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We have seen that every substance whether an element a solid solution or a compound

has got it is characteristic x ray diffraction pattern. Thus x ray diffraction pattern of a

phase is very much characteristic of that phase alone. In a sense an x ray diffraction

pattern of a substance or a phase is just like the fingerprint of a human being do just as

by distinguishing between the fingerprints 2 persons can be distinguished. In a similar

manner  by  distinguishing  between  the  powder  patterns  or  powder  x  ray  diffraction

patterns of 2 substances or phases that 2 phases can be distinguished. Now let us suppose

that we have got a phase mixture of a and b.
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Now, here you see a number or diffraction lines the lines due to the phase A have been

marked and the lines due to phase B have also been marked in this powder pattern.
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Now before going to the topic of quantitative phase analysis I would like to say a few

words  about  the  quantitative  elemental  analysis  that  can  be  performed  by  the

measurement of the lattice parameter of a phase or phases in a mixture. Say for example,

we have got a single phase solid solution of gold in copper. The lattice parameter value

would depend on the concentration of mould in the alloy. As amount of gold in the solid



solution  Increases  in  expect  that  the  lattice  parameter  of  the  solid  solution  will  also

increase.

Since the gold atoms are larger than the copper atoms. Let us consider a series of copper

gold alloys. Let us measure the lattice parameters and then plot this lattice parameter

values against the corresponding gold content. This is shown in the right hand side of the

figure. By measuring the lattice parameter of an unknown copper gold alloy we can find

out it is gold content with the help of this plot. So, in this plot the lattice parameter of the

solid solution has been plotted along the y axis and the Wight percent gold has been

plotted along the x axis. So, this dotted line passing through these points shows how the

lattice parameter of this solid solution changes as among to gold in the solid solution

changes.

So, if we have got an alloy and an unknown alloy, we can simply have to measure the

lattice parameter. Once we do that we put the lattice parameter value over here and find

out the corresponding gold content of the alloy.
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So, in this manner you can find out from the lattice parameter the quantitative chemical

analysis  in  case  of  a  solid  solution.  There  are  3  different  methods  available  for

quantitative phase analysis by x ray diffraction. The first one is what is known as the

single line method. The second one is known as the internal standard method. And the

third one is known as the direct comparison method.
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Now, I will describe all the 3 methods for mixtures easy and x ray diffractometer. First of

all we deal with the single line method now as we are all aware in a diffractometer the

expression for intensity of an exciting line is given by the equation 1, this is written on

the board also.

(Refer Slide Time: 05:38)

So, I is equal to I 0 e to the power 4 divided by m square C 4 lambda cube A by 32 pi R

into 1 by v square into F square p into 1 plus cosine square 2 theta divided by sin square

theta cosine theta into e to the power minus 2 m by 2 mu. Now we know that I is a total



integrated  intensity  per  unit  length  of  a  diffraction  line  in  the XRD pattern  I  0  is  a

intensity of the incident beam of x rays.

E is a charge on an electron.  M is a mass of an electron.  C is the velocity  of light.

Lambda the wavelength of the incident x radiation, R is a radius of the diffractometer

circle. A is a cross sectional area of the incident x ray beam, V the volume of the unit cell

of the single phase material.  F is  equal  to crystal  structure factor.  P is a multiplicity

factor. Theta is a bragg angle. E to the power minus 2 m is a temperature factor which is

a function of theta and mu is a linear absorption co efficient. So, this expression is valid

for pure phases align of the pure phase. While we have a phase mixture of say 2 phases

alpha and beta then there will be slight change in the expression.

For example, if we measure the intensity of the same line of a phase when it is in a pure

form that intensity will be much higher compare to when this phase is present only as a

small fraction of A phase mixture. So, when we are dealing with a phase mixture align of

a particular phase, intensity of Align of a particular phase the expression for that must be

multiplied  by  W alpha,  the  Wight  fraction  or  C  alpha,  the  volume  fraction  of  the

particular phase.

Say for example, this I here this is the intensity of A particular line in their pure phase.

The moment this phase say is a alpha phase is present in the mixture containing the 2

phases alpha and beta then the intensity of that particular line In the phase mixture for

alpha will be rectify, multiply this expression by C alpha and changing the value of mu

the linear absorption co efficient of alpha as mu m, because we must write down the

linear absorption coefficient of the mixture.

Now in this expression the whole term we shown by this yellow chalk is a constant for

that particular line.
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Therefore we can write it as a K a constant and this will be multiplied by C alpha by mu

m. So, this is the dual expression for the integrated intensity of A particular line in a pure

phase, and when that phase is present as part of a mixture of 2 phases then the intensity

of the same line will be written as k.

Though thus particular term to see alpha which is the volume fraction of the alpha phase

in the mixture divided by instead of mu we write mu m the linear absorption co efficient

of the mixture. Now we know that when we are dealing with the mixture containing 2

phases alpha and beta, then the mass absorption coefficient of the mixture mu m by rho

m can be written as W alpha into mu alpha by rho alpha plus W beta multiplied by mu

beta by rho beta. So, W alpha is a Wight fraction of the alpha phase in the mixture that

may beta is a Wight fraction of the beta phase in the mixture mu alpha.

And mu beta are the linear absorption coefficients of the alpha and beta phases in the

mixture,  rho  alpha  and  rho  beta  are  the  densities  of  the  alpha  and  the  beta  phase

respectively. Now if we consider a unit volume of the phase mixture then the Wight of

the mixture will be simply equal to rho m the density of the mixture. So, Wight of alpha

in the mixture will be equal to W alpha to rho m similarly, volume of alpha will be equal

to W alpha rho m divided by the density of the alpha phase rho alpha. And we know that

the volume can be simply written as C alpha and the volume of the beta phase will be W



beta rho m by rho B and this can be simply as C beta, because we know the how it will

talking about is for unit volume of the phase mixture.

Now, multiplying equation 3 by rho m, this equation 3 by rho m we get mu m equal to W

alpha rho m by rho alpha into mu alpha plus W beta to rho m by rho beta into mu beta,

and this can be written as C alpha mu alpha and this can be written as C beta mu beta.

Since C alpha plus C beta; that means, the volume fraction of Alpha the volume fraction

of beta in the mixture is equal to 1, then this can be written as C alpha mu alpha plus 1

minus C alpha into mu beta equal to C alpha in the mu alpha minus mu beta plus mu

beta. Now if we put this value of mu m in equation 2 over here, we get I alpha equal to K

C alpha divided by C alpha into mu alpha minus mu beta  plus mu beta,  this  is  our

equation 4.
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Now, when we consider the volumes of the 2 phases alpha and beta in a unit mass of the

phase mixture, these are W alpha by rho alpha and W beta by rho beta respectively.
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Therefore now, we can write C alpha will be equal to W alpha by rho alpha divided by W

alpha by rho alpha plus W beta by rho beta, our equation number 5. Since W alpha plus

W beta equal to 1, this equation can be written as W alpha by rho alpha divided by W

alpha into 1 by rho alpha minus 1 by rho beta plus 1 by rho beta. Now if we combine the

equation 4 over here if we combine equation 4 and equation 6 over here and simplify we

can write down, I alpha equal to K W alpha divided by rho alpha into W alpha into mu

alpha by rho alpha minus mu beta by rho beta plus mu beta by rho beta. For a sample of

the alpha phase in a pure form if we get a sample of alpha phase in a pure form, then all

the terms for the beta phase in this equation is simply vanish.

And therefore for the pure phase I can write down I alpha p for the for the pure form will

be simply equal to K divided by mu alpha. Now if we divide equation 7 by equation 8 we

can write down I alpha divided by I alpha p will be equal to W alpha into mu alpha by

rho alpha divided by W alpha if the mu alpha by rho alpha minus mu beta by rho beta

plus mu beta by rho beta. So, what we can see here, that if we get a phase mixture of

alpha and beta,  and if  we concentrate  on a particular  line of alpha in the diffraction

pattern for the phase mixture.

And if at the same time we look at the intensity of the same line in a pure form of alpha

then divide them to intensity the first and the second one we get an expression like this.

And here, if we look the values of mu alpha mu beta which are the linear absorption



coefficients of the alpha and beta phases and rho alpha and rho beta the densities of the

alpha and beta phases they simply form the ratio of align of alpha phase in the mixture

and the same line of the alpha phase in a pure form, this from this ratio knowing the

value of mu alpha mu beta rho alpha rho beta, it is possible to find out the value of W

alpha the Wight fraction of Alpha in the mixture.

And once you know the Wight  fraction of  Alpha in  the mixture,  and if  the mixture

contains only the 2 phases alpha and beta the Wight fraction of beta can also be found

out. Now this method is known as the single line method because here we compare the

intensity of A particular line of the alpha phase in the mixture with the intensity of the

same line of the alpha phase in a pure form. So, from this single line method knowing the

values of the linear absorption coefficients and densities of the constituent phases it is

possible to find out the Wight fraction of the 2 phases alpha and beta; quantitative phase

analysis by x ray diffraction namely the internal standard method. Say for example, we

have got a mixture of 3 phases A B and C.

Let us suppose that we want to find out the volume fraction or the Wight fraction of A in

the phase mixture. So, in the internal standard method what we do is we mix a known

amount of a standard phase for which all the parameters are known and mix it with the

given sample and make a composite sample.
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Say for example, when we make the composite sample say C A this is a volume fraction

of the phase A in the original mixture and suppose C A, prime is a volume fraction of A

in the composite sample and C S is the volume fraction of the standard substance in the

composite sample. Then what we do? Then we take an x ray diffraction pattern of the

composite sample in a diffractometer.

So, now for the composite sample using the expression for equation 2 we can write I A,

the intensity of A particular line for the phase A in the composite sample is equal to K 1

C A prime by mu m, where mu m is the linear absorption coefficient of the mixture; the

whole of the composite sample.

Now simultaneously if we concentrate on a particular line of the standard the diffraction

pattern of which will also appear in the same XRD pattern for all the other components A

B and C, then I S can be written as a constant K 2 into C S divided by mu m. Now if we

divide equation 10 by 11 we can write down I A by I S is equal to K 1 C A prime divided

by K 2 C S. Now we have already seen in equation 5,  how to find out the volume

fraction of A phase in a 2 phase mixture? This is the expression for equation 5; now,

extending this expression to the components of the composite which we have made up of

A B C and S.

(Refer Slide Time: 21:08)

We can write down C A prime will be equal to W A prime by rho a divided by W A prime

by rho a plus W B prime by rho B plus W C prime by rho C plus W S by rho S. This is



our equation 13. In a similar manner we can find out the expression for C S also which is

equal to W S by rho S divided by the whole thing over here. So, this is our equation

number 14. Now if we divide 13 by 14, we can write down C A prime divided by C S

will be equal to W A prime by rho a divided by W S by rho S, this is all equation 15.

Now if we substitute in equation 12, this is our equation 12.

Now, if we substitute in equation 12 we can write down I A by I S is equal to K 1 by K 2

multiplied by W A prime by rho a divided by W S by rho S, this is our equation 16. Now

here K 1 K 2 rho S rho a are all constants. Now if while making the composite by adding

the standard material if the Wight fraction is kept constant intentionally then equation 16

can  be  written  as  I  A by  I  S  is  equal  to  K  3  W A prime,  K 3  is  a  new constant

incorporating the various parameters. Now the Wight fraction of A in the original and the

composite samples are related in this manner, W A prime is equal to W A into 1 minus W

S. Now if we combine the expressions 7 teen and 18, we can write down I A by I S is

equal to K 4 which is a new constant into W A.

So, you see that if we concentrate on a particular line of A, and a particular line of the

standard material in the composite that we have made and if we divide the intensity of A

by the intensity of S, then this expression will be a linear function of W A the Wight

fraction of A in the phase mixture. So, this gives us a method by which we can find out

the Wight fraction of the different phases A B and C in a phase mixture of A B C. Now I

come to the third method of quantitative phase analysis using x ray diffraction this is

known as the direct comparison method.
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You see in the first 2 methods there are certain problems for example, in the single line

method it is essential to have S you know a pure material one of the phases must be

available in a pure form in order that the fraction of that phase in the phase mixture can

be determined. And sometimes it may be very difficult to get a phase in a pure form. And

in the second method the internal standard method also there may be a problem in getting

a suitable standard. So, in this method we really do not need to have the phases to be

present in pure form you know to be compared with or some internal standard to be

found out for making a composite. So, in this method say for example.
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If we take a practical example in hardened steels very often we find that there are 2

phases. So, a hardened steel is a mixture of 2 phases namely FCC austenite phase gamma

and BCT martensite phase alpha although martensite is body centered tetragonal,  the

tetragonality if it is not that high it can be considered simply as BCC alpha. So, we have

a phase mixture of FCC austenite and BCC martensite. Now what we do in this method?

We choose 2 lines one from each phase. So, we take we consider a particular XRD line

from the austenite phase and a particular XRD line from the martensite phase in the x ray

diffraction pattern of the mixture.

And then compare  the  intensities  of  those 2 lines  and as  I  will  show readily  that  a

comparison of the intensities of the 2 chosen lines From the 2 phases it is possible to find

out the volume fraction of individual  phases. Now from equation 1 what we do you

know if you remember the equation 1 we put K a constant equal to I 0 e to the power 4

by m square C 4 to lambda cube A by 32 pi r. Now this expression is the same for all the

diffraction lines in the pattern. So, this is the same for all the diffraction lines in the

pattern,  we  put  it  K,  k  is  a  constant  for  all  lines  diffraction  pattern.  And  then  the

remaining part for example, 1 by B square F square p to 1 plus cosine square 2 theta by

sin square theta cosine theta e to the minus 2 m we write as r. So, what is there in this

expression as we remember v is the volume of the unit cell, F is a crystal structure factor,

p is a multiplicity factor this expression here is the Lorentz polarization factor.

And this is the temperature factor. And naturally the value of R for the 2 chosen lines

will be different, although, the value of K for the 2 chosen lines will be the same. So, in

that case we can write down the expression for I equal to integrated intensity of A line is

equal to K R by 2 mu the mu, is a linear absorption coefficient of a material as we know

this is our this was our equation 1. So, this equation 1 can be written down in this simpler

form by putting K is equal to this much R is equal to this much. But when we are talking

about a mixture we have to make some changes. For example, this is valid for a pure

phase, a line of a pure phase.

But when we have a phase mixture say, when we talk about the gamma phase then the

intensity of A line in the gamma phase there I have to put K instead of R it will be R

gamma you know R gamma for that line multiplied by C gamma the volume fraction of

gamma  in  the  mixture.  If  the  whole  thing  is  gamma  then  the  intensity  of  A line  a

particular line will be very high, but if you know it is present only as a fraction then



intensity will automatically come down. So, intensity of the chosen line in the gamma

phase can be written as K R gamma multiplied by C gamma C gamma is a volume

fraction  of  the  gamma  phase  in  the  mixture  and  instead  of  writing  mu  the  linear

absorption.

Coefficient for a pure phase now we have to write down twice mu m of the mixture.

Similarly, for the alpha phase
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We can write down I alpha is equal to K R alpha C alpha C alpha is a volume fraction of

the alpha phase in the mixture by 2 mu m. Now if we divide 23 by 24, we can write

down I gamma by I alpha is equal to R gamma C gamma divided by R alpha C alpha.

Again you know that if it is a 2 phase mixture of austenite and martensite only then C

gamma plus C alpha equal to 1. Now if we solve these 2 equations then it is possible to

determine the value of C gamma and C alpha.

But in order to do that we have to find out the values of R gamma and R alpha. So, once

we can determine the values of R gamma and R alpha then by solving equations 25 and

26, it is possible to find out the volume fractions of the austenite and the martensite

phase in the phase mixture of austenite and the martensite in hardened steel. Now if there

are more than 2 phases. So, say for example, sometimes there are 3 phases present in the

hardened steel namely austenite martensite and some carbides. There we can write down



the volume fraction of Austenite plus volume fraction of martensite plus volume fraction

carbides equal to 1.

And following the same method as we have done for a 2 phase mixture it is possible to

find out the volume fractions of all  the 3 phases individually.  The direct comparison

method is unique in the sense it neither leaves the availability of any of the phases in a

pure form nor it is necessary to mix a standard material with the phase mixture in order

to determine the volume fractions of the individual phases in the mixture. So, in that way

it has got an advantage over the previous 2 methods. Now for hardened steel you know it

is sometimes very essential to find out the volume fraction of Austenite, because what

happens if we make any tool out of that material, during service the amount of austenite

gradually changes into martensite or some other phase.

And that may give rise to lot of internal stresses and dimensional instability. That is a

reason why it  is  very much essential  to find out  the volume fraction of the retained

austenite phase. Now this can be d1 by using the microscopic method also. In fact, the

microscopic  method  is  pretty  good  and  rather  accurate  for  you  know  an  austenite

contained about say 15 percent and above.

But when it is below 15 percent you know in that case the x ray diffraction method using

the direct comparison method can be a better proposition. So, this is the reason why the

direct comparison method is very useful in industrial practice. Now I will illustrate the

use of the direct comparison method taking a practical example. Let us consider a high

carbon steel sample.

Now, if  this  sample  is  taken to  the  austenitic  range and then directly  quenched in a

bucket of water; we are going to get 2 phases martensite and some austenite. Now we

now if we take the x ray diffraction pattern of the sample, then the pattern will show lines

of both austenite and martensite.
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Now, this  is  a schematic  of the line positions in the x ray diffraction pattern for the

austenitic phase and also for the martensitic phase. So, in the direct comparison method

if we want to find out say, the volume fraction or the Wight fraction of Austenite in the

hardened steel we have to compare the intensities of one line from each phase.

For example in this particular case we choose the 2 0 0 line of martensite and 2 2 0 line

of the austenite.  Now 2 0 0 line for martensite  we can see that  the 2 theta  is  75.84

degrees,  and for  2  2 0 line  of  austenite  the  2 theta  is  90.06 degrees.  What  happens

essentially is when we talk about martensite the lines 1 0 1 and 1 1 0 this should be

shown as separate lines very close to each other. Similarly 0 0 2 2 0 0 these 2 lines

should be seen very close to each other.
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And 1 1 2 2 1 1 and 2 0 2 2 2 0 these are to be shown very close to each other, but you

see the resolving power should be very high in order to see these as very distinct lines,

but it is normally not possible. Moreover the reason for this is because of the presence of

micro strain, and also because of the fineness of the grains you know, the lines show

some broadening. As a result these 2 doublet So to say lines will appear as one these 2

will appear as one these 2 will appear as one these 2 will appear as one; so if we take a

practical example and draw the intensity versus 2 theta plot for a composite of martensite

and austenite phases.

We see that this is say the 2 0 0 alpha peak, this is the 2 2 0 gamma peak, this is the 2 1 1

alpha, this is the 3 1 1 gamma, this is the 2 2 0 alpha etcetera, etcetera. Now as we know

the background varies from 2 theta 0 to 2 theta 180 degree and the background goes up

as 2 theta increases. Say this is the background radiation here.
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Now we are going to use the direct comparison method in order to determine the values

of the volume fractions or the Wight fractions of austenite and martensite in the hardened

sample, as we have seen already.

If we choose a particular line of gamma and a particular line of alpha, we can write down

I gamma by I alpha is equal to R gamma C gamma divided by R alpha C alpha. So, I

gamma and I alpha these are the integrated intensities of the chosen gamma and the alpha

lines. Now if we want to find out C gamma we need to calculate the values of I gamma I

alpha, from the pattern and also R gamma and R alpha. Now if we put a transparent

graph paper on top of the I versus 2 theta plot as we obtained from a diffractometer, we

find that the area the integrated intensity which is proportional to the area under the line.

So, here for the 2 0 0 alpha there are 191 small squares of the graph paper within this

region.

And if we compare it with the 2 to 0 gamma peak you know the number of small squares

is 44 therefore, we can write down I gamma by I alpha is equal to 44 by 191 which is

equal to 0.23. So, this much can be calculated from the plot of I versus 2 theta straight

away. Now we have to find out the values of R gamma and R alpha with the help of the

following equation, as we already seen.
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So, this is the equation for R. Now, how to determine these values? In order to do that we

need to have a number of tables showing the values of different parameters: for example,

for measuring the value of v the volume of the unit cell in the 2 phases.

We need to have the lattice parameter data. Say for example, for BCC alpha this is the

lattice parameter 2.866 and for FCC gamma this is the lattice parameter 3.571. 
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Now we need to have the crystal  structure factor data.  So, for BCC we know that F

square is equal to 4 small f square, small f is atomic scattering factor and when this is



possible this is possible when h plus K plus l is an even quantity. And it will be 0 when h

plus K plus l is an odd quantity, on the other hand for FCC bravais lattice, value of F

square will be 16 small f square where f again is atomic scattering factor.
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And this is true for h k l unmixed and it is equal to 0 when h k l are mixed then we get

another table for multiplicity factors. So, on this side are shown the h k ls and on this

side the value of the multiplicity factor. So, if the plane is h k l; that means, h k l all 3 are

different, then multiplicity factor is 48 h h l multiplicity factor is 24 0 K l type of planes

multiplicity factors 24, 0 k k type of planes multiplicity factor is 12 h h h type of planes

it is 8 for example, 4 1 1 1 planes multiplicity factor is 8 0 0 l planes it is six. So, 1 0 0

plane it is 6 etcetera, etcetera; so using these tables.
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We can calculate the value of F square we can calculate the value of p we can calculate

the value of v etcetera, etcetera. Then comes the Lorentz polarization factor 1 plus cosine

square 2 theta by sin square theta cosine theta. Here I have plotted only some definite

values relevant to our problem. So, here it is theta in degrees from 40 to 46 then it is 0.1

0.2 0.2 0.3 0.4 etcetera, etcetera. 0.9 for example, you know if theta is 40 degrees then

this is the value of the Lorentz polarization factor.  If on the other hand theta is 40.1

degree then the Lorentz polarization factor is this. If it is a 42.5 degrees of theta then you

have to find it out.

So, it will be 2, 0.994 if it is say 45.9 degrees a theta. So, it is 2.789 etcetera, etcetera. So,

from this table we can find out the value of the necessary Lorentz polarization factor for

the lines.
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We are using say a cobalt K alpha radiation in this particular case and the wavelength is

1.7901 angstrom. Now the value of sin theta by lambda is given here this is theta. So, we

find out the value of sin theta in each case divided by the lambda that is used. So, these

are the values of sin theta by lambda and here the temperature factor has been given as a

function of sin theta by lambda.

(Refer Slide Time: 44:24)

And naturally for any line we calculate first the sin theta for lambda and corresponding

value  of  sin  theta  by  lambda  you  can  find  out  what  should  be  the  value  of  the



temperature factor. So, using all these different tables we can find out the value of R for

the chosen lines from the martensite and the austenite phases.
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Now if we look at the austenite phase, we can write down a is 3.571 angstrom. So, v the

volume of the unit cell is 45.54 1 by v square is 0.005 F square is 16 small f square small

f is that mix catching factor p is equal to 12 now 2 theta for that austenite line.

Which we chose is ninety 0.06. So, that theta is 44.03 degree and using the table I shown

earlier the Lorentz polarization factor is 2.828 sin theta by lambda, for that particular line

is this equal to 0.40 corresponding to that we can find out what is the temperature factor

which is 0.89. So, if we substitute the above values in the equation 21, what we find R

gamma is equal to 0.0005 into 16 F square into 12 into 2.828 into 0.89. So, this is true

for the 2 2 0 gamma line. In a similar method when you look at the chosen line from the

martensitic sample.
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Which is a 2 0 0 martensite line a is 2.866 angstrom from the table which I have shown

already. So, this is the value of volume v unit is of the unit cell 23.54 1 by v square is

0.0018 capital F square is 4 F square, this F stands for; that means, catching factor for

this type of plane multiplicity factor is 6 from the table and for 6 is from this line 2 theta

is 75.84 degree. So, theta is this much and the value of the Lorentz polarization factor

can be read out from the table as 3.561 sin theta by lambda can be calculated to be 0.34

and using all those values and the temperature factor comes out to be 0.92.

Now, we can substitute our values and equation 21 and get R alpha is equal to 0.0018

into 4 F square into 6 into 3.561 into 0.92. So, now, we have found out the values of R

gamma and R alpha for the chosen lines.
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So, putting those values in this equation we have already seen I gamma by I alpha is 44

by 191 that is by direct measurement on the I versus 2 theta plot and then put the values

of R gamma and R alpha and here multiplied by C gamma and C alpha. So, 0.023 is

equal to 0.24 to C gamma by 0.0142 C alpha. So, C gamma by C alpha is 0.135, but

since the material contains only 2 phases gamma.

And alpha we can write C gamma plus C alpha is equal to 1. So, you see that now we

have got 2 important expressions one for C gamma by C alpha,  and the other for C

gamma plus C alpha. Now if we solve these 2 equations we find the value of C gamma is

0.12;  that  means,  the volume fraction of Austenite  phase in the hardened steel  is  12

percent. So, this is really a very elegant method of determining the volume of volume

fraction, the value of the volume fraction of the austenite phase in a sample of hardened

steel. Of course, this method can be extended.



(Refer Slide Time: 49:17)

Ah in other systems also. You see till  now I talked about the diffractometer  method.

Sometimes in some laboratories people use the old divisor and method to in order to find

out the volume fraction the quantitative measurement of the volume fractions of different

phases in a phase mixture. So, in that case how we determine the integrated intensity?

Now the photographic density of an excited line on a film like this can be measured

using a micro photometer. So, in it is simplest form.

(Refer Slide Time: 50:01)



In it  is  simplest  form a micro  photometer  consists  of  a  light  source which allows  a

narrow beam of light  to be transmitted through an x ray film and strike a photocell

connected to a galvanometer.

So, we have the x ray film say these are the x ray lines and naturally these are much

darker as compared to the background, and we have a light source which can illuminate

the x ray film from below above there is a photo cell which will record the transmitted,

light intensity and this again connected to a galvanometer. The galvanometer deflection

will be proportional to the intensity of the transmitted light we say I. Now in this figure

several exciting lines have been shown on a film and the background as you can see

changes from light to very dark as we move from 2 theta equals 0 to 2 theta, theta is

equal to 180 degree. Now this is the figure b.

And here the point x corresponds to where the galvanometer shows 0 deflection. And y is

the point where the galvanometer shows maximum deflection. Now for the lines 1 2 3

and 4 this is what we find the galvanometer deflection, this is what we get for the 4 lines

according to their intensities. And the photographic density or the blackening of a line is

given by the relation, D is equal to D is equal to log I 0 by I to the power 10 at the base

to the base 10, I am sorry, D is equal to log I 0 by I to the base 10 I 0 is the intensity of

the not the extra beam is wrong here I 0 is the intensity of the light incident on a film and

I is intensity of the transmitted beam.

So, you say that you know if we have a photographic film which records the diffracted

intensity from a phase mixture then, this is how we can find out the area under the curve

and  measure  the  integrated  intensity,  and use  the  same method  as  I  have  described

already.


