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Reflection Of Plane Waves 2

In the last class we talked about the Reflection of a Plane Wave.

(Refer Slide Time: 00:21)

And in particular  we talked about reflection from a soft  boundary condition.  So, the

problem if I recall is going to be in this fashion. So, at tau equals to 0 there is an incident

wave which is shown in the blue graph out there, and progressively as time progresses it

comes in  this  at  tau equals  to  9 it  takes  this  red form, but  in  order to  maintain  the

boundary condition at tau equals to 0, which is the pressure equal to 0 condition and that

is why we call it as a soft boundary, you must have another wave which just negates this

effect of the incident wave.

So, as these 2 waves crossover the in totality they are in superposition they enforce the

boundary condition at x equals to 0. 



(Refer Slide Time: 01:12)

So, this is the origin of the reflection due to Dirichlet condition. So, we run through the

slide in the last class also. So, we will now look at one very important fact that we will

note is  that  the reflected  wave has  the same amplitude  as the  incident  wave,  that  is

though it is a flipped in its sign and it is also reversed, but the point is the amplitude of it

is remaining the same; what has been plus 2 is now minus 2.

So, in terms of energy content in the incident  wave and the energy contained in the

reflected wave both are just the same. We will do a better analysis of energy calculation

as we go along, but suppose I say to say at this point the amplitude of the waves is

directly related to the energy that the wave is carrying from one direction to the other, in

particular that term will be called as intensity, but at this point we just make a note that

the amplitude of the incident wave and the amplitude of the reflected wave has got to be

just the same.



(Refer Slide Time: 02:16)

So, we will see same condition now happening in the Neumann boundary conditions. So

the  Neumann boundary  condition  as  was elaborated  in  the  last  talk  is  the  boundary

condition where in the gradient of the variable of interest that is pressure in this case, will

be enforced to be 0. Again we pick up the thread from the solution of the wave equation

the general solution as we know is an f function and g function, where both of them can

be arbitrary, but the argument of the f function is x plus tau where as the argument of the

g function is got to be x minus tau. But then, we sort of joggled around with this variable

which is the argument of the g function and we said that if we redefine a new function h,

and we say that h of minus x is basically g of x or equivalently g of minus x is h of x then

g of x minus tau will be h of tau minus x. 

So, we might interpret the total solution in either of these 2 form f and g or f and h; f has

the same signs in both x and tau. So, there is no ambiguity here we have a negative sign

accompanying the tau variable. So, that is flipped around when we go with the h function

where in we say that the tau or the time variable has positive sign and the space variable

has negative sign. But please remember both are forward travelling waves one implies

the other, in a forwarded travelling wave the arguments are such that space and time has

opposite signs and in the backward travelling waves space and time has the same sign.

So, anyway that was talked about in lot of elaborate details in the earlier classes. So, now

what we wish to understand is the following that is what is the effect of a boundary



condition, but before we do that let us consider that at the initial time we have a just a

incident wave the backward wave is not of interest to us. So, we take an incident wave

which is travelling in the positive x direction. So, at time tau equals to 0 we are dealing

with the condition which is given, but that is given over a semi infinite range that is in

the region which is minus infinity to 0.

Remember we are dealing with at least one boundary which is x equals to 0. So, we are

this time concentrated not on an infinite region, but rather on a semi infinite region. So, x

between minus infinity to 0 is known to us which is given as a function of a we call it f

of x. We simply extend this function to the entire domain by saying that p of x comma 0

will be f of x; and that f of x will be defined as 0 for all x in the positive. So, let me

elaborate what I have done here.

(Refer Slide Time: 05:19)

So, what we had to start with is a region of interest which is from minus infinity to 0. So,

this is x is equal to 0 and we had the region of interest from minus infinity to 0. So,

within this region there was some waveform which was the specified, and actual region

of interest is minus infinity to 0, but just to do our mathematical calculations we will

extend it even in the positive side and in the positive side f of x will be defined to be 0.

So, we are simply sort of 0 padding the function and on the positive half which is just a

mathematical artifact we are considering a 0 padded f of x. So, that is what is meant by

this statement and here comes the boundary condition. So, boundary condition which is



the Neumann condition at x equals to 0, is that the space derivative of the variable of

interest  which  is  the  acoustic  pressure  for  all  times  has  to  be  0  and  this  boundary

condition has to be enforced at x equals to 0. So, that is why we write it in this form the

space derivative of pressure at x equals to 0, but for all times for all normalized times tau

will have to be 0, this is the boundary condition that we have to enforce. But then if you

simply take a derivative of let us say p of x comma tau; see always as I said the general

solution is this or this in whatever way you may look at it, the point is this general con

solution  has  to  be  satisfied  together  with  the  general  condition  there  has  to  be  a

satisfaction or enforcement of the boundary condition. 

So, whatever solutions you may think of it has to fit the bill that the solution has to be of

this form right, and now when you take the space derivative of this form or you will get

to see f prime tau which is fine and h prime tau come prime tau comes with the minus

sign  that  is  because  the  minus  sign  leads  the  variable  x.  Remember  you  are  doing

differentiation with respect to x, within here x comes with a positive sign there is no

problem whereas, within here the x comes with a negative sign.

So, the derivative while using chain rule will lead to a negative sign here right; and the

since we are evaluating this at x equals to 0. So, therefore, the variable x does not feature

here. So, this is the derivative evaluated at x equals to 0 for all times. So, therefore, you

have this condition f prime tau minus h prime tau equals to 0. Just like last time we

needed to enforce f tau and h tau together should get you a 0 condition now you have to

enforce f and h to be such that f prime tau and h prime tau should be equal such that they

will  negate  each  other  in  terms  of  their  derivatives,  and  that  will  lead  to  be  the

satisfaction of the boundary condition.

So, exactly the same approach just that here you wish to have with have the negation in

terms  of  derivatives  rather  than  the  original  function  itself.  So,  here  before  we  can

integrate this out what we could directly say possibly is that we could integrate this out

in terms of the variable tau and that would have let us to f tau is equals to h tau, but

possibly an integration constant which will still  remain undefined because there is no

way that you can calculate this, but here we will invoke a physical argument that we

would recall  that even for our Dirichlet  boundary condition we found that the power

transmitted the energy transmitted in the incident wave has got to be the same as the

power transmitted by the reflected wave. So obviously, that makes sense in terms of our



physical understanding also, we expect that the reflected wave should carry no more

power than or no less power also then the incident wave was carried.

So, as a result the integration constant that will feature upon integrating this equation

with respect to tau is going to be the integration constant will be basically 0, and that will

lead  us  to  the  condition  f  equals  to  h  which  is  just  an  integration  of  this  equation,

integrate this with respect to tau you will get f equals to h plus c, but that c has got to be

0 because if c is not equals to 0 then there is an imbalance in the amplitude between the

incident and the reflected wave, and the imbalance in the amplitude of the incident and

the reflected wave is going to lead to an imbalance of the power transmitted between the

incident and the reflected wave that is not possible then there for that integration constant

has got to be 0. So, the moral of the story is again we get f equals to h remember in the

Dirichlet condition we got f equals to minus h right.

Therefore, we see that this time the reflected wave is just a flipped form of the incident

wave and there is no sign reversal. The flipping does take place, but the sign reversal

does not take place if you just look back once more to the Dirichlet condition here there

was  both  flipping  as  well  as  a  sign  reversal,  the  reflected  wave was  coming  in  the

negative  value  coming  with  negative  values  of  pressure.  But  that  was  because  the

pressure had to be negated.  Whatever positive pressures were getting built  up by the

incident values would have been negative by the negative values of the pressure, with the

analysis that was just discussed in this slide we now see that the f and g.

Remember  we  are  talking  in  terms  of  f  and  g  and  f  and  h  interchangeably,  g  we

understand is a flipped form of h right which is basically the way we are understanding a

forward travelling wave, but whether it is h or whether it is g there is no change in sign, f

is identically equals to h and g is a flipped form or a mirror image of h the mirror image

being the vertical axis.



(Refer Slide Time: 11:45)

So, at the end of the day this time I am just drawing a schematic plot. So, what you will

see is that as usual the blue line represents an initial time instant I call that tau 1, this

waveform would have propagated to a later time instant here right which is shown in

solid line. Now at x equals to 0 if there were only an incident wave then you see there is

a slope at x equal to 0 corresponding to the slope of this red solid line right. So, this

cannot be true because the boundary condition x equals to 0 will be violated if there were

only incident wave right. So, to save the day are reflected wave will have to be brought

in to save the day at this stage and what is demanded is that whatever is the slope of this

solid line the reflected wave should create the opposite slope, which means it has to be

symmetric right it has to get the slope which is just the mirror image of the slope of the

solid line. 

So, that is what is shown in dotted lines here, accordingly as this pulse propagates you

will get another reflected wave which is shown in the dotted line. Please again note that

the amplitude at the instant that is shown here is such that the incident wave and the

reflected wave has the same amplitude, it cannot have a different amplitude otherwise

there is an imbalance of energy. So, for the instant tau to that is shown in this red colour

you see that there is a red solid line which corresponds to the incident wave which has

reached the boundary x equals to 0 simultaneously, a reflected wave has also started so as

to ensure that at x equal to 0 the boundary condition is getting satisfied for all times tau

right including the times that has been shown. So, therefore, you see this red dotted line



is taking birth right; and beyond the point it is this remember these dotted line is going to

be a reflected wave which means that it has got to travel backwards. So, therefore, at

further lapse of time this waveform which is shown in dotted lines will travel in the

backward direction on the leftward direction and in tau three instant of time this is the

waveform that  has been shown. At tau three instant  of time this  way form the solid

waveform which was corresponding to the incident wave would have surpassed the point

x equals to 0, and now it is basically in the positive half of the x axis which is basically

fictitious it is not corresponding to any media.

So, the incident wave has just passed from the physical domain to the fixit  fictitious

domain we do not need to track it whereas, the once the incident wave dies its natural

death that means, it has pass this cross x equals to 0, then the reflected wave takes birth

and now the reflected wave will keep propagating in the leftward direction. So, this cycle

keeps on going if you had another termination in this direction. So, now, in this would

have become the incident wave again it would have led to a reflection, and that reflected

wave will become an incident wave again it would lead to reflection. So, that is exactly

what  will  happen  in  a  finite  domain  problem  if  you  really  have  domain  which  is

terminated by 2 boundaries it becomes a proper finite domain problem, but now you may

visualize that a finite domain problem is basically a problem of multiple reflection right.

So, whatever happens with one reflection has been elaborated to you in great details, you

should be able to visualize that a finite domain problem in 1 d will basically involve 2

such boundary conditions and associated with each of this boundary condition there will

be a reflection that will induced. So, that is about reflection from different kinds of plane

waves.  So,  now,  we will  make  quick  transition  rather  from plane  waves  will  go  to

spherical waves; you may think why I will be not dealing with cylindrical waves, it just

happens  to  be  cylindrical  waves  a  little  more  complicated  in  terms  of  mathematical

requisites, it will involve certain things like bessel functions which I do not wish to get

into right now, may be later as a part of assignments one can think of such problems, but

essentially you will get the idea that what is the difference between waves in 1 d and

waves in higher dimension, and that will be quite adequately elaborated by this analysis

of spherical waves.
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So,  till  this  point  we  were  actually  looking  at  a  simplified  version  of  this  three

dimensional wave equation, where we said nothing changes along y and z plane along y

and  z  plane  it  depends  only  along  the  x  direction;  so  that  means,  the  wave  is  just

travelling within either a duct or even in three d it travels in such a fashion that along y z

plane, along the entire y z planes particles which are lying at different y z planes will

have exactly the same propagation characteristics, exactly the same pressure, exactly the

same velocity and so on. So, that is why we were able to simplify the mathematics from

p d e or from p d e with the three variables in space and one variable in time, we were

able to reduce the problem with one space variable and one time variable and from there

on we saw that the solutions were pretty simple. So, we will do similar treatment now for

a three dimensional wave equation, and in particular we will look at spherical waves. 

So we will take this entire wave equation in its entirety,  but since we are looking at

spherical waves, spherical waves as the name suggests this time particles which lie on a

spherical surface are supposed to behave in an identical fashion. Just like plane waves

are waves wherein particles which lie in one plane have the same pressure same velocity

same impedance and so on and so forth. For a spherical wave the simple definition of it

would be particles lying on one spherical surface would have a completely the same

characteristics. So, therefore, it is worth looking at this equation in spherical coordinates

because we are finally, by the very definition of spherical wave we want to look at all

particles  which  lie  on  a  spherical  surface.  So,  we  will  make  a  use  of  the  spherical



coordinate systems which is r theta and phi. So, in r theta phi or spherical coordinate

systems will open up this laplacian and I must just give you a quick drawing of what are

these r theta phi variables. So, the variables would be in this fashion. So, this is r, this is

phi and this is theta. So, this is my r theta phi. So, with this spherical coordinates if you

look  at  any book on vector  calculus  you can  look at  (Refer  Time:  19:38)  book for

example, in any book on vector calculus you would be able to see how the laplacian in

spherical coordinates is derived I have just picked up this formula, but if you wish you

can just verify that it is true. So, this is the formula for laplacian as expressed in spherical

coordinates, please note that the derivatives that appear are all second order. 

So, this part of it is common between Cartesian systems and any other systems. So, del

square  operator  is  a  second  order  operator  and  therefore,  it  features  second  order

derivatives  all  of  this  derivatives  are  second order  right.  But  now we will  invoke a

physical argument to make some deductions the physical argument is this, when we said

that spherical wave by definition are waves where in, you do not expect any changes for

all points which are lying on a spherical surface, which means for all points which have

the same r, but maybe different theta and phi values. 

For all those points you do not anyway expect any change so therefore, the physics of the

process  tells  us  that  there  is  absolutely  no  changes  associated  with  theta  and  phi

variables; just like in plane waves we said since all particles lying on a plane y z will

have identical characteristics which mathematically implied that all the derivatives with

respect to y and z is got to be 0. In identical fashion we can now argue that since in

spherical  waves  we are dealing  with  the  condition  that  all  the points  on a  spherical

surface has got to be having an identical behavior.  So therefore,  nothing will  change

across the theta variables or across the phi variables. 

So, accordingly the derivatives with respect to phi and theta will be set to 0. So, this is

what we will called as a radially symmetric solution, the only variable which will have

any role to play or only variable for which the things the pressure values will change

based on which the pressure values will change is the radial variable. All points at the

same radial value will have identical pressure value will have identical velocity values;

whereas different points which have different radial value will have a different pressure

value also. So, therefore, we will simply set these partial derivatives with respect to phi

and theta to be 0 and when you do that these 2 last 2 terms are getting killed right, the



last to terms involves derivatives with phi and theta, but now because of our physical

argument based on the reasoning’s of spherical waves we can rule them out, because at

this point we are interested to study spherical waves.

By the way one easy way to visualize spherical wave is  that  if  you take a spherical

balloon add think  that  spherical  balloon is  like  you know it  is  pulsating  it  is  like  a

football pump where in it will sort of breath in and breathe out right. So, that is called the

pulsating  sphere  problem it  is  a  very  classical  problem in  acoustics,  will  solve  that

problem in great details, but at this point for your visualization just contemplate this idea

that there is a sphere which is breathing in and breathing out. 

And as it is breathing in and breathing out it will force the air outside this sphere and it

will  set  up  a  spherical  wave  right  and  easier  analogue  probably  in  2  dimension  is

throwing a stone in pond it  that sets out cylindrical waves because those are surface

waves those do not travel actually to the depth of the pond it just travels on the surface.

Where as a spherical wave will actually travel within the entire volume of the air that is

contained in the space, and it will it may be set up for example, when you have a sphere

which is breathing in and breathing out. Now getting to the mathematics of it, so the

wave equation we have reduced it in the following form the laplacian of p is just the left

hand side of it is just this much and the right hand side remains as it is.

Now quickly we can look at how things can be simplified at this point. So, what we have

is the following.
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One by r square let us look at the formula 1 by r square del del r of r square del p del r,

del del r of r square del p del r, that if you do little bit of simplification we lead to the

following 2 r del p del r, plus r square del 2 p del r 2 and this has to be equal to del 2 p

del tau 2. So, what we will do is we will push one of this r that is sitting here along the

other side and make it p times r, remember del r del tau both r and tau are independent

variables that is going to be 0. Therefore, one of these r squares will push it on the other

side add that should be 1 by r, 2 by r, del p del r plus r square del 2 p del r 2 right. So, we

started with the equation this is equals to del 2 p del tau 2, and in the next step what we

did is we pushed one of this r sitting inside r square on to the other side and we convert it

this into a variable p times r, and this in the next step we could write it as 2 times del p

del r plus r times del 2 p del r 2, that has to be equal to the second time derivative of the

quantity p r. 

So, now, the left hand side also is equal to del 2 del r 2 of p r let us look at this quantity

del 2 del r 2 of p r is del del r of del del r of this quantity p r. So, del del r of p r comes

out as p plus r times del p del r, simple product rule that is I first take the derivative with

respect  to r  that  that  is  just  identically  1.  So,  p remains  as it  is  and then I  take the

derivative with respect to p. So, then I get a del p del r and then I have to take del del r of

del del r of p r, and that has been already calculated. So, it is del del r of p plus r del p del

r right the first term is easy that is just del p del r, the second term is again having a cross

between or a multiplication between r and del p del r.



So, we will apply the product rule will first take the derivative with respect to r that is

just 1, so we will get another del p del r plus r times del 2 p del r 2, that is going to be 2

del p del r plus r del 2 p del r 2 right which is exactly what you see on the left hand side

of this equation. So, I can write this as del 2 del r 2 p r is del 2 del tau 2 p r. So, I have

actually brought this spherical wave problem if you realize what I have done is that I

have simplified this into a form where it now reads like a one dimensional plane wave

equation, but the variable is not p the variable is p times r. So, I can simply say that this

is identical to plane wave equation where in the variable p r plane wave equation was in

the variable p, but this is the equation of this spherical waves happens to be identical to

the equation of plane wave, but with the variable of interest being transform to p r right. 

(Refer Slide Time: 29:39)

Therefore, the solution of this equation should be just like the plane wave solution but on

the left  hand side it  is p r.  So,  the solution of the above equation is identical  to the

solution of plane wave equation with p r instead of p. So, accordingly p r this time would

be f of x plus tau plus g of x minus tau. I do not need to work out this part of the solution

because this has already been derived.

Accordingly p which is our final variable of interest sorry I should not give here x here,

the variable of interest here is r right this is in terms of r and tau not x and tau. Therefore,

this should be r. Therefore, the solution of the above equation is identical to the solution

of the plane wave equation with variable p r instead of p, and p r this time will have the



solution f of r plus tau plus g of r minus tau, which in other words means p is f of r plus

tau plus 1 by r g of r minus tau. As usual the interpretation of f and g remains identical, it

is this wave is what we will call as a backward wave, but this time backward means it is

radially inward it is not leftward. Leftward meant x is going in the negative direction or x

is becoming smaller if you might. So, think it. So, this is associated with the same idea,

but as that is that as time progresses the waveform goes into smaller values of r.

So, that that basically means that it is a radially inward wave, where as this g of r minus

tau has the same characteristics as g of x minus tau, g of x minus tau is a forward wave

by forward wave what we meant was as tau goes higher the waveform goes to higher

values of x right. So, accordingly g of r minus tau would be interpreted in the following

manner that as tau goes higher the values of r also will be high if you are looking at one

if  you are  looking at  the  surface  which  has  got  to  be  at  the  identical  values  of  the

response. 

So, this is going to be an outward travelling wave radially outward travelling wave and

this  is  probably  easier  for  you to  visualize,  if  you  have  a  pulsating  sphere  in  open

atmosphere and for a moment you think that you know even the ground is not there it is

it is something like this that you have taken this football mid air and then this football is

pulsating right. So, in that case it is going to lead to radially outward waves which will

keep on expanding because the space is there to expand. If you keep the football just one

meter above the ground and the football  is asked to undergo a pulsating motion then

what will happen is that, initially these spherical waves will come out, but this spherical

waves will  hit  the ground, which is  located just  one meter  ahead right or one meter

below, in that case once it  hits the ground then again transmits I mean there will  be

reflections which will started and you will have to deal with them separately. 

So, at first glance we are going to talk about the situation where there is only a travelling

wave right. So, this radially outward travelling wave is what you can easily visualize as

the waves that are created by the pulsating motion of any sphere. Radially out inward

wave may appear a little bit counter intuitive, but then the interpretation should be idea

should not be too difficult if you realize that there cannot be an outward wave alone, the

mathematical solution cannot be completed with just the outward wave for all possible

boundary conditions.



For example, let us consider a spherical room if you have a spherical room and within

hear you have a pulsating sphere and this pulsating sphere will cause spherical waves to

be generated all that is fine right. But at sometime this outward spherical wave will reach

the boundaries of the room which is this right and because you have to let say enforce a

certain boundary conditions this room could be rigid or this room could have soft, the 2

extremes that is Dirichlet or Neumann condition because the outward. Finally, spherical

the outward travelling wave will have to hit the boundaries of the spherical room and

again to enforce the boundaries of that spherical room there has to be a reflected wave

which has to get generated.

So, after sometime when these spherical waves reach this spherical boundaries of the

room there has to be a reflected wave that will be created, and this reflected wave has to

travel inwards because the g function is the incident wave and if the g function is the

incident wave it will lead to an f function which is the inward travelling wave or the

reflected wave. So, there is no escape that if you have a boundary condition you will

have to deal with the reflected wave, and that reflected wave is basically the brought out

to satisfy the boundary condition right. 

So, this is sort of one theoretical way in which you should feel convenience that this

inward  travelling  waves  also  have  to  be  there  as  a  part  of  the  solution,  but  again  I

reiterate if you are dealing with the domain which is completely infinite as I said that you

are dealing with let us say at most propagation of sound as this aeroplane is travelling in

mid air right then it is virtually sound propagation in an infinite domain right. So, there

you do not need to consider one of these waves the inward wave is not there its only the

outward wave if wave is basically 0 right, but the general solution of the wave equation

must contain 2 components f and g and it is so happens that one of these components is

the outward wave and the other component is the inward wave. 

In totality both the components have to be present as a part of mathematical solution,

there will be applications where one of these waves will not be there the inward wave for

example, will not be there in case that I have just talked. So, that is all right, but the

mathematical  solution  must  be  a  both  of  them and  physically  both  of  them will  be

present  if  you  are  talking  about  a  bounded  domain  right  things  will  get  really

complicated if we start thinking about what happens as to these spherical waves if it right

to be there in a rectangular or a cubical enclosure right then you have to deal with all of



this  reflected  waves  will  the  reflections  will  happen  at  different  times,  you  have  to

basically keep tracking those times.

This is exactly what is done in a ray tracing algorithm, but we will not get that far we

will stick with the basics at this point of wave propagation. Another point of very stark

contrast between the spherical waves and that of plane waves is in the appearance of this

1 by r factor. The 1 by r factor denotes that the pressure is not going to be constant as it

propagates, right for an outward travelling wave as has been shown by this black lines

these black dotted lines denote the outward propagating wave you because there is a

factor 1 by r sitting as of a multiplicative factor on the g function, it means as the wave

propagate  outwards  the  radius  vector  increases  and  as  the  result  it  will  keep  on

decreasing in its amp amplitude. 

So, that is what is called attenuation of waves in higher dimension, this is as I said in

stark contrast to the plane wave propagation situation in the plane wave propagation you

saw  that  the  waves  remain  or  waves  propagate  at  the  same  amplitude  there  is  no

difference in propagation there is no difference in amplitude as the wave propagates, but

here you will see that for the outward wave as it is traveling outwards the associated r

value increases and 1 by r value thereby decreases, but since this g function is getting

multiplied with 1 by r value, you are going to get a drop in the pressure value. It is the

other  way  around  for  the  radially  inward  wave;  the  radially  inward  wave  as  it  is

travelling inwards, the r value is decreasing and as the r value is decreasing 1 by r value

is increasing. 

So, the associated with the radially inward wave you may think that it is actually the

amplitude is building up, to bring out emphatically at this point of time is this that in

contrast to plane waves the amplitude of the waves in spherical in the case of spherical

waves is not constant rather it is changing. Even you may think that why is it that the

acoustic  pressures  are  decreasing  for  the  case  that  you  have  an  infinite  domain

propagation, as I said for an infinite domain propagation you will only expect a radially

outward wave, but then again the question arises that even for such a radially outward

wave is it physically justified that the wave amplitude continuously decreases, because

you may believe that if the wave amplitude decreases the energy decreases and there by

the law of energy conservation of energy is violated, but that is not so. 



Because the wave amplitude does decrease, but you have to understand the wave spreads

over a larger region. As the wave is spreading over a larger region therefore, the wave

amplitude is decreasing in case of the outward wave propagation right. You can have a

similar interpretation for the in inward wave also, as the wave amplitude is increasing

because now it is going to traverse within a region of space which is smaller because if

you look at let say this region this magenta portion, it is a large area at this instant of

time. At a later instant of time let us say the wave has reached here, now this spherical

surface area is smaller. 

So, the wave has now sort of got concentrated into a smaller area of surface area and as a

result it is perfectly feasible that it will build up its amplitude within that smaller surface

area right. Similarly in the case of outward wave if I look at any initial instant where the

wave was located right here where I am solidifying the dotted lines, it is occupying a

small area right? Now at a later instant of time when the wave has travelled a certain

distance radially outward it is occupying a larger area which is this line which I have just

solidified. 

So, since the wave is now spread over a larger area in other words the amplitude has got

to decay right. So, these calculations will again come back to when we do the intensity of

the waves. So, we will return back quickly now to the slides and what we have done is

that we have simplified the spherical wave equation into this form which is just the plane

wave in the variables r and tau, but the unknown variable being p r instead of p alone. 

So, that we have shown is having a spherical wave solution of this kind, and we have

talked about various physical aspects of this spherical wave solution. So, here we will

like to stop for the today’s class what we will do next time when we will meet is that

from there on we will take another very crucial assumption into our (Refer Time: 43:40)

which is  the harmonic assumption.  Till  this  point of time we have dealt  with waves

which are perfectly  arbitrary in terms of its temporal  nature,  we have not posed any

restrictions on the temporal behavior or the time domain behavior of these functions p

right  what  we will  do starting  from next  class  on  words  will  invoke a  very crucial

assumption and we will invoke that dictated by physical considerations. 

Dictated by physical considerations we will find there are lots of problems which will

arise in acoustics which can be very simply dealt with where wherein we can reduce the



generality  of  the solution  make it  a  little  more specific  instead of  having arbitrary  f

function and g function we look for functions of very specific form in particular we look

at complex exponential forms of this f and g, because that will lead as to what is called

the harmonic or steady state assumption in acoustics. So, that is what is lined up in the

next few classes.

Thank you for the day.


