
Transport Phenomena in Materials 
Prof. Gandham Phanikumar 

Department of Metallurgical and Materials Engineering 
Indian Institute of Technology, Madras 

 
Lecture - 10 

Navier Stokes Equation - Part 2 
 

Welcome to the session on Navier Stokes equation as part of NPETL MOOC on Transport               

Phenomena in Materials. This is the second session on Navier Stokes equation. In the              

previous session we have derived the Navier Stokes equation and in this session we are going                

to do to a little more analysis of this equation and special cases of this equation. 
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So, this is the outline of the lecture in this session. So, we are going to look at the types of                     

fluids based on the linear constitutive equation we started off and see how this can be violated                 

in some of the fluids and then we will see different terms of Navier Stokes equation and what                  

those mean. So, that for a given problem at hand then which terms can be dropped will be                  

evident. 

We will also see how the shear stress will be expressed in other coordinate systems and how                 

the Navier Stokes equation also will appear in other coordinate system. We will allot the               

attention to some terms that are coming in because of the nature of the coordinate system                



being cylindrical or spherical very different from the rectangular. And we will also then scale               

the Navier Stokes equation. So, that we do not use the absolute velocity or distances and in                 

the process we will discover that there is a non-dimensional number that is coming up which                

called as a Reynolds number. And then we will also convert the Navier Stokes equation to                

use not the velocities, but the stream function and then we will discover that we will have two                  

new operators that are needed for axisymmetric flow and we will list the special cases in the                 

end and then close this session. 

(Refer Slide Time: 01:44) 

 

So, here is the linear constitutive equation that we came about the equation originally was               

written in this fashion and then we said that this is a tensor of order 2 strain rate    dij = Aijkl ∂xl
∂uk               

tensor of order 2. And this is stress deviatoric stress of tensor of order 2 and we said that the                    

most general form should be the this must be tensor of order 4 it should be isotropic and then                   

we said that the symmetry over the two indices because stress is symmetric will implies               

symmetry over the same indices on the right hand side and then we expressed as a                

combination of the and then after some manipulation we arrived at this particular   δ            

expression. 

So, please refer to the previous session to identify how this particular expression has been               

derived. So, here the delta is the same as what we have come across which is nothing but the                   

rate of dilation and this is coming here and you could see that this constitutive relationship                



does not distinguish between incompressible and the compressible fluid flow. If it is             

incompressible then the second term can be dropped. So, you could see that the first term                

would then be looking like this you can see that for incompressible fluids because the          μe2 ij      

second term gets dropped off. And we already saw that e​ij was defined as the symmetric                

portion of the strain rate tensor which means that it must be this way. So, this is the                  

symmetric part and therefore, we can see that this happened to go away and we see that the                  

equation linear constitutive equation we have derived for an incompressible fluid would look             

like that. 

And if we were to take the velocities as u and v in x and y directions respectively then this is                     

the expression that is normally seen in many of the text books where we use for the               τ    

symbol, deviatoric stress in x y coordinate system we call it as and it is expressed in            τ xy      

combination of two off diagonal terms of the strain rate tensor and they are written like this.                 

And if the flow happened to be unidirectional then you have only one velocity component               

which means that this is the expression that we come about which means that you can see the                  

most general form happens to be here and this is a 1D version of it and it is this version which                     

actually is called as the Newton’s law for viscosity. So, which means that basically the most                

general form where the fluid can be called as the Newtonian fluid is here and for 1D flow it is                    

what is normally coming across in the text books namely is proportional to the strain rate          τ       

and the proportionality constant is defined as viscosity. So, we have chosen the symbol as               μ  

because the typical symbol used for viscosity. 
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So, now we see what are the different types of fluids that we encounter in engineering and                 

which of these can be called as Newtonian fluid. So, you could see that from the expression                 

that we have come across here you could see that it is this expression when we      τ xy = μ ∂y
∂u            

plot with a here and this way. So, you could see that it should be a straight line going   τ                  

through the origin and which means that for infinitesimally small velocity gradient you would              

require a very small amount of shear stress to cause and vice versa. And infinitesimally small                

shear stress will immediately lead to velocity gradients being set up. And this kind of a                

behavior is called the Newtonian behavior and the fluid that exhibit this are called the               

Newtonian fluids. 

And luckily for us most of the fluids that we encounter in engineering problems are               

Newtonian fluids. So, air, all the gases and water and oil etcetera these are all Newtonian                

fluids then in metallurgy particularly liquid metals are known to be Newtonian fluids for most               

of the strain rates that we encounter. And we see that there are other kinds of behavior that                  

are possible and we will look at them one after other. 



(Refer Slide Time: 06:18) 

 

So, we see that the second plot here it corresponds to Bingham plastic which means that the                 

behavior is such that until you apply a certain amount of stress in the here. So, you could              σ0     

see that this is . So, until you apply a minimum amount of a shear stress the material    σ0             σ0   

the fluid would not flow and once you exceed that then the flow would take place and you                  

would see that the relationship is given in this form which means that this behavior cannot be                 

directly used for us in the Navier Stokes equation you need to modify. And you already know                 

at what point we introduce the linear constitutive equation and therefore, you see that this               

particular material should not be modeled using in Navier Stokes equation. We need some              

other equations to do that. 

And the materials that we can encounter in daily life which behave in this manner like a                 

Bingham plastic or drilling muds, slurries, margarine, most important toothpaste paper pulp            

etcetera. So, it would be very sad if you open the toothpaste and it starts to flow immediately                  

and luckily for us it is a Bingham plastic. So, apply that mush of flow and you get that much                    

of flow out on to your brush, same thing for sludges and mixture of grain and water etcetera.                  

You could make these at home and look at the behavior yourself. 
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So there are other kinds of behaviors also for example, pseudo plastic, which is shear               

thinning. So, I indicate here and dilatant material which are shear thickening. So, these              

materials are such that at low strain rates you may see the proportionality, but at high strain                 

rate you would see that the shear stress required is either low or high compared to the                 

proportionality which means that it is going to be model to using a power law. So, you could                  

see that no longer you could use the linear law and you need to use a power law and here is                     

the term that makes this particular type of fluid different from the Newtonian fluid which               

means that these fluids at low strain rate could perhaps the modeled using Newtonian fluid,               

but at high strain rates you need to modify and the power law will come in. 

So, if this is the way then and we are actually force to use Navier Stokes equation to solve the                    

problem then what do we do. So, there is a quick trick available in case the exponent is not                   

very high then you could actually like this, you could write this expression in this form. So,                 

you could write in this from so that I have just not done anything except split the term the                   

power n as two terms one with power n -1 another as just power 1 and now you could think                    

of this as effective viscosity. So, which means that the effective viscosity is now a function of                 

the strain rate and then you could then think of this as . So, again we are back to sort           τ   μef f ∂x
∂v         

of I would say modified Newtonian behavior and then you can go ahead and solve the                



problems, but please be warned that this is only an approximation when the deviation from               

Newtonian behavior is not too much. 
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So, there are also other behaviors where it is not the strain rate that actually dictates how the                  

viscosity changing, but it is the time. So, you could see that thixotropic materials, rheopectic               

materials are materials in which giving the time for settling the particles that are dispersed               

you could have actually the viscosity either decrease with time or increase with that time               

respectively. We also have behaviors such as viscoelastic materials where the material would             

return to its original shape after the stress is removed. 

So, this is for example, the jellies that we use for the ice cream deserts where you push the                   

jelly and remove the hand and then the jelly comes back to its shape. So, such kind of                  

behaviors also encountered in the daily life. So, you could see that there are so many different                 

types of fluids, so it will be very sure that the fluid we are having at hand is Newtonian so                    

that we can then go ahead and use the Navier Stokes equation for that ok. 
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So, now let us look at how the shear stress would look like in other coordinate systems. So,                  

we saw that in Newtonian case the shear stress looks in this manner very simple in 1D and in                   

other coordinate systems how does it look like. So, I want to just bring to your attention that                  

the additional terms that will be involved and so for cylindrical coordinate system this is how                

it looks like. 

So, here the pressure is actually put in for the diagonal terms mainly because we would like                 

to see the diagonal terms as together with the pressure components also put in. If you want                 

you actually drop that and then look at the remaining part as just only the deviatoric stress                 

components that is coming in. So, for example, if you have a cylinder and you are looking at                  

how the shear stress would look like when the velocity is in the z direction then you know                  

that would have this terms. So, it look very much like a rectangular coordinate system τ rz               

where you would write in this from .τ rz = μ ∂r
∂uz  

However, this is when u​r component is 0 only actual velocity is there and you may see that                  

the way we write is very similar to the rectangular coordinate system, but this kind of a very                  

simplistic you know extension should be warned because you have terms that are coming              

with various other quantities. So, mainly because the coordinate system is cylindrical and you              

know that in cylindrical coordinate system the axes are defined a little different in rectangular               

coordinate system they are defined in this manner and the stationary. Whereas, in the case for                



example, you know x and y, the y is stationary in the cylindrical coordinate system the y axes                  

which is the theta axes is actually pegged up the end of the r axes and it would move around                    

as you relocate the r. So, that is how you see that the additional term that will be coming in                    

and we have to pay attention to that when we use these expressions. 

So, whenever we have a velocity distribution and we are asked to find out the shear stress                 

then simply plug in the velocity distribution into these equations and then the stresses are               

available. Then when you plot those stresses as functions of r or z or then we see how the              θ       

velocity distribution can be explained as a function of distances looking at how the stresses               

are actually causing that. 
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Now, we now being our attention to the different terms of the Navier Stokes equation we                

want to call different terms by names, so that later on when we solve some problem we want                  

to see which terms can be knocked off and we can make a simpler case of Navier Stokes                  

equation to obtain the exact solutions of that for a given problem. 

So, we will give names and this is how it is, you could see that this equation is written for the                     

u​1 component. So, this is the Navier Stokes equation for u​1 component and for u​2 and u​3                 

components you need to then change the variable here. So, I am going to actually just only                 

show you here. So, u​1 here you one here, u​1 here, u​1 here should be changed to u​2 and then the                     



u​1 here and here and here should changed to u​2 and that will give you the Navier Stokes                  

equation for the u​2 component. And you see that these are actually coming from the term                

which is basically from the material derivative and these three will stay the same whichever               

component you are going to write for. 

And if you are going to write for u​2 equation then this will become the f​2 component of the                   

body force and this will become x​2 which is basically the pressure gradient in the second                

direction and so on. So, you could just extent this equation for other two components. So,                

essentially we have Navier Stokes equation ready for all 3 components. So, for one              

component we have written. So, let us look at the terms. 

So, the transient term is this. So, the first term which is the partial derivative of the velocity                  

with respect to time that is called the transient term. And then the second term is where the                  

velocities effecting the momentum the momentum is effecting itself and this is called as a               

advective term and this is basically coming as part of the material derivative. And the third                

term here is basically the gravity direction or electromagnetic forces causing the flow and this               

is called the body force term. And the pressure gradient term is here and you could see the                  

pressure gradient term comes with the minus sign because we define pressure as a stress that                

is acting to compress whereas, would be acting to expand, so the minus sign is to     σ11            

preserve the sense of how we define the pressure. So, the minus is coming the pressure                

gradient term is here. And the last term is basically the Laplacian. So, this actually Laplacian                

operator is there and this is called as a diffusive term. 

Now, what happens is that there are there are situations where you may want to add some                 

more terms to this equation you may want to add some more terms to a handle more behavior                  

of the fluid flow. For example, to take into account the enthalpy porosity formulation etcetera               

and in such situations those terms would be called as source terms and strictly speaking               

source term and body force term are actually the same. So, it just to look at them as you know                    

in addition to what was there in a default form of the Navier Stokes equation you want to give                   

a name called source term, but otherwise source tem is same as the body force term. 

We know that this equation as come about from the integration of all these quantities over the                 

moving control volume. So, therefore, whatever you are doing for f​1 you are also doing for                



source term integration over the entire volume and therefore, they are also called the body               

force terms ok. 

And if you want to look at this equation in the vectorial form then you would see that there                   

the there is a material derivative term here, there is a term here and there is a Laplacian           ∇         

term here. So, having derived the Navier Stokes equation if you now want to look at how this                  

equation would look like in other coordinate systems perhaps we can just look up these               

operators in other coordinate systems substitute and proceed. But there is a warning because              

we have the curvilinear coordinate systems like cylindrical or spherical having additional            

terms coming in and therefore, we have to watch out what additional terms are required, but                

otherwise it is just the same concept and therefore, once you have understood how these               

terms have come about then you have understood how the Navier Stokes equation has come               

about. 
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Now, the Laplacian in different coordinate systems is going to look like this you notice that                

in the cylindrical situation you have r and in the spherical situation you have got r​2 and the                  

remaining terms as we have already discussed in the previous sessions. So, you could see that                

for the last term here. So, you could substitute these kind of expressions and proceed;               



however, on the left hand side for the advected term you will have additional terms because                

of the nature of the coordinate system being different from the rectangular ones. 
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So, how does it look like, how does a Navier Stokes equation look like in cylindrical                

coordinate system? So, for this you look up the equation from any of the text books, but you                  

can also derive it and we will have in hand out uploaded onto the course website to help you                   

make this derivation it will be quite tedious, but it is possible to derive just knowing how the                  

three vectors in cylindrical coordinate system are related to the three vectors in rectangular              

coordinate system. That is all the information that you need rest of it whatever you have                

about the Navier Stokes equation from the rectangular coordinate system you can directly go              

apply those transformations and you can arrive at these equations. 

So, one thing that I was alerting you to pay attention to is like this these terms for example.                   

So, the Navier Stokes equations for the u​r component is given in the first equation and you                 

see that the absolute velocity along the direction is coming on the left hand side. So, if you       θ             

have noticed the Navier Stokes equation you would see that no term will have velocity in                

absolute form. So, everywhere you have only differences that are coming in, only the              

derivatives are coming in which means that absolute value of the velocity does not coming to                

the Navier Stokes equation in a rectangular coordinate system. 



However, in cylindrical coordinate system you have the absolute velocity coming in on the              

left hand side and you could already guess why that comes in. You can see that means                uθ  

basically the centrifugal force that is coming in for the u​r component. So, these kind of terms                 

have to be paid attention to. So, the Navier Stokes equation to u​r is written here, Navier                 

Stokes equation for is written here and the Navier Stokes equation for the component is   uθ           uz   

written here. 

(Refer Slide Time: 19:03) 

 

So, you can see that Navier Stokes equations are basically sets of three equations in the case                 

of rectangular coordinate system all the three terms look same whereas, in the cylindrical and               

spherical coordinate system they do have small variations here. 

Now, let us say for the same actual flow we talked about just a while back. So, let us say this                     

is actual flow we are talking about, so which equation should I use then naturally this is the                  

equation I must use. And by making various assumptions we will go ahead and solve how                

this look like. So, this is the equation that is applicable for the situation. 

And for each problem we need to observe which component I want to solve the velocity for                 

and then bring those equations on to the board. Yes, sometimes you may have to have                

multiple velocity components required, but very often if you can simplify the problem using              



the symmetry arguments and aligning the coordinate system appropriately if you can reduce             

the number of velocity components 1 then analytical solutions are available. 

Now these equations are written with u and t and r which are basically with absolute scales                 

and very often it will be very useful to have the Navier Stokes equations in non-dimensional                

form. 
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The reason is that when you change one of the parameters by a small number then how does                  

solution behave. So, we should expect that the solution should change only by a small               

amount and that similarity should then be evident from the equation itself. So, in order to                

have a solution of Navier Stokes equation for one problem applicable to another problem then               

non-dimensionalization will be very essential and the way we do it as follows. So, we scale                

all the variables that are there in the problem. So, we scale the way we know the problem. 

So, usually you have a length scale available for a problem. So, we let us say the length scale                   

that is in the problem is L. So, in the case for example, actual flow, we say that the diameter                    

is my length scale. So, in the case of for example, a flow over a sphere then I would take the                     

diameter of the sphere as a length scale typical length scale that is playing a role in the                  

capital. Let us say the flow is in between two plates in a channel then I may choose the                   



distance between the two plates as the length scale. So, we can always identify a length scale                 

that is characteristics of the problem and then choose that as L. 

Now the velocity we need to choose a velocity also to scale and U​0 is a reference velocity. So,                   

it could be for example, the maximum velocity that is the encountered it could be the input                 

velocity inlet velocity or exit velocity average velocity and so on. So, whichever velocity we               

are able to measure in experiment and are able to characterize the problem with then that                

velocity we could choose as the scaling factor U​0 . And for time we note in now we do not                    

have to now cook up one more quantity we know that the length divided by the velocity will                  

give you the time scale and that time scale is adequate for us to scale the time variable. 

So, now what we do is, each of the terms the distances we will use the same length scale. So,                    

once we have identified the length scale the x y z or x​1​, x​2​, x​3 all of them we will                    

non-dimensional with the same length and all the velocity components we will            

non-dimensionalized using the same quantity U​0 and the time will be non-dimensionalized            

using . So, what we do is that we use the star to indicate that it is a non-dimensional L
U0 

                  

quantity. So, the distance is non-dimensionalized by dividing with L, so what we use           x*
1 = L

x1     

it for is like this. 

So, in our equations we have this quantity. So, wherever what is there we are going to replace                  

with this quantity so that the derivative is now with respect to the non-dimensional distance               

and the scaling factor has come out. So, we are going to do this for all the terms. Similarly we                    

are also going to do it for the time variable. So, we will replace this with this and will                  L
U0   

come out. So, what we do is we take the Navier Stokes equation and make the substitutions                 

blindly. We do not have to worry about the differentiation of this quantities because we have                

already chosen these to be characteristics of the problem, so L U​0 are not dependent on                

anything they just constants. So, you could differentiate take them out as constants no              

problem. 
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So, we take that and do the substitution and when we do that the Navier Stokes equation will                  

appear like this. So, on the left hand side you would have that is coming out ok, as a            L
U2

0         

non-dimensional number on the right hand side you have got those other quantities that are               

coming up. 

So, you already know that if you see this quantity it is basically the acceleration and you                 

could see that velocity square by L would also look like acceleration units and therefore, is                

not surprising that it should be the same for all the three because after all these 4 terms are                   

nothing but they are parts of the material derivative to tell about the acceleration. So, when                

you do this and correct the terms what we do is we take the on to the right hand side and              L
U2

0         

see the how the equation would look like. So, we take to the right hand side. So, we take here                    

and here and here. So, when we do that. So, you would see that we are able to now define the                     

non-dimensionalization for the body force and that quantity turns out to be because when            L
U2

0    

we bring it on the right hand side everything on the left hand side is non-dimensional. So,                 

everything on the right hand side also should be non-dimensional. So, by that argument you               

can immediately see that the body force can be non-dimensionalized using .L
U2

0  

By the way body force term F​1 is nothing, but specific force which we already saw that in the                   

case of gravity would be just g, which is acceleration and you already see that is               L
U2

0   



acceleration. So, we are choosing the acceleration as units to non-dimensionalised the            

specific force body force that is coming in here. And for the pressure then we also discover                 

that there is a scaling factor that is available. So, is the scaling factor for the pressure          Uρ 2
0         

and once we do that then you see that every term is non-dimesionalized. And there is a                 

non-dimensional quantity that is sticking in front of the Laplacian term. So, this is the only                

quantity that is sticking around other than that every term is non-dimensional. So, this              

quantity also when you plug in it would be also non-dimensional you know that is               ϑ   /sm2  

and L is meter and U​0​ is . So, this also is non-dimensional number./sm  

So, now, you see that this entire Navier Stokes equation is characterized by the problem using                

only one quantity. So, this quantity is what we would like to give a name. So, you could just                   

give the name for this entire quantity as it is and or the 1 by something. So, you could to the                     

inverse or not as you like. So, we choose the inverse of that quantity as Reynolds number. 
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So, we define Reynolds number like that. So, the inverse of this quantity is defined as the                 

Reynolds number. So, you could see that the Reynolds number is naturally coming out of the                

Navier Stokes equation as a scaling factor coming in front of the diffusive term and the units                 

are wiped off because the non-dimensional is done for all the terms. 



Now, it is also basically characterizing the problem because we saw that it is coming out of                 

choosing the length scales and time scales and velocity scales to characterize the problems.              

So, Reynolds number actually is characterizing the Navier Stokes equation for a given             

problem. So, which means that the solution of this equation as long as Reynolds number is                

same is going to be the same which is a very great relief because we do not have to then solve                     

this equation every time. So, we need to first only non-dimensionalize and check the              

Reynolds number for the given problem the number is same then the solution must look like                

the same of course, the initial unbound condition also must be same. 

So, you could already see that this is nothing, but . So, which means that if the Reynolds          1
Re

        

number is small if it is close to 0 then numerically the diffusive term is going to be heavy                   

which means that the solution of this particular partial differential equation is going to be               

governed mainly by the diffusive term. And if the Reynolds number is very large for               

example, very close to , , then would just like into the diffusive term which    108  109   1
Re

   10−9      

means that diffusive term does not play much role. So, this is the meaning of how the                 

Reynolds number is going to help us with this and this is how we say. 
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So, in the case when Reynolds number is very small then the solution of the flow field                 

governed mainly by the diffusive term and in the case where the Reynolds number is very                

large then it is governed by initial terms that is remaining terms that are there on the left hand                   



side. So, this is we can actually see how the solution of the Navier Stokes equation is going to                   

be evolve. 

Now, it also means that in situations where we do not have ability to solve the problem                 

completely we can simplify it by choosing the Reynolds number range and dropping some of               

the terms which we know that are not playing a big role. So, it helps us. So, we can say that                     

in the limit of very small Reynolds number I will keep only the diffusive term and I will drop                   

all other terms and that would be quite acceptable because from the scaling that we have seen                 

that is how the behavior is going to be. 

Now, whenever you encounter Reynolds number in any book or any problem do pay              

attention to what is written at its subscript and at the top. So, at the subscript there will be                   

things that will hint what is the length scale that is being used. So, here if you see the                   

quantities like a ,where D is the subscript then it means that the diameter is the length   ReD               

scale that has been chosen. So, you could choose the radius or diameter, but diameter is                

normally chosen because that is what you can measure easily for a sphere for example, you                

can measure the diameter directly using a caliper. So, like that you know you can observe and                 

see what was the quantity that is used to define that quantity for scaling the length. And on                  

the top if you have a bar which means that some averaging has been done. So, velocity has                  

been averaged or the problem solution being sought is for an average quantity etcetera. 

So, do pay attention and the way Reynolds number is defined could be different if any of                 

these two are different. So, do not compare an expression which is written like this and                

written like this. So, these two can be a very very different. So, pay attention and then if it is                    

looking different at the subscript then look at how it has been defined and it could just mean                  

that the way we define the Reynolds number may be explaining the differences that we have                

seen the expressions. And we will come to some of these nuances when we come to the                 

friction fractions discussions. 
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So, now, what we have done in the session on planar flows is that if you have 2D flow you                    

have got two components of velocity and if you want to reduce the number of unknowns to                 

just 1, then we have come up with stream function which can generate those two components                

and then we saw that the equation just comes down by 1. 

So, you could also then write the evolution of velocities in the same manner you could                

actually see that in situations where you have 2D flows you can also describe the Navier                

Stokes equation using the stream function. So, the way we do it as follows. So, what we do is                   

that those two components of velocities for the 2D flow we choose them as u​1 and u​2                 

respectively. So, the Navier Stokes equation in 2D for the u​1 component and u​2 component               

are written. So, do observe that on the right hand side we have not written the body force                  

term. So, we are this moment we are in neglecting that term otherwise ideally must have body                 

force term on the right hand side so we are neglecting that, other than that this is a 2D version                    

of Navier Stokes equation for u​1​ and u​2​ respectively. 

So, what we do is that the first equation we differentiate with respect to x​2 and the second                  

equation we differentiate with respect to x​1 and we subtract and then see what is coming out                 

ok. So, you could already see why I am a doing a subtraction there because when we have the                   

stream function its derivative one velocity component is positive, another is negative. So,             

then we subtract we are then able to bring it out. So, we just blindly do this and it is a lot of                       



algebra. So, when you subtract this is how the equation looks like. Just straight forward you                

could do that. 
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What we do is that we already know the names of these terms. So, the first term was transient                   

term, so we pick this term. And the second term is the advective term, so we pick that                  

separately. And the third term is the diffusive term and we pick it separately. So, term by                 

term we will see how the equation is going to be modified by using the definition of the                  

stream function. 
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Let us take the transient term first. So, we already know the definition of stream function we                 

see that this is how they are written and we know the convention if you have x​1 and x​2 the 90°                     

clockwise. So, differentiation of a phi along x​2 would give the velocity component along x​1               

and differentiation of along the x​1 we will give you the velocity component 90° clockwise,    ϕ              

which means it is minus x​2​. So, that is how the velocity component is u​2 for the differentiation                  

along x​1​ direction. 

So, now, what we do is we plug these two expressions here and immediately we could see                 

that this term is coming out as Laplacian of . So, you could see that this is nothing but the         ψ            

first term if you see of u​1 which is nothing but - u​2 which is nothing but .     ∂
∂x2

      ∂ψ
∂x2

  ∂
∂x1

      − ∂ψ
∂x1

 

So, these two will cancel and therefore, you see that which is nothing but this,          ∂ψ
∂x2

2
+ ∂ψ

∂x2
1

      

which is what we have then plugged in. So, we have then plugged in here and which means                  

the initial term they for the transient term is nothing but of Laplacian of the stream           ∂
∂t       

function. 
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So, similarly we do the manipulation for the advective term also and because there are no                

terms there will be algebra so I will not do that it is just straightforward differentiation there                 

is no trick or no new concept that has to be brought in its just differentiation by parts. So, you                    

differentiate one at a time and you have got basically 4 terms and when you differentiate we                 

are getting 8 terms. So, all the 8 terms you then collate and you would see that it will come in                     

this form, so minus of this particular combination. 

Now if you see this combination you will see the there are some cross terms that are coming                  

in you know the differentiation of with 1 and here with 2 but then here with 2 and here      ψ               

with 1. So, then you could see that may be this is a 2D version of the Jacobian and you could                     

write it as the Jacobian itself. So, we have already seen this particular notation in earlier                

session. So, you could just basically convert the advective term using the stream function as a                

Jacobian. So, it is nothing but basically this into this minus this into this that is about it there                   

is nothing more than that. But this notation of something something by something something              

this kind of a notation is very short to write and that is why we are using that otherwise you                    

will have so many different terms that are coming in. 
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And the last term diffusive term that also can be then modified. So, you have got diffusive                 

term here. So, you just simply directly multiply it in and then take the x​1​s out and then collate                   

you would see that that comes as that is the Laplacian operator coming twice with       ψ∇4          

respect to . So, when you put all these three terms together you see how the Navier Stokes  ψ                 

equation has been transformed and you could see that it has been transformed with respect to                

the Laplacian of saying that the local change of the Laplacian of at any location with   ψ           ψ      

respect to time minus the Jacobian term is equal to the that is kinematic viscosity times            ϑ       

twice  which is basically .ψ ψ∇4  
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So, you can see that this particular equation we then you know for stream function and we                 

have only one equation. Now if you solve this equation and get the solution for and then               ψ    

differentiate with respect to x​1 and x​2 then you have got the velocity components in 2D. So, ψ                 

with one equation you have got two velocity distributions that are available. So, that is the                

simplification we were seeking when we introduced the concept of stream function at all. 

Now, we can also see that from the discussion on Reynolds number that the diffusive term is                 

going to be governed by the Reynolds number and if the Reynolds number is small the                

diffusive term is going to be play more role. So, in a situation where Reynolds number is very                  

small, then how I can approximate this particular equation. You could see that the Navier               

Stokes equation is approximated to such a simple form. So, this also will be given a name                 

stokes equation and we will see that Navier Stokes equation comes out to be a very simple                 

form in the limiting case of Reynolds number being very close to 0 which means that                

basically creeping regime. So, where the liquid is flowing so slowly that it is able to fall                 

follow all the nooks and corners of the particular you know wall and it is like a creeper going                   

along a tree. So, the flow is very slow and going at a very low Reynolds number and such a                    

flow can be described by ignoring all the terms on the left hand side and writing the                 

as the only equation. So, this is the benefit of writing it in the form of streamψ∇4 = 0                   

function. 



So, the same thing can also be then written for other coordinate systems. 
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So, if you take cylindrical coordinate system for example, , that is the planar flow in a         rθ  rθ        

cylindrical coordinate system the z direction velocity is not playing the role then it looks the                

same way. Only thing is that there is a additional term that is coming in because of the                  

curvilinear coordinate system that we have used, but the nature of the form is the same and in                  

case you are looking at axis symmetry. 
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So, axisymmetric flow would then not be described by the same manner. So, you see that the                 

Laplacian operator can be modified to reduce the one of the terms which is causing the                

axisymmetry come in and therefore, you now need to have the operator, new operator defined               

E​2 . So, look up the Laplacian operator, we have the Laplacian operator here and you could                 

see that it is not the same, so this and the Laplacian operator and e square operator are                  

different. So, we could see that we now need to give a new name for the operator we have at                    

hand and that is why we call it as E​2​. So, we see that the operator is different and so we call it                       

as E​2​. 

So, this operator is then also use to define one more operator E​4 which is basically the E​2                  

operator on itself. So, you could see that this operator is basically axisymmetric analog of               

operator and of course, E​4 is same thing for . So, which means that you can write the∇2          ∇4          

Navier Stokes equation in the same manner and instead of operator you put E​2 operator          ∇2      

and then look at the terms and you see that a very similar kind of a form will come out as we                      

can look up from the books. 

So, these can also be derived by the same process that we have used to derive it for the                   

rectangular coordinate system only thing is that there is an algebra that is involved. But we                

already know how each of these terms have come about. So, this term is like the Jacobian                 

term and this term and this term we already are familiar how they came about. So, which                 



means that in a cylindrical axisymmetric case if the Reynolds number is very small then how                

do I approximate the Navier Stokes equation. So, you could already guess that it is going to                 

look like that. So, this is how the simplicity is coming in. 
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So, the same thing for the spherical case also, so we define it and you see that the E​2                   

definition is different. So, E​2 operator definition is different for spherical axisymmetric and             

cylindrical axisymmetric, but once you have defined that way then rest of the equations are               

derived in the same manner and the Navier Stokes equation looks like this. And again you                

could see that the terms are very familiar to us. So, this part is like Jacobian and this part we                    

know how it came about and this part being the diffusive term on the right hand side and if                   

the Reynolds number is very small then again we could approximate our Navier Stokes              

equation using the stream function to be like that. 

So, what happens is that we now can give names to such equation which are special cases                 

with restrictions such as for example, it must be axisymmetric case etcetera. So, we have               

special cases that are coming in. 
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So, there are some special case that have names, so we are only using those now. So, we have                   

what is called Euler equation. So, Euler equation is basically a special case of Navier Stokes                

equation by setting the viscosity to be 0. So, it does not mean that Euler equation cannot be                  

used at all. So, it should be used in situations where the viscous effects are negligible which                 

means that the liquid viscosity is not playing a role. So, we already saw that viscosity does                 

not play a role when Reynolds number is large, which means that whenever the Reynolds               

number is large you may get the solution in the form of Euler equation solutions and then go                  

ahead and use. So, you could see that this is nothing, but the Navier Stokes equation without                 

the term on the right hand side corresponding to the diffusive term. 

Now, inviscid flow is basically flow where the viscosity is negligible. So, that is a definition                

again we can tell. So, whenever we say that the problem domain is can be approximate as a                  

inviscid which means that viscosity can be approximated as 0 and then substitute that and               

then see the rest of the terms. 

Now, the same equation for steady state would mean that this term then can be dropped. So,                 

if you drop the first term then you can see that the rest of the equation is staying the same,                    

which means that compared to the Navier Stokes equation we have dropped two terms one               

term corresponding to the viscosity multiplied the Laplacian operator there and another term             

on the left hand side with respect to the transient term. So, if you drop two terms on the                   



Navier Stokes equation we get the Euler equation for steady state inviscid flow which is quite                

popularly used in many situations. 

Now, this equation, when you integrate along the path of the fluid then you get Bernoulli                

equation, so that can be actually seen in very quick manner. Let us pretend that u is flow                  

along z and there is no other direction that is important and we are just trying to look at how                    

the Euler equation can be modified for flow along z. So, you could see that because of other                  

flow components not being there the advective term can just be only and u here is equal            uu ∂
∂z       

to this is f, f in the z direction let me take the gravity that is acting and and then the                  − ρ
1     

gradient along the z direction that is this.  

So, what we do is now we integrate this. So, if you take u in then you could write it as                     2
1

∂z
∂ u2

because sorry and because if you differentiate you get 2u, u 2 and therefore, you can also  ∂z
∂u2                

then write the rest of it and you now see that when you integrate you get . So,                − z p2
u2 = g − ρ

1   

you then take these two terms to the left hand side and then we see that the integration                  

constant has to be kept and the integration constant is coming on the right hand side on the                  

left hand side you have got . So, this is the Bernoulli equation which is very      z2
u2 + g + ρ

P           

popular in situations where for example, the height difference is causing a flow or pressure               

differences are causing a flow, but the viscous effects are not present. 

So, for example, in situations like filling the cavity for a casting situation you could use                

Bernoulli equation and then make some approximation. So, for example, liquid pouring out             

of a ladle into a caster you do also use Bernoulli equation to make the first guess of how the                    

velocity is coming about. 

Now, we have already come across these equations just a while back stokes equation for               

creeping flow, it is nothing but the diffusive term alone being present. So, in situations like                

rectangular coordinate system you write as in the case of cylindrical or spherical      ψ∇4 = 0         

axisymmetric situation you write . So, situations like flow around a spherical or    ψE4 = 0          

cylindrical body you would use this kind of a situation. So, for each is equation the solutions                 

are applicable in metallurgy we will go through them as we do some of the problems in the                  

coming sessions. 



So, we could see that all these equations are basically special cases of Navier Stokes               

equation. So, it is a very good idea to see how the Navier Stokes equation has been derived                  

and how different terms are dropped when some assumptions are made to arrive at these               

equations that would be way more generalizing an approach than for example, having to              

derive each of these equations separately and still not knowing how all of them can be                

generalized. So, we must always remember that the Navier Stokes equation is the most              

general form that encompasses the physics that is covered by all these equations that I have                

listed here. 
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So, with this we close the session and in the course website we will put some problems and                  

we will take up now, in the next sessions problems one by one and we will have the starting                   

point as Navier Stokes equation and then we will go and integrate the terms and see how the                  

solutions would come about. 


