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Lecture - 27
Particle Size Determination by XRD

In  a  polycrystalline  material;  grain  size  is  a  very  important  parameter.  Since,  the

mechanical property of a polycrystalline material depends very much on the grain size.

For  example,  the  tensile  strength  and  hardness  of  a  polycrystalline  material  will

continuously  increase  as  the  grain size  becomes  finer  and finer.  It  is  therefore,  very

important to device suitable methods by which grain sizes can be accurately measured.
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Now in a  normal  polycrystalline  material,  we find that  the  average  grain size varies

between 10 to the power minus 2 to 10 to the minus 3 centimeter. Now it is quite usual

practice to describe the grain size of a polycrystalline material by mentioning; what is

known as the ASTM grain size number.

Now, let us see what is meant by the ASTM grain size number. ASTM as you all know

stands for American Society for Testing of Materials. Now, they have given a formula

written as small n equal to 2 to the power capital N minus 1; where small n is the number



of grains per square inch at a magnification of 100 and capital N is the corresponding

ASTM grain size number. So, if as a routine matter, it is necessary to find out the grain

size of a polycrystalline material from time to time. One of the ways will be to take

known grain size materials and find out pinhole photographs from them. Then those from

those pinhole photographs we determine; what is the ASTM grain size number.

Then those we know photographs can be arranged as per the ASTM grain size number as

has been shown here.
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This is for the ASTM grain size number 1, this is for the ASTM number 2m this is 3, this

is 4. So, whenever we have an unknown material giving to us and in develop the micro

structure and also find out the pinhole photographs from them and then try to match the

pinhole photograph of the unknown with the pinhole photograph of known grain sizes. In

this  way  the  grain  size  of  a  polycrystalline  material  can  we  expressed  by  the

corresponding ASTM grain size number. When the grain size varies between 10 to the

power minus 3 to 10 to the power minus 4 centimeter,  we find that the Debye rings

become continuous. For example, here if we can see the Debye rings are quite spotting.

Here the Debye rings have not really form here. Here the Debye rings you know we can

see the outline of the Debye rings; here the Debye rings are spotting there is in is the

grain size is large. In this case is Debye rings is continuous indicating that here we have a

smaller grain size. So, as the grain size varies between 10 to the power minus 3 to 10 to



the power minus 4 centimeter  the  Debye rings  become quite  continuous.  In fact,  no

change in the Debye rings is  observed when the grain size varies between 10 to the

power minus 4 to 10 to the power minus 5 centimeter the moment the grain size becomes

10 to  the power minus 5 or  less  there  is  a  broadening of  the  Debye rings  which is

observed.

So, this is a cutout value; when the grain size is 1000 and angstrom or less the lines show

a broadening behavior and the individual grain size less than 1000 angstrom; we call

those grains as particles.
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So, here we have a number of phenol photographs these are the 4 which I have already

shown. So, here the particle size is 0.1 micron and then it goes down decreasing particle

size. As we can see here; the Debye rings form exactly at the same locations, but the

width of the Debye rings is somewhat more than in case of; this as the particle  size

decreases further the width of the Debye rings becomes more and more. So, there is a

perceptible line broadening which is observed when a particle you know a size decreases

further and further.

Now, there has been a method that is been developed to measure the particle size from

the  broadening  of  the  lines  of  the  Debye  rings.  So,  we  will  discuss  that  particular

method.
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Now when we have the Bragg law perfectly satisfied, then what we expect we would

expect that all the diffracted intensity will be concentrated at 2 theta B where theta B is

the Bragg angle. So, this should be the shape of the diffraction line profile for when

Bragg's law is perfectly satisfied, but what we observe in practice in practice you find a

diffraction line has this kind of a profile.

(Refer Slide Time: 07:34)

So, it has a measurable breath at half the maximum intensity. So, whenever we have a

line profile, we measure the breadth of the line profile at half the maximum intensity. So,



this is the maximum intensity for the line and this is half the maximum intensity level

and the breadth here is the line breadth B.

So, what we observe that this kind of a behavior is found for incident angles slightly

larger than the Bragg angle and also for slightly lower the angle then the Bragg angle

beyond that there is a practically no intensity obtained. So, this line profile shows that

even when Braggs law is not perfectly satisfy we will find some intensity. So, this is the

non  ideal  Bragg  condition  and  the  reason  is  very  simple  if  see  whenever  we  have

diffraction occurring from a series of planes say when the incident in radiation a you

know is theta B the Bragg angle necessary for diffraction.

Then there will be a diffracted intensity, but even when the Braggs law is not perfectly

satisfied. That means, the angle the incident angle is slightly different from theta B then

also we find some intensity the reason is very simple in order that complete destructive

interference to take place we need that the diffracted wavelengths will be completely out

of phase.

If the at this 2 points the diffracted radiations like x 0 and x 1, if they are completely out

of phase then only their own be any diffraction, but say for example, is by some chance;

we find that they are not completely out of phase even then there will be some diffracted

intensity is intensity will be much less as compared to when the Bragg’s law is perfectly

satisfied.  So,  this  is  a  very important  observation  that  even when Braggs law is  not

perfectly satisfied and when the incident angle of the acceleration is slightly more or

slightly less than theta B. Even then we will get some intensity as a result of which an

actual  diffraction  line profile  looks like this.  So,  this  is  practically  the  cut  of angles

beyond which their own we any diffraction possible.

Now, say for example, in this particular case we have got the Bragg equation satisfied

when the incident radiation falls at the correct angle theta B. So, this is the D value; the

interregnal distance. So, let us suppose that when the incident X-Rays are incident on

these parallel set up plane at the correct Bragg angle then x 0 and x 1; they constructively

interfere totally and giving rise to the Braggs diffraction Bragg size perfectly satisfy. Let

us suppose that when theta is theta B the correct Bragg angle the path difference between

the rays x 0 and x 1 is equal to 1 wavelength lambda. Now if we consider a crystal

containing a series of these planes line from plane 0 up to say plane n; then what will



happen, what will the path difference between the ray x 0 and x n when the Braggs law is

perfectly satisfied it will be n times lambda.

Now, suppose we increase the angle of incidence of the X-Rays to a value theta 1. So,

theta 1 is slightly larger than theta b. So, in this case what we find in this case the path

difference when theta is theta 1 between the 2 rays will be slightly more than the path

difference between the same rays when the perfect Bragg law is satisfied. So, in this case

where theta is equal to theta 1 theta 1 slightly bigger than theta B the path difference

between  x  0  and  x  1;  we  know longer  be  one  wavelength,  but  plus  delta  lambdas

wavelength and what will happen when the path difference between x 0 and z n on that

the condition when theta is theta 1; theta 1 is slightly larger than theta B it will be n

lambda plus one more lambda it will be n plus one lambda.

Now, why this is so; the reason is very simple you see if the path difference between the

ray x 0 from the 0 with plane and the x n from the n-th plane is say n plus 1 lambda then

we must it is very easy to visualize that within the crystal somewhere in the middle there

will be a plane the path difference between the rays from the 0 with plane and the middle

plane must be equal to lambda by 2 half lambda you see that due to the increase in the

incident angle from theta B to theta 1 there will be and increase in the path difference

values.  So,  if  for  Bragg  angle  when  Bragg  law  is  satisfied  completely  if  the  path

difference between the rays x 0 from the zeroth plane and x n the ray from the n-th plane

is n times lambda than under this condition when we go up to a theta equal to theta 1

slightly more than theta B, but beyond which there is no diffraction possible then the

path difference between those 2 rays will be one lambda extra then this.

So, it is n plus 1 lambda why this is. So, the reason is as I have already said in the whole

crystal here this is suppose the whole crystal and within this crystal there must be a plane

somewhere in the middle which will be such that the path difference between x 0 and the

diffracted radiation from that middle plane must be equal to lambda by 2. As a result

what will happen they radiation scattered from the zeroth plane and the plane somewhere

in the middle they will nullify each other they will be completely out of phase in this way

if we consider  the scattered radiation from plane number one and scattered radiation

from the plane next to the middle they will also nullify each other.



So, in this way you know in the top half of the crystal the planes the top half of the

crystal  the radiation started from them will  be nullifying  the radiation  started by the

bottom half of the crystal as a result of which we will find that will be no diffracted

radiation possible beyond the value of theta 1 and that is what we are observing here in a

similar way if we decrease the angle or incidence from theta B to say theta 2 where theta

2 is not we just slightly away from theta B.

Then we will have a similar situation that the path difference between x 0 and x l. We

will again be equal to l minus 1 lambda, because here the path difference we be shorter

when theta 1 is larger than theta B then the path difference between the 2 rays will be

somewhat larger as compared to when it is theta B and again; when it is theta is theta 2

where theta 2 is less than theta B. It can be shown that the path difference between the

rays will be somewhat lower than in case of when the Bragg’s law is perfectly satisfy.

So, only in these condition; we will see that beyond a value of theta 1 or beyond a value

of theta 2 for the incident radiation; they are would not be any more intensity and as a

result of which the line profile we will have you know a shape of this time.
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So, this is what I have already explained. So, this is say the outline of the crystal we are

considering  and there  are  planes  marked  as  0,  1,  2,  3,  4,  etcetera  up  to  n.  So,  the

thickness of the crystal t we can write as n into d where d is the inter-planar this terms.

So, this is the situation t is equal to n into d. Now when perfect Bragg law is satisfied for



this particular crystal we can write down 2 t sin theta B must be equal to n times lambda

well between 2 consecutive planes it is 2 d sin theta B is equal to lambda.

(Refer Slide Time: 19:10)

So, for the whole crystal it will be you know when we consider the radiations from the 0

with plane 0 with plane and the n-th plane we can write down when theta is equal to

theta B 2 t sin theta B must be equal to n lambda and when theta is theta 1 where theta 1

is slightly larger than theta B the corresponding equation will be 2 t sin theta 1 equal to n

plus 1 times lambda when theta is theta 2; where theta 2 is slightly smaller than theta B

we find it can be the whole equation can be written as 2 t sin theta 2 is equal to n minus 1

lambda.

This  is  clear  from what  I  have  saying already.  Now if  we subtract  equation  3 from

equation 2, we can write t sin theta 1 minus sin theta 2 will be equal to lambda or 2 t

cosine theta 1 plus theta 2 by 2 sin theta 1 minus theta 2 by 2 equal to lambda.
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Now, you say theta 1 and theta 2 they are not very different from theta B as; we know

when we talk about a diffraction line profile it is true that the intensity is obtained not

only at exact 2 theta B, but also beyond 2 theta B in both the directions, but it is available

only up to a certain angle you know I have shown it on a much magnified scale, but you

know the angular the range within which we get reasonable amount of intensity to be

very very small. So, you say that theta 1 and theta 2 or not much different from theta B

and. So, each one of them can be written as almost equal to theta b. So, in that case theta

1 plus theta 2 becomes very close to 2 theta B and sin theta 1 minus theta 2 by 2 can be

written as simply theta 1 minus theta 2 by 2 because this difference is very very small.

Now, from this triangle by similar triangle concept we can write B this which of the line

here divided by 2 theta 1 minus 2 theta 2 is equal to half I max by the entire I max you

know here it has been written the other way round there is a mistake here. So, it will be B

by 2 theta 1 minus 2 theta 2 will be half I max divided by I max; that means, is equal to

half. So, we write B by 2 theta 1 minus 2 theta 2 is equal to half I max by I max or it

simply equal to half or we can write B by theta 1 minus theta 2 will be equal to 1 or B is

equal to theta 1 minus theta 2 very important relationship. Now equation 5; now can be

re-written in this form you know because of this values, if you put those values there in

equation 5 may write it has 2 t cosine theta B into theta 1 minus theta 2 by 2 equal to

lambda 2 and 2 will cross out and will get t cosine theta B in to B becomes equal to

lambda or t is equal to lambda by B cosine theta B.



This is the very important relationship you know t the thickness of the crystal or we can

call it the particle size of the crystal is equal to the lambda the wavelength that we have

used for taking the phenol photograph or the Debye photograph it is divided by B the

breadth of the line at half the maximum intensity multiplied by cosine of the Bragg angle

now more rigorous exercise is a more exact value and that is t is equal to 0.1 lambda by

B cosine theta B. This is the well known Scherrer equation. So, you see that by using the

Scherrer equation and by measuring the line breadth and the value of cosine theta B

where theta B is the Bragg angle. It is possible to find out the size of the particle. So, this

is how particle size is determined by the X-Ray diffraction method.
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So, this is the situation if this is the breadth of the line profile we can find out t is equal

to 0.9 lambda by B cosine theta be this is the well known Scherrer equation.



(Refer Slide Time: 24:34)

Now if we use a diffractive; it then in a defective it an output we will give the lines in

this shape and from their you can find out the line breadths straight away and used in the

equation now it is a when we talk about the breadth of a line how to measure the breadth

of a line actually there are several ways it can be done, but we used mostly they the

method  given  by  warren  you  see  whenever  we  use  a  Debye  Scherrer  camera  or  a

diffractometer  to  find  out  the  line  profile  of  a  diffraction  line  there  is  always some

instrumental broadening for example, in case of Debye Scherrer method. It is because of

the divergence of the incident radiation you enough due to which there will be some

broadening of the diffraction lines and in case of a diffractometer, again it is because of

the size of the X-Ray spot which you know causes some broadening of the diffraction

line.

So, this  are  called instrumental  broadening due to  the instrument  itself.  So,  the total

width of a line total breadth of a line it is a function of 2 things one is the particle size the

other is the instrumental broadening. So, whenever we want to measure the breadth of a

line in order to find out the particle size we have to be careful to consider only that part

of the broadening which is due to particle size alone now how to determine that. Now

there is a method which was suggested by warren.
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So, what is Warren’s method?
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He has suggested that here suggested a formula where B square is equal to B T square

minus B S square. So, what is the B square; B square is a square of the broadening due to

particle size alone and B T square is this square of the total broadening measure from the

diffraction line profile and this broadening is due to the instrumental broadening.

So, a square of the broadening due to the instrument; so, alone one and suggested that we

determine  B  from  this  kind  of  an  equation  you  know  this  kind  of  an  equation  is



suggested on the idea that you know the diffraction line profiles look like you know;

error caps. So, that is reason why you know this kind of relationship a suggested by him

now how to find out the value of B S because B T is a total measured breath and what is

B S; how we find out the value of B S; well we can do it in this manner. The material

which was working on we mix a standard material with it and the standard material must

have  a  particle  size greater  than  1000 angstrom.  So,  that  case  what  will  happen the

standard material if you get a diffraction line the breadth of the line will be due to the

instrumental broadening alone not for particle size.

So, what we do we mix a standard material with a particle size which is larger than 1000

angstrum. So, that the any line the diffraction line from the standard we will not show

any breadth due to particle size only and it will show only the instrumental broadening;

then we take mix the 2 and take a diffraction pattern and we choose a line from the

experimental material and the standard which are close by. And in that case what we will

do we will simply measured they breadth of the standard line square it and subtracted

from the measure the square of the measured breadth and from there we can find out B

square and so we can find out B. So, this is the way we can find out the breadth of a

diffraction line due to particle size alone. Now it may so happened that we may have a

polycrystalline material  containing very fine grains you know they are of the size of

particles.

The problem over there is in such materials it is quite likely that there will be some non

uniform strain throughout the material. So, if we measure the diffraction line profile the

breadth we will also some of the breadth will be due to the strain also there will be strain

broadening therefore, this method that we have described is not suitable for determining

the fine particle  size in polycrystalline  sheet  materials  you know it  is  good only for

material by the powder is in a loose condition and there is no strain in the particles now.

So far as application of this method is concerned industrially this method is used for

measuring particle size of carbon black industrial dust, etcetera, etcetera.


