a liquid; liquid boundary, then the boundary condition that we use is that

the shear stress is same for both the liquids at the interface that is there is no jump. So, there

is no jump in the value of the shear stress.

Of course, the 2 liquids would also wet each other and there is no relative motion of the

liquids with respect to each other which also is assumed. So, you also see that there is no

jump in the velocity also. So, the velocity is continuous and then their slopes will also have

no jump across  and  this  is  actually  also  useful  now when you use  the  Newtonian  fluid

assumption then the shear stress can be expanded. So, then it turns out that the ratio of the

gradients  of the velocity  this  is  the ratio of the viscosities.  So, this  is  how the boundary

condition is defined at a liquid interface.



(Refer Slide Time: 36:15)

Now, sometimes we also have in metallurgical scenarios where the liquid is actually expose

to gas. So, we are interested in how much of oxygen pick up is happening how much of

hydrogen removal  is  happening,  etcetera.  So,  in  all  those situations  the liquid is  actually

having the boundary with the gas and that can be handled by using a boundary condition here

that the shear stress is 0 at the boundary of a liquid and gas. So, the reason is as follows.

The gas actually has a density usually about a thousand times less than that of the liquid or

solid. So, which means that there are enough number of atoms in the gas that can actually

interact  with those of the liquid  or  solid  on the other  side of the interface  which means

basically that there is no way to sustain the shear stress at the top of the liquid and therefore,

it must be 0 at the top surface. So, at the free surface the shear stress is 0 and that is actually

explained here in this form.

Now, if you use the Newtonian flow assumption then you can already see that you can write

τ=μ
∂u
∂ x

 and that we say at the interface and you can already see that this being a constant you can

drop off and you can say that the velocity gradient at the free surface is 0. So, you can now

see that the boundary conditions of fluid flow are different for the 3 scenarios namely when it



is actually with respect to the solid on the other end or another liquid on the other end or a gas

on the other end. So, we need to keep this  is mind and look at  the boundary of a given

problem  and  use  appropriate  boundary  condition  and  that  will  help  us  in  reducing  the

problem much simpler.

(Refer Slide Time: 37:55)

So, let us just practice a simple problem without having to solve. So, here what I want you to

think of is look at the problem and see how simple the solution can be. So, here we have got a

flow of liquid between 2 plates and it is happening only due to a constant pressure gradient

and there is nothing else that is happening and under such situations how the solutions should

be. So, from whatever we have discussed till now. So, the domain is drawn and we see that

this axes is basically the x2 which is y or x2 axes and the velocity has to be plotted in this

manner.

So, you have got the velocity in this manner u1 and so, how the velocity should look like now

from whatever we have discussed if the plates are stationary; that means, that the velocity

must be 0 at the walls which means that we immediately mark that this is how it should be

the velocity should be 0 on the 2 interfaces between the liquid and the solid wall and the

liquid will have some velocity because of the gradient of the pressure that we have imposed

and  that  velocity  would  be  some value  here.  So,  which  means  that  we  actually  have  a

parabola that goes through these points, which already see that this is how the liquid flow is

expected to be now we can see that this is already a nature of the flow we arriving at from



just the boundary conditions and the knowledge of simple diffusion problems and we can

actually get the exact functional forms when we solve this problems analytically in the next

session.

(Refer Slide Time: 39:35)

So, now we just change the problem a little bit and see whether we are able to handle that. So,

what we are saying now is that in the same problem the upper wall  moves at a constant

velocity. So, which means that this is moving at uo and then the pressure drop is there. So,

which means that let us just see how the domain should look like. So, you have got this is x2

or y and this is the velocity u1, we are talking about and this is the domain. So, we can already

see that from the boundary condition discussion the bottom wall is a stationary. So, we say

that there is no velocity there and there must be some velocity in the middle because of the

pressure drop that is present.

So, there is some velocity and the upper wall is moving at a constant velocity uo. So, this

must be uo. So, which means that we must have a parabola that actually goes through this 3

points and that may come out like that. So, which means that we may have a maximum which

is actually in the top half, you may have that the maximum is in the top half of the domain

and this way we can actually see that we can we can see that the velocity distribution can be

arrived at without actually even solving. So, I am just making the parabola and the parabola is

shifted with a maximum slightly on the upper half to satisfy that the value on the bottom wall

is 0 the value on the top value is some finite number and it has a direction that is given by the



opposite to the pressure gradient which is actually going down. So, the velocity has to go

towards the right.

So, this way actually we can already guess how the velocity field should have it is variation,

but the actual analytical form of this can be arrived at from solution we will do that in the

next session and then we can actually validate whether it turns out to be the way we imagine

for this particular problem. So, the domain is - δ and + δ. So, you can actually mark that here

and this will be + δ and this will be - δ for example. So, we expect the solution to be given in

forms of δ  and the PH and PL over the length L, etcetera.

(Refer Slide Time: 41:54)

So, finally, whenever we get the solution in the form of a functional form, what we are expect

to do is that, we should validate whether the solution is valid under the Reynolds number that

is given for that situation or not. So, what it implies is that. So, we look at this Reynolds

number and it has to be generally for a given problem it has to be some critical number. So,

that number depends upon the particular problem and only when it is below at a particular

critical number we can say that the regime is a laminar and only then we can actually expect

the effect of a boundary all the way into the domain and that is exactly what we are going to

when we integrate over the entire domain.

So, it is very important to ensure that the solutions that we get after we get the solution and

plug in the numbers here. So, this is a velocity and this is the length scale distances and this is

a properties we have taken. So, for this combination we evaluate what would be the Reynolds



number and ensure that it is below a particular critical number for that problem. So, that the

laminar regime is actually valid otherwise what happens is that the flow actually in the reality

would turn out be turbulent in which case such a integration over the entire domain is invalid

the velocity would actually be varying with time also and therefore, we need to then go to

empirical correlation. 

So, we will actually have an approach to handle that also as a part of this course later on, but

this is one way by which we can validate the solutions. So, we validate not only by the plot,

but also by the magnitude of the velocity that we get. So, with that the; we close this session

and some of the practice assignments will be available for you to look up the notes will

always be there on the course website.


