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We have seen that every substance whether an element a solid solution or a compound
has got it is characteristic x ray diffraction pattern. Thus x ray diffraction pattern of a
phase is very much characteristic of that phase alone. In a sense an x ray diffraction
pattern of a substance or a phase is just like the fingerprint of a human being do just as
by distinguishing between the fingerprints 2 persons can be distinguished. In a similar
manner by distinguishing between the powder patterns or powder x ray diffraction
patterns of 2 substances or phases that 2 phases can be distinguished. Now let us suppose

that we have got a phase mixture of a and b.
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Schematic Debye-Scherrer Paitem of a Muliphase Sample
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A-Lings of Phase A
8- Lins of Phase B

Now, here you see a number or diffraction lines the lines due to the phase A have been

marked and the lines due to phase B have also been marked in this powder pattern.
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Quantitative Elemental Analysis By Measuring Lattice Parameter

In a single-phase sold solution (say in Cu-Au), the latice
parameter value wil depend on the concentration of Au.As the
amount of Au in the solid solution increases, the lattice
parameter of the sold solution aso ncreases, since Au aloms
are larger than the Cu atoms

—_—

Let us consider a series of Cu-Au aloys. Lat us measure their
lattice parameters and then plot these lattice parameter values.
against the corresponding Au content By measuring the lllice
parameter of an unknown Cu-Au alloy, we can find out its Au
content with the help of this plot

Moasured L. P. of an unknown

Ths we can say that Xray dfracton provides a method of
chemical analyss by measuring the latice parameter of a
single phase.

Lattice parameter of Cu - Au
alloy (Al {Arbitrary Emits)
S

4
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Now before going to the topic of quantitative phase analysis I would like to say a few
words about the quantitative elemental analysis that can be performed by the
measurement of the lattice parameter of a phase or phases in a mixture. Say for example,
we have got a single phase solid solution of gold in copper. The lattice parameter value

would depend on the concentration of mould in the alloy. As amount of gold in the solid



solution Increases in expect that the lattice parameter of the solid solution will also

increase.

Since the gold atoms are larger than the copper atoms. Let us consider a series of copper
gold alloys. Let us measure the lattice parameters and then plot this lattice parameter
values against the corresponding gold content. This is shown in the right hand side of the
figure. By measuring the lattice parameter of an unknown copper gold alloy we can find
out it is gold content with the help of this plot. So, in this plot the lattice parameter of the
solid solution has been plotted along the y axis and the Wight percent gold has been
plotted along the x axis. So, this dotted line passing through these points shows how the
lattice parameter of this solid solution changes as among to gold in the solid solution

changes.

So, if we have got an alloy and an unknown alloy, we can simply have to measure the
lattice parameter. Once we do that we put the lattice parameter value over here and find

out the corresponding gold content of the alloy.
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The Different Methods

Quanlitatve analyss of phases in a mul-phase sample, by X-ray
diffraction, can be carried out using three different methods. Theses are.

1. Single ine method
2. Internal standard method and
3 Direct comparison melhod

Good quantitative analysis can be performed using a Debye-Scherrer
war

So, in this manner you can find out from the lattice parameter the quantitative chemical
analysis in case of a solid solution. There are 3 different methods available for
quantitative phase analysis by x ray diffraction. The first one is what is known as the
single line method. The second one is known as the internal standard method. And the

third one is known as the direct comparison method.
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Single Line Method The expression for intensity of an XRO line

In the single line method, the intensity of a particular diffraction where,
line i the XRD pattern of the phase in question is compared with
the inensity ofthe same Ine inthe XRD patie of that phase n a 1 = totalintegrated intensity per unitlength of a diffracton lne in
pure form the XRD patter
1= ntensiy of the incident bean of X-rays

You have already leamt that the expression for the intensity €= charge on an electron
difracted by a single-phase powder specinen in a difractoneter = mass of an electron
can be written as. © = velocity of light
A = wavelength of the incident x-radiation
1= raduus of the diffractometer circle
A= cross-sectional area of the incident X-ray beam
v = volume of the unit cell of th single phase material
F = crystal structure factor
) P = multilicity factor

8 = Bragg angle

& = temperature factor which is a function of 6

1 #Hinear absorption coefficient
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Now, I will describe all the 3 methods for mixtures easy and x ray diffractometer. First of
all we deal with the single line method now as we are all aware in a diffractometer the
expression for intensity of an exciting line is given by the equation 1, this is written on

the board also.
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So, I'is equal to I O e to the power 4 divided by m square C 4 lambda cube A by 32 pi R
into 1 by v square into F square p into 1 plus cosine square 2 theta divided by sin square

theta cosine theta into e to the power minus 2 m by 2 mu. Now we know that I is a total



integrated intensity per unit length of a diffraction line in the XRD pattern I O is a

intensity of the incident beam of x rays.

E is a charge on an electron. M is a mass of an electron. C is the velocity of light.
Lambda the wavelength of the incident x radiation, R is a radius of the diffractometer
circle. A is a cross sectional area of the incident x ray beam, V the volume of the unit cell
of the single phase material. F is equal to crystal structure factor. P is a multiplicity
factor. Theta is a bragg angle. E to the power minus 2 m is a temperature factor which is
a function of theta and mu is a linear absorption co efficient. So, this expression is valid
for pure phases align of the pure phase. While we have a phase mixture of say 2 phases

alpha and beta then there will be slight change in the expression.

For example, if we measure the intensity of the same line of a phase when it is in a pure
form that intensity will be much higher compare to when this phase is present only as a
small fraction of A phase mixture. So, when we are dealing with a phase mixture align of
a particular phase, intensity of Align of a particular phase the expression for that must be
multiplied by W alpha, the Wight fraction or C alpha, the volume fraction of the

particular phase.

Say for example, this I here this is the intensity of A particular line in their pure phase.
The moment this phase say is a alpha phase is present in the mixture containing the 2
phases alpha and beta then the intensity of that particular line In the phase mixture for
alpha will be rectify, multiply this expression by C alpha and changing the value of mu
the linear absorption co efficient of alpha as mu m, because we must write down the

linear absorption coefficient of the mixture.

Now in this expression the whole term we shown by this yellow chalk is a constant for

that particular line.
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Therefore we can write it as a K a constant and this will be multiplied by C alpha by mu
m. So, this is the dual expression for the integrated intensity of A particular line in a pure
phase, and when that phase is present as part of a mixture of 2 phases then the intensity

of the same line will be written as k.

Though thus particular term to see alpha which is the volume fraction of the alpha phase
in the mixture divided by instead of mu we write mu m the linear absorption co efficient
of the mixture. Now we know that when we are dealing with the mixture containing 2
phases alpha and beta, then the mass absorption coefficient of the mixture mu m by rho
m can be written as W alpha into mu alpha by rho alpha plus W beta multiplied by mu
beta by rho beta. So, W alpha is a Wight fraction of the alpha phase in the mixture that

may beta is a Wight fraction of the beta phase in the mixture mu alpha.

And mu beta are the linear absorption coefficients of the alpha and beta phases in the
mixture, rho alpha and rho beta are the densities of the alpha and the beta phase
respectively. Now if we consider a unit volume of the phase mixture then the Wight of
the mixture will be simply equal to rho m the density of the mixture. So, Wight of alpha
in the mixture will be equal to W alpha to rho m similarly, volume of alpha will be equal
to W alpha rho m divided by the density of the alpha phase rho alpha. And we know that

the volume can be simply written as C alpha and the volume of the beta phase will be W



beta rho m by rho B and this can be simply as C beta, because we know the how it will

talking about is for unit volume of the phase mixture.

Now, multiplying equation 3 by rho m, this equation 3 by rho m we get mu m equal to W
alpha rho m by rho alpha into mu alpha plus W beta to rho m by rho beta into mu beta,
and this can be written as C alpha mu alpha and this can be written as C beta mu beta.
Since C alpha plus C beta; that means, the volume fraction of Alpha the volume fraction
of beta in the mixture is equal to 1, then this can be written as C alpha mu alpha plus 1
minus C alpha into mu beta equal to C alpha in the mu alpha minus mu beta plus mu
beta. Now if we put this value of mu m in equation 2 over here, we get I alpha equal to K
C alpha divided by C alpha into mu alpha minus mu beta plus mu beta, this is our

equation 4.
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Now, when we consider the volumes of the 2 phases alpha and beta in a unit mass of the

phase mixture, these are W alpha by rho alpha and W beta by rho beta respectively.
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Therefore now, we can write C alpha will be equal to W alpha by rho alpha divided by W
alpha by rho alpha plus W beta by rho beta, our equation number 5. Since W alpha plus
W beta equal to 1, this equation can be written as W alpha by rho alpha divided by W
alpha into 1 by rho alpha minus 1 by rho beta plus 1 by rho beta. Now if we combine the
equation 4 over here if we combine equation 4 and equation 6 over here and simplify we
can write down, I alpha equal to K W alpha divided by rho alpha into W alpha into mu
alpha by rho alpha minus mu beta by rho beta plus mu beta by rho beta. For a sample of
the alpha phase in a pure form if we get a sample of alpha phase in a pure form, then all

the terms for the beta phase in this equation is simply vanish.

And therefore for the pure phase I can write down I alpha p for the for the pure form will
be simply equal to K divided by mu alpha. Now if we divide equation 7 by equation 8 we
can write down I alpha divided by I alpha p will be equal to W alpha into mu alpha by
rho alpha divided by W alpha if the mu alpha by rho alpha minus mu beta by rho beta
plus mu beta by rho beta. So, what we can see here, that if we get a phase mixture of
alpha and beta, and if we concentrate on a particular line of alpha in the diffraction

pattern for the phase mixture.

And if at the same time we look at the intensity of the same line in a pure form of alpha
then divide them to intensity the first and the second one we get an expression like this.

And here, if we look the values of mu alpha mu beta which are the linear absorption



coefficients of the alpha and beta phases and rho alpha and rho beta the densities of the
alpha and beta phases they simply form the ratio of align of alpha phase in the mixture
and the same line of the alpha phase in a pure form, this from this ratio knowing the
value of mu alpha mu beta rho alpha rho beta, it is possible to find out the value of W

alpha the Wight fraction of Alpha in the mixture.

And once you know the Wight fraction of Alpha in the mixture, and if the mixture
contains only the 2 phases alpha and beta the Wight fraction of beta can also be found
out. Now this method is known as the single line method because here we compare the
intensity of A particular line of the alpha phase in the mixture with the intensity of the
same line of the alpha phase in a pure form. So, from this single line method knowing the
values of the linear absorption coefficients and densities of the constituent phases it is
possible to find out the Wight fraction of the 2 phases alpha and beta; quantitative phase
analysis by x ray diffraction namely the internal standard method. Say for example, we

have got a mixture of 3 phases A B and C.

Let us suppose that we want to find out the volume fraction or the Wight fraction of A in
the phase mixture. So, in the internal standard method what we do is we mix a known
amount of a standard phase for which all the parameters are known and mix it with the

given sample and make a composite sample.
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Say for example, when we make the composite sample say C A this is a volume fraction
of the phase A in the original mixture and suppose C A, prime is a volume fraction of A
in the composite sample and C S is the volume fraction of the standard substance in the
composite sample. Then what we do? Then we take an x ray diffraction pattern of the

composite sample in a diffractometer.

So, now for the composite sample using the expression for equation 2 we can write I A,
the intensity of A particular line for the phase A in the composite sample is equal to K 1
C A prime by mu m, where mu m is the linear absorption coefficient of the mixture; the

whole of the composite sample.

Now simultaneously if we concentrate on a particular line of the standard the diffraction
pattern of which will also appear in the same XRD pattern for all the other components A
B and C, then I S can be written as a constant K 2 into C S divided by mu m. Now if we
divide equation 10 by 11 we can write down I A by I S is equal to K 1 C A prime divided
by K 2 C S. Now we have already seen in equation 5, how to find out the volume
fraction of A phase in a 2 phase mixture? This is the expression for equation 5; now,
extending this expression to the components of the composite which we have made up of

ABCandS.
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We can write down C A prime will be equal to W A prime by rho a divided by W A prime
by rho a plus W B prime by rho B plus W C prime by rho C plus W S by rho S. This is



our equation 13. In a similar manner we can find out the expression for C S also which is
equal to W S by rho S divided by the whole thing over here. So, this is our equation
number 14. Now if we divide 13 by 14, we can write down C A prime divided by C S
will be equal to W A prime by rho a divided by W S by rho S, this is all equation 15.

Now if we substitute in equation 12, this is our equation 12.

Now, if we substitute in equation 12 we can write down I A by I S is equal to K 1 by K 2
multiplied by W A prime by rho a divided by W S by rho S, this is our equation 16. Now
here K 1 K 2 rho S rho a are all constants. Now if while making the composite by adding
the standard material if the Wight fraction is kept constant intentionally then equation 16
can be written as I A by I S is equal to K 3 W A prime, K 3 is a new constant
incorporating the various parameters. Now the Wight fraction of A in the original and the
composite samples are related in this manner, W A prime is equal to W A into 1 minus W
S. Now if we combine the expressions 7 teen and 18, we can write down I A by I S is

equal to K 4 which is a new constant into W A.

So, you see that if we concentrate on a particular line of A, and a particular line of the
standard material in the composite that we have made and if we divide the intensity of A
by the intensity of S, then this expression will be a linear function of W A the Wight
fraction of A in the phase mixture. So, this gives us a method by which we can find out
the Wight fraction of the different phases A B and C in a phase mixture of A B C. Now I
come to the third method of quantitative phase analysis using x ray diffraction this is

known as the direct comparison method.
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Direct Comparison Method Measurement of retained austenite content in a hardened steel sample

Let us suppose that a hardened steel sample containg the two phases. KRi¢y
martensite and austenite Let us recal equation (1) here he i
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In equations (23) and (24),

¢y = the volume fractons of austenite in the hardened sample
ca = the volume fractions of martensite in the hardened sample
Jin = linear absorption coefficient of the sample with y and a

Divding equation (23) by (24) we get

I Riey

The diffracted intensity |, can therefore be written as, ly Rica

e X
2

Here, K is a constant, which is independent of the nature and amount of
the dffracting substance, whereas, R depends on 6, hkl and the nature

of the substance

1f we designate austente by the subseripty and martensite by the

(25) where,

@) Iy and | are respectively, the measured integrated intensities of the.
selected Ines of austenite and martensite, in the given sample The

quantiies Ry and Ra can be calculated for those two lnes. Therefore, the
value of ¢/ca can be easily found out from the equatin (25)

‘Again, ifthe gien sample contains the two phases, austente and

subscript a, then equation (22), for a particular diffraction line of y and S tea=t

for a particular diffraction iie of a, can be written as:

You see in the first 2 methods there are certain problems for example, in the single line
method it is essential to have S you know a pure material one of the phases must be
available in a pure form in order that the fraction of that phase in the phase mixture can
be determined. And sometimes it may be very difficult to get a phase in a pure form. And
in the second method the internal standard method also there may be a problem in getting
a suitable standard. So, in this method we really do not need to have the phases to be

present in pure form you know to be compared with or some internal standard to be

martensite only then we can write

(2

Solving equations (25) and (zn) the valves of C, and C. can be found oul

found out for making a composite. So, in this method say for example.
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If we take a practical example in hardened steels very often we find that there are 2
phases. So, a hardened steel is a mixture of 2 phases namely FCC austenite phase gamma
and BCT martensite phase alpha although martensite is body centered tetragonal, the
tetragonality if it is not that high it can be considered simply as BCC alpha. So, we have
a phase mixture of FCC austenite and BCC martensite. Now what we do in this method?
We choose 2 lines one from each phase. So, we take we consider a particular XRD line
from the austenite phase and a particular XRD line from the martensite phase in the x ray

diffraction pattern of the mixture.

And then compare the intensities of those 2 lines and as I will show readily that a
comparison of the intensities of the 2 chosen lines From the 2 phases it is possible to find
out the volume fraction of individual phases. Now from equation 1 what we do you
know if you remember the equation 1 we put K a constant equal to I 0 e to the power 4
by m square C 4 to lambda cube A by 32 pi r. Now this expression is the same for all the
diffraction lines in the pattern. So, this is the same for all the diffraction lines in the
pattern, we put it K, k is a constant for all lines diffraction pattern. And then the
remaining part for example, 1 by B square F square p to 1 plus cosine square 2 theta by
sin square theta cosine theta e to the minus 2 m we write as r. So, what is there in this
expression as we remember Vv is the volume of the unit cell, F is a crystal structure factor,

p is a multiplicity factor this expression here is the Lorentz polarization factor.

And this is the temperature factor. And naturally the value of R for the 2 chosen lines
will be different, although, the value of K for the 2 chosen lines will be the same. So, in
that case we can write down the expression for I equal to integrated intensity of A line is
equal to K R by 2 mu the mu, is a linear absorption coefficient of a material as we know
this is our this was our equation 1. So, this equation 1 can be written down in this simpler
form by putting K is equal to this much R is equal to this much. But when we are talking
about a mixture we have to make some changes. For example, this is valid for a pure

phase, a line of a pure phase.

But when we have a phase mixture say, when we talk about the gamma phase then the
intensity of A line in the gamma phase there I have to put K instead of R it will be R
gamma you know R gamma for that line multiplied by C gamma the volume fraction of
gamma in the mixture. If the whole thing is gamma then the intensity of A line a

particular line will be very high, but if you know it is present only as a fraction then



intensity will automatically come down. So, intensity of the chosen line in the gamma
phase can be written as K R gamma multiplied by C gamma C gamma is a volume
fraction of the gamma phase in the mixture and instead of writing mu the linear

absorption.

Coefficient for a pure phase now we have to write down twice mu m of the mixture.

Similarly, for the alpha phase
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We can write down I alpha is equal to K R alpha C alpha C alpha is a volume fraction of
the alpha phase in the mixture by 2 mu m. Now if we divide 23 by 24, we can write
down I gamma by I alpha is equal to R gamma C gamma divided by R alpha C alpha.
Again you know that if it is a 2 phase mixture of austenite and martensite only then C
gamma plus C alpha equal to 1. Now if we solve these 2 equations then it is possible to

determine the value of C gamma and C alpha.

But in order to do that we have to find out the values of R gamma and R alpha. So, once
we can determine the values of R gamma and R alpha then by solving equations 25 and
26, it is possible to find out the volume fractions of the austenite and the martensite
phase in the phase mixture of austenite and the martensite in hardened steel. Now if there
are more than 2 phases. So, say for example, sometimes there are 3 phases present in the

hardened steel namely austenite martensite and some carbides. There we can write down



the volume fraction of Austenite plus volume fraction of martensite plus volume fraction

carbides equal to 1.

And following the same method as we have done for a 2 phase mixture it is possible to
find out the volume fractions of all the 3 phases individually. The direct comparison
method is unique in the sense it neither leaves the availability of any of the phases in a
pure form nor it is necessary to mix a standard material with the phase mixture in order
to determine the volume fractions of the individual phases in the mixture. So, in that way
it has got an advantage over the previous 2 methods. Now for hardened steel you know it
is sometimes very essential to find out the volume fraction of Austenite, because what
happens if we make any tool out of that material, during service the amount of austenite

gradually changes into martensite or some other phase.

And that may give rise to lot of internal stresses and dimensional instability. That is a
reason why it is very much essential to find out the volume fraction of the retained
austenite phase. Now this can be d1 by using the microscopic method also. In fact, the
microscopic method is pretty good and rather accurate for you know an austenite

contained about say 15 percent and above.

But when it is below 15 percent you know in that case the x ray diffraction method using
the direct comparison method can be a better proposition. So, this is the reason why the
direct comparison method is very useful in industrial practice. Now I will illustrate the
use of the direct comparison method taking a practical example. Let us consider a high

carbon steel sample.

Now, if this sample is taken to the austenitic range and then directly quenched in a
bucket of water; we are going to get 2 phases martensite and some austenite. Now we
now if we take the x ray diffraction pattern of the sample, then the pattern will show lines

of both austenite and martensite.
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Direct Comparison Method Application of the direct comparison method
Letus consider a high-carbon steel sample. The sample is heated in the austenitic temperature range and rapidly quenched in a bucket of water. The XRD patiem,

taken from the sample, shows lnes of both the soft austenite and the hard martensite phases. Let us find out the volume fraction of austente in the sample,
quantitatively. A schematic of the diffraction line pattems have been shown below.

Figure 1. Difacton nes o the austente phase
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Figure 2: Diffracton nes of e martensito phase
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Now, this is a schematic of the line positions in the x ray diffraction pattern for the
austenitic phase and also for the martensitic phase. So, in the direct comparison method
if we want to find out say, the volume fraction or the Wight fraction of Austenite in the

hardened steel we have to compare the intensities of one line from each phase.

For example in this particular case we choose the 2 0 0 line of martensite and 2 2 0 line
of the austenite. Now 2 0 O line for martensite we can see that the 2 theta is 75.84
degrees, and for 2 2 0 line of austenite the 2 theta is 90.06 degrees. What happens
essentially is when we talk about martensite the lines 1 0 1 and 1 1 O this should be
shown as separate lines very close to each other. Similarly 0 0 2 2 0 O these 2 lines

should be seen very close to each other.
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In an actual diffraction pattem for martensite, the ine pairs (101)-(110), (002)-(200), (112)-(211) and (202)-(220) are not usually
resolvable into separate ines. This is because the lnes for both martensite and austenite are usualy quite broad. This phenomenon of
line broadening can be due to the presence of micro sirains in thm the phases as well as due to a very fine grain size. This is apparent
in Figure 3, which is a recreation of an actual diffraction pattern from a hardened steel sample plotted in the form of intensity | vs 20.
This plot s found to consist of a number of iffraction peaks superimposed on varying background intensiy. To take care of this
background intensiy, a contnuous background Ine shown by the dotted ine in the figure, is drawn. The integrated inensity of any.
difraction e is given by the area nder the curve above the dotted line

(311), (220)

Background Radation

Figure 3 Recreation of an aclual diffraction pattern
from a hardened steel sample

And112211and?20 2220 these are to be shown very close to each other, but you
see the resolving power should be very high in order to see these as very distinct lines,
but it is normally not possible. Moreover the reason for this is because of the presence of
micro strain, and also because of the fineness of the grains you know, the lines show
some broadening. As a result these 2 doublet So to say lines will appear as one these 2
will appear as one these 2 will appear as one these 2 will appear as one; so if we take a
practical example and draw the intensity versus 2 theta plot for a composite of martensite

and austenite phases.

We see that this is say the 2 0 0 alpha peak, this is the 2 2 0 gamma peak, this is the 2 1 1
alpha, this is the 3 1 1 gamma, this is the 2 2 0 alpha etcetera, etcetera. Now as we know
the background varies from 2 theta 0 to 2 theta 180 degree and the background goes up

as 2 theta increases. Say this is the background radiation here.
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Direct Comparison Method Determining the value of the ratio lvla

(25)

(26)

Background Radiation

28—

We can now find out R, and Rq with the help of the following equation:
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Now we are going to use the direct comparison method in order to determine the values
of the volume fractions or the Wight fractions of austenite and martensite in the hardened

sample, as we have seen already.

If we choose a particular line of gamma and a particular line of alpha, we can write down
I gamma by I alpha is equal to R gamma C gamma divided by R alpha C alpha. So, I
gamma and I alpha these are the integrated intensities of the chosen gamma and the alpha
lines. Now if we want to find out C gamma we need to calculate the values of I gamma I
alpha, from the pattern and also R gamma and R alpha. Now if we put a transparent
graph paper on top of the I versus 2 theta plot as we obtained from a diffractometer, we
find that the area the integrated intensity which is proportional to the area under the line.
So, here for the 2 0 0 alpha there are 191 small squares of the graph paper within this

region.

And if we compare it with the 2 to 0 gamma peak you know the number of small squares
is 44 therefore, we can write down I gamma by I alpha is equal to 44 by 191 which is
equal to 0.23. So, this much can be calculated from the plot of I versus 2 theta straight
away. Now we have to find out the values of R gamma and R alpha with the help of the

following equation, as we already seen.
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So, this is the equation for R. Now, how to determine these values? In order to do that we
need to have a number of tables showing the values of different parameters: for example,

for measuring the value of v the volume of the unit cell in the 2 phases.

We need to have the lattice parameter data. Say for example, for BCC alpha this is the

lattice parameter 2.866 and for FCC gamma this is the lattice parameter 3.571.
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Now we need to have the crystal structure factor data. So, for BCC we know that F

square is equal to 4 small f square, small f is atomic scattering factor and when this is



possible this is possible when h plus K plus | is an even quantity. And it will be 0 when h
plus K plus | is an odd quantity, on the other hand for FCC bravais lattice, value of F

square will be 16 small f square where f again is atomic scattering factor.
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Multiplicity factor p for cuble crystals
Plane P
hkl a8

And this is true for h k 1 unmixed and it is equal to 0 when h k 1 are mixed then we get
another table for multiplicity factors. So, on this side are shown the h k Is and on this
side the value of the multiplicity factor. So, if the plane is h k I; that means, h k 1 all 3 are
different, then multiplicity factor is 48 h h 1 multiplicity factor is 24 0 K 1 type of planes
multiplicity factors 24, 0 k k type of planes multiplicity factor is 12 h h h type of planes
it is 8 for example, 4 1 1 1 planes multiplicity factor is 8 0 0 1 planes it is six. So, 1 0 0

plane it is 6 etcetera, etcetera; so using these tables.
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3218 | 3206
3106 | 3,09
3012 [ 3.003
2932 | 2925
2886
2614
2715

We can calculate the value of F square we can calculate the value of p we can calculate
the value of v etcetera, etcetera. Then comes the Lorentz polarization factor 1 plus cosine
square 2 theta by sin square theta cosine theta. Here I have plotted only some definite
values relevant to our problem. So, here it is theta in degrees from 40 to 46 then it is 0.1
0.2 0.2 0.3 0.4 etcetera, etcetera. 0.9 for example, you know if theta is 40 degrees then
this is the value of the Lorentz polarization factor. If on the other hand theta is 40.1
degree then the Lorentz polarization factor is this. If it is a 42.5 degrees of theta then you

have to find it out.

So, it will be 2, 0.994 if it is say 45.9 degrees a theta. So, it is 2.789 etcetera, etcetera. So,
from this table we can find out the value of the necessary Lorentz polarization factor for

the lines.
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Value of sin/A for CoKa

We are using say a cobalt K alpha radiation in this particular case and the wavelength is
1.7901 angstrom. Now the value of sin theta by lambda is given here this is theta. So, we
find out the value of sin theta in each case divided by the lambda that is used. So, these
are the values of sin theta by lambda and here the temperature factor has been given as a

function of sin theta by lambda.
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And naturally for any line we calculate first the sin theta for lambda and corresponding

value of sin theta by lambda you can find out what should be the value of the



temperature factor. So, using all these different tables we can find out the value of R for

the chosen lines from the martensite and the austenite phases.
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Direct Comparison Method Determining the

For the austente sample.
a=35T1A

v=d4554

1ivé = 0.0005

(1= atomic scatterng factor)
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=040

ed=089

Substtuting the above values in equation (21) we get,
R, = 00005 {161 12. 2828 089 (28)
for the (220), line.

NPTEL

Now if we look at the austenite phase, we can write down a is 3.571 angstrom. So, v the
volume of the unit cell is 45.54 1 by v square is 0.005 F square is 16 small f square small

f is that mix catching factor p is equal to 12 now 2 theta for that austenite line.

Which we chose is ninety 0.06. So, that theta is 44.03 degree and using the table I shown
earlier the Lorentz polarization factor is 2.828 sin theta by lambda, for that particular line
is this equal to 0.40 corresponding to that we can find out what is the temperature factor
which is 0.89. So, if we substitute the above values in the equation 21, what we find R
gamma is equal to 0.0005 into 16 F square into 12 into 2.828 into 0.89. So, this is true
for the 2 2 0 gamma line. In a similar method when you look at the chosen line from the

martensitic sample.
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Direct Comparison Method Determining the valy

For the martensite sample,
2.866A (see Table 1)

235
1= 00018
|F[¢= 4f* (see Table 2)
p=8  (seeTabled)
28= 75.84" (see Figure 2)
Or,8=37.92

l:::;: = 3561 (see Table 4)

9 a9
=+ S 0134 (see Tables)
A 179

o248 082 sve Ryure ¢)

‘Substituting the above values in equation (21) we get
Ra=00018(47 6.3.561) 092 (29

for the (200} line.

Which is a 2 0 0 martensite line a is 2.866 angstrom from the table which I have shown
already. So, this is the value of volume v unit is of the unit cell 23.54 1 by v square is
0.0018 capital F square is 4 F square, this F stands for; that means, catching factor for
this type of plane multiplicity factor is 6 from the table and for 6 is from this line 2 theta
is 75.84 degree. So, theta is this much and the value of the Lorentz polarization factor
can be read out from the table as 3.561 sin theta by lambda can be calculated to be 0.34

and using all those values and the temperature factor comes out to be 0.92.

Now, we can substitute our values and equation 21 and get R alpha is equal to 0.0018
into 4 F square into 6 into 3.561 into 0.92. So, now, we have found out the values of R

gamma and R alpha for the chosen lines.
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Substiuting the vaues of I, I, Ry and Ra i the above equation we get, or, 1135, = 0135

1
44 (00005 (16 12 2828) 089]c i

191 [00018(4P 6. 3581) 002,

0.242¢
023= us, ime fraction of the austenite phase in the

fom equation (26) and

tax -6
¢, 0.135¢s from equation (30)
Substituting the value of ¢a in equation (30) we get,

So, putting those values in this equation we have already seen I gamma by I alpha is 44
by 191 that is by direct measurement on the I versus 2 theta plot and then put the values
of R gamma and R alpha and here multiplied by C gamma and C alpha. So, 0.023 is
equal to 0.24 to C gamma by 0.0142 C alpha. So, C gamma by C alpha is 0.135, but

since the material contains only 2 phases gamma.

And alpha we can write C gamma plus C alpha is equal to 1. So, you see that now we
have got 2 important expressions one for C gamma by C alpha, and the other for C
gamma plus C alpha. Now if we solve these 2 equations we find the value of C gamma is
0.12; that means, the volume fraction of Austenite phase in the hardened steel is 12
percent. So, this is really a very elegant method of determining the volume of volume
fraction, the value of the volume fraction of the austenite phase in a sample of hardened

steel. Of course, this method can be extended.
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Measurement of XRD Line Intensity Using a Microphotometer

The photographic density of an XRD ine ona fim canbe |
measured with a microphotometer. In its simplest form, a
ierophotometer consists of a ight source which allows a

narrow beam of ight to be transmitted through an X-ray fim Figure (a)

s
and strike a photo cell connected to a galvanometer. The

galvanometer deflection s proportonal o the intensty ofthe _
transmitted light, say, |

Figure (a) shows several XRD nes on a fim, with the Figuro (6)
background intensity increasing from

g 4 4 20=0"1020= 180" X (Zoro defloction)
In figure (b), the points X and Y correspond to zero and
maximum deflection of the gahanometer, respectively

The photographic density D or the blackening of a film is. Background
| given by the relation +—] intonsily ino
[ it
D logso (L, doflaction)
1o = ntensityof an X-ray beam incdent on a fim and Distance from A

| = intensity of the transmitted beam

Galvanometer deflection for XRD lines

Ah in other systems also. You see till now I talked about the diffractometer method.
Sometimes in some laboratories people use the old divisor and method to in order to find
out the volume fraction the quantitative measurement of the volume fractions of different
phases in a phase mixture. So, in that case how we determine the integrated intensity?
Now the photographic density of an excited line on a film like this can be measured

using a micro photometer. So, in it is simplest form.
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In it is simplest form a micro photometer consists of a light source which allows a
narrow beam of light to be transmitted through an x ray film and strike a photocell

connected to a galvanometer.

So, we have the x ray film say these are the x ray lines and naturally these are much
darker as compared to the background, and we have a light source which can illuminate
the x ray film from below above there is a photo cell which will record the transmitted,
light intensity and this again connected to a galvanometer. The galvanometer deflection
will be proportional to the intensity of the transmitted light we say I. Now in this figure
several exciting lines have been shown on a film and the background as you can see
changes from light to very dark as we move from 2 theta equals 0 to 2 theta, theta is

equal to 180 degree. Now this is the figure b.

And here the point x corresponds to where the galvanometer shows 0 deflection. And y is
the point where the galvanometer shows maximum deflection. Now for the lines 1 2 3
and 4 this is what we find the galvanometer deflection, this is what we get for the 4 lines
according to their intensities. And the photographic density or the blackening of a line is
given by the relation, D is equal to D is equal to log I 0 by I to the power 10 at the base
to the base 10, I am sorry, D is equal to log I 0 by I to the base 10 I 0 is the intensity of
the not the extra beam is wrong here I 0 is the intensity of the light incident on a film and

[ is intensity of the transmitted beam.

So, you say that you know if we have a photographic film which records the diffracted
intensity from a phase mixture then, this is how we can find out the area under the curve
and measure the integrated intensity, and use the same method as I have described

already.



