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In the last time we talked about the D’Alembert solution of the wave equation. So, that

was derived to you.

(Refer Slide Time: 00:22)

Remember, this type of solution is applicable for infinite domain problems, wherein the

spatial domain extends up to infinity and for any specified time instant you have both the

condition for p and del p del tau which basically stands for time derivative is known. So,

using the derivation process that we went through in the last class, we are able to argue

that this is the total solution that we will get.

So, we see that the solution depends not only on the initial condition on p, but also on the

derivative time derivative of p, and that is obvious because you have a second order

partial differential equation both in time and space. So, therefore, in this form we could

also do a little bit of further simplification if the function c is define to be the indefinite

integral of the function b, remember this is a definite integral where the limit have been

taken from x minus tau to x plus tau, x minus tau to x plus tau is the integration limits.



So, therefore, what you have here is that c is the indefinite integral as per the substitution

and what we have here is this what is incorrect is this plus sign it has to be c of x plus tau

minus c of x minus tau.

(Refer Slide Time: 01:55)

So, I will just write this once more in my notepad here. So, C of x if it is defined as the

indefinite integral of b x d x, then p x comma tau the total solution which was derived as

half of a x plus tau, plus a x minus tau plus half of c x plus tau, minus c x minus tau

right. So, I will make that correction here in the slide this part of it is mistake, but let us

try to understand what is the physical implications of this  solution;  please recall  that

functions  where  in  the  argument  is  x  plus  tau  simply  means  that  it  is  a  backward

travelling  wave  solution.  So,  these  two  components  are  backward  travelling  wave

solutions.

We know that the general solution of the wave equation bears two components 1 which

is forward traveling and the other which is backward travelling. So, we directly see the

backward  travelling  wave  component,  we  also  see  the  forward  travelling  wave

component which is this. So, this should not be any surprise that the D’Alembert solution

is actually not giving you any new kind of solution, it is simply specifying that function f

and g; remember what we did earlier is that we simply said that the partial differential

equation has a general solution of the form f of x plus tau and g of x minus tau, what we

are doing now is that we are specifying what f and g functions have to be.



So, in other words this f and g functions are to be related to the initial conditions. So,

these two taken together is basically f of x plus tau. So, f of x plus tau is basically half of

a x plus of tau plus half of c x plus tau, and the other part the forward travelling wave is

g x minus tau the part which includes the argument x minus tau. So, we see that how

from the initial conditions we can break it down, break down the response in terms of

two waves the forward wave and the backward wave; let us first considered a special

case.

(Refer Slide Time: 04:45)

So, consider a special case with b x equals to 0, in that case what happens to the solution

p x comma tau is half of a x plus tau plus a x minus tau is the total solution, which what

does it mean; that means, at tau equals to 0 if we have a certain wave from. So, this is a

of x at  tau equals to 0 right this is the initial  condition that has been specified what

happens at a latest time it will bifurcates into two parts half the amplitude it will travel in

the forward direction and with half the amplitude it will travel in the backward direction.

So, I will just change the colour to indicate what happens at a later time. So, at a later

time you will have the same waveform, but with half of its amplitude. So, I better be

careful. So, you this wave which is shown in red will now split out in two directions each

with half the amplitude. So, whatever is the height here let us says H the height will be H

by 2 and the height here will be H by 2. So, these make perfect sense because both the

directions  are  asymmetry.  So,  whatever  is  the  initial  condition  that  initial  condition



enforces two waves going in opposite direction with half the amplitude of the initial

condition, the same can be proved for the other special case where we considered a x

equals to 0 and b x is non zero.

B x means non zero means c x will be non zero and again you will see two waves we

will separate out right. So, therefore, for both the conditions whether it is in terms of the

pressure or the derivative time derivative of pressure, you are going to say that each of

them will lead to two waves which will split out; just there is the issue of negative sign

which essentially means. Though for the initial pressure condition the two waves will

have the same amplitude even in terms of sign whereas, for the c waves you will see the

forward wave and the backward wave will flip in sign. So, what we see now is that the

D’Alembert is given by the above formula which is written here.

(Refer Slide Time: 07:27)

So, considering a point x 0 tau 0 we identify that these red lines are the characteristics of

1 kind,  this  is  the  characteristics  for  the  forward travelling  waves  and these  are  the

characteristics for the backward traveling waves drawn is blue; what we had earlier in

our discussion of just wave solution we have identify that what if it is a forward wave

whatever happens at the x 0 tau 0 is same as whatever happens at this point which is on

the same red line. Similarly if it is a backward wave all points on this blue line will have

identical response, but that was under the consideration that you only have a pressure

based condition you do not have a derivative of pressure with condition.



So,  if  you look back now at  the  complete  general  solution  as  given by D’Alembert

solution you figure out that what happens at this point x 0 tau 0 depends on let us say this

point which now can be identified as x 0 minus tau 0, because this is a 45 degree line and

similarly this is also a 45 degree line just that the orientation is opposite between the red

and the blue. So, what happens at let us say 1 comma 1 point will be dictated by the

initial condition of a at 1 minus 1 which is 0 and 1 plus 1 which is 2.

So, 1 minus 1 happen to be this point and 1 plus 1 would happen to be that point. So, we

are tracing the response at a given point in or at any point in space time, to some other

point at time t equals to 0 or tau equals to 0. So, what happens at this x, x 0 comma 0 is

exactly the same as what happened at the initial  time tau equals to 0, but at x value

corresponding to x 0 minus tau 0 and at x value corresponding to x 0 plus tau 0. So, this

is exactly the same as what we had figured out in our analysis of characteristic solution

solutions born out from the characteristics curves, when we analyzed forward wave and

backward wave in isolation.

But now we are just combining the two solutions of forward wave and backward wave

we still see that our previous analysis holds for this part which is in terms of a, but look

at that new part that we have got which is dependent upon the initial conditions in terms

of the derivative; b is obviously, coming from the fact that at the initial condition there is

crucial condition given in terms of specification of time derivative of p that is b, but the

solution at x comma tau does not depend on b over the entire values of x, it depends

upon the values of b only within these two endpoints.

So,  whatever  are  the  endpoints  for  a,  within  these  endpoints  if  you  perform  the

integration that integration region over b will obviously, have some dependency over the

solution at p at x comma tau right. So, therefore, of at x comma tau will depend. Firstly,

on the boundary points of this triangle, but it will also depend upon this entire interval

within this region. So, wherever the two characteristic curves crossover the x axis, the a

part  of  the  solution  will  depend only  on  the  boundary points,  but  the  b  part  of  the

solution since it is an integral, but the integral is a definite integral it is integration within

this interval where the red curve and the blue curve crosses the x axis.

So, accordingly this interval is identified as the domain of dependence or it is the initial

condition in this interval which happens to influence the solution at x comma tau or x 0



comma tau 0. You whatever happens at this region or whatever happens at this region it

is not going to affect what is the response at the specified space time point x 0 tau 0. So,

that is the concept of dependence; just as an example p 1 comma 1 depends on a 0 I

should have I should have said a 0 and a 2 because a depends upon only 1 argument.

So, the solution at 1 comma 1 depends on a 0 I will correct this to a 0 and a 2, that is

these two extreme points and it  also depends upon the values of b x over the entire

interval  0 to 2,  it  does not depend only on the boundary points,  but it  also depends

entirely  on  this  interval  and  as  such  this  interval  will  be  called  as  the  domain  of

dependence of the solution.

So, the domain of dependence comes from the fact that the solution at this point depends

on whatever is the initial condition specified in this interval right. So, therefore, for any

particular x 0 tau 0, we realized the waves solution depends only on a particular segment

of the initial condition that is x lie between x 0 minus tau 0 and x 0 plus tau 0 it does not

depend upon anything else.  So,  therefore,  this  segment  is  identified  as in  domain of

dependence.

So, the domain of dependence corresponding to tau equals to 0 is or the initial  time

instant is identified to be this interval; similarly at any other positive tau the domain of

dependence will progressively be the region in between the red and the blue curve. As a

result the totality of all extra points which will influence the solution at x 0 tau 0 is given

by this triangular patch and this is called domain of dependence. There is an equivalent

concept which I would just like to touch upon which is domain of influence.

So, in a similar sense whatever happens here at this point will be influencing the solution

in between this triangular region the upper triangular region. So, we will say that the

domain of influence let us say of this point x 0 tau 0 will be this upper triangular region

the vertex of which will happen to be x 0 tau 0 it is just the other concept. The solution at

x  0  tau  0  depends  upon  everything  which  happens  on  this  green  triangular  patch,

similarly whatever happens at x 0 tau 0 will influence everything that is lying in this

upper triangular patch that is called the domain of influence. So, this concept of domain

of independence and domain of influence is a very helpful concept in analysis of wave

solution that was about domain of dependence and domain of influence.



(Refer Slide Time: 15:08)

We will now start talking about boundary conditions till now we were talking about the

wave solution over an infinite domain,  and as such we circumvented the question of

boundary condition. So, to have the question of boundary condition into our analysis we

will firstly need to construct a bounded domain. So, accordingly before we move to a

bounded domain let us consider a semi infinite domain. So, this time the domain is not

extending from minus infinity to plus infinity, rather it is extending from minus infinity

to 0. So, it is what is called semi infinite domain; and the occurrence of semi infinite

domain is actually pretty natural in the case of acoustics.

If you think carefully when we are worried about acoustic wave propagation in the open

space, it is basically a semi infinite domain although in three dimensions because one

surface is basically the ground surface which forms the boundary, and if you assume that

the ground surface is fairly rigid that is a good boundary condition and, but other than

this bounded surface which happens to be the ground on the upper side it is completely

open. So, there is you are basically dealing with a semi infinite condition where in on the

in all surfaces excluding the boundary is basically at infinite right. So, you are basically

considering a domain which is like a hemisphere,  where in the diametral  plan in the

ground, but the spherical surface corresponds to a surface at infinite a spherical surface is

basically extended to infinity.



So, therefore, semi infinite domain at actually naturally occur in the case of acoustic

wave propagation, we are just going through the semi infinite domain in the case of one

dimensional propagation, but we will come to the semi infinite domain for 3 dimensional

wave  propagation  also  in  due  course.  So,  we  will  need  to  understand  the  issues

associated with semi infinite domain pretty carefully as we go along. So, this is the case

where we take the bull by its horns and we do the analysis for the semi infinite special

domain x equals to minus infinity to 0.

So, basically 0 forms a boundary of this domain, because 0 is where the special domain

has terminated at 0 you must have a certain boundary condition. Infinity obviously, is far

away and you do not need to worry what happens, but that will also come in due course

that what is the boundary condition at infinite, but at present we are treating infinite is

basically a part which is far away and therefore, there is no question of any boundary

condition at plus or minus infinite, but where it is getting terminated is the point 0.

So, the point 0 must have a boundary condition in case we wish to solve this partial

differential  equation.  For  second  order  wave  equation  we  will  have  two  types  of

boundary conditions which will be applicable at the point x equals to 0; because the point

x equals to 0 is a boundary. So, therefore, there will have to be a boundary condition and

there can be two types of boundary condition, one is the Dirichlet or kinematic boundary

condition where you specify the pressure value to be equal to 0 right this happens for

example, in case of a free surface.

Suppose you are thinking about acoustic wave propagation through water right let us say

there is a submarine and submarine is making some noise right the question is how much

of this noise escapes from the water let us say to the air right, but at the free surface

between the air and the water the atmospheric pressure is 0. So, atmospheric pressure

being zero is exactly this boundary condition right same thing will happen with what we

call an acoustically soft surface where the acoustic pressure is taken to be 0.

So, there will be absorbers which of different kind and some of these absorbers can be at

least approximated to be a soft surface right where the pressure basically turns 0, this is

called  the  Dirichlet  or  kinematic  boundary  condition,  the  Neumann  or  the  natural

condition is going to be the boundary condition in terms of the derivative; this time the

derivative is with respect to space not respect to time. When you had initial conditions



the initial conditions could be in terms of a specification of p or the time derivative of p

when you have boundary condition it  has to be a specification of the p or the space

derivative of p evaluated at the boundary. So, del p by del x evaluated at x equal to 0 for

all time tau has to be specified and it can be 0 or sometimes it can have a non zero value

also, but let us take this case of 0 spatial derivative.

But then if you realize what is the physical implication of this boundary condition. If you

look back at the Euler equation, Euler equation says that the acceleration is equals to the

gradient of the pressure. In one dimension the gradient of the pressure is basically dell p

del x. So, del p del x being equals to 0 essentially means the acceleration at z equals to 0

as got to be 0 for all time, if the acceleration is 0 for all times velocity is 0 for all times

and I will not remember we are dealing with the situation where the articles if at all it has

motion it has to be oscillate.

So, if acceleration is 0 there are two situations either the velocity is constant or it is dead

0 actually velocity being 0 is a special case of velocity being constant the constant being

equal to 0, but the constant cannot have a non zero value, because if the velocity as a

constant value for the particle that essentially means the particle is traveling in some kind

of rectilinear motion.

As we said in acoustics we are going to deal with only situation where practices can

oscillate about its mean position it cannot have a bulk motion. So, velocity equals to

constant basically for acoustics boils down to the fact that velocity has to be equal to 0

because  if  it  is  anything but  0,  it  imply  a  bulk motion  which  is  ruled out  from the

acoustics constant. So, therefore, when we have pressure derivative the special derivative

or pressure to be equal to 0, this in turn implies the acceleration to be equal to 0 and the

acceleration  equals  to  0  means  velocity  equal  to  0,  and  which  in  turns  means

displacement equals to 0.

So, therefore, this boundary is a rigid boundary or a hard surface boundary. It is just

complementary to the other boundary condition where we talk that this is a soft surface

boundary whereas, the Neumann boundary condition is applicable for a rigid or a hard

surface  right  and  this  is  exactly  what  we  will  encounter  in  very  very  practical

applications as I said in most cases when you have a single sound source mounted on

floor and the floor can be assumed to be floor or the ground can be assumed to be fairly



large and it can also be assumed to be a fairly hard surface; that means, the ground does

not start vibrating because of the sound that is being emitted. So, that is the boundary

condition corresponding to the Neumann boundary condition.

So, now the question is what is the complication that is introduced by this boundary

condition? As I will show you because these two boundary conditions have got to be

maintained f and g now have got to be related. Remember f is the backward traveling

wave solution and g is the forward travelling wave solutions, in our previous analysis we

say f and g can be arbitrary any f and any g can is possible, but now we will soon find

out that if f and g are left as arbitrary then this boundary conditions cannot be satisfied.

So,  this  f  and g have got  to  be interrelated  and the interrelation  comes through this

boundary condition. So, therefore, what we are saying is that if there is a forward wave

in this condition where there is a boundary condition specified at  x equals to 0 then

necessarily for the enforcement of this boundary condition a backward wave must start

right and that is what I wish to elaborate to you in this talk.

So, what we will do we will take a very simple example we will first consider a forward

travelling wave g of x minus tau and it is incident from the left half space; that is from

minus infinite a forward travelling wave is coming. A forward travelling wave as we now

can be expressed in the form of f or x minus tau, g being just an arbitrary function it

could be virtually  anything.  So, as I  said what  I  wish to  the objective is  to actually

convince  you  that  in  order  to  enforce  this  boundary  condition  whether  Dirichlet  or

Neumann  a  reflected  wave  must  be  generated,  there  is  no  way  that  this  boundary

condition can be enforced if you keep sticking to only one wave the other wave will have

to get induced and there is also a special form that has to be enforced in the backward

wave, and this backward wave that will be induced by this forward wave will be the

reflected wave.



(Refer Slide Time: 25:05)

So, let us look at it in a step by step fashion. So, what I have shown here in blue is the

incident wave as a function of space. So, this is a snapshot in time. So, at the time tau

equals to 0 you have this nice triangular wave which is what we have been dealing with

in the different examples. So, at tau equals to 0 you have this condition, remember our

domain actually terminates at x equals to 0, but mathematically there is no problem in

contemplating that the domain I means the for the purpose of depiction in this graph I am

still  insisting  that  it  is  going to  plus  infinity,  but  the  physical  part  of  the  domain  is

restricted from minus infinite to 0, that is physical beyond x equal to 0 that we wish to

consider, but none the same there is absolutely no problem in plotting and accordingly

this is just a 0 plot. So, you should not get perplexed that why is it that you are having

special domain which is in the positive side also though we said that we are interested

only in the negative half of the real line.

So, at x equals to 0 as I said that you have sorry a time equals to 0 tau equals to 0, you

have this initial wave which is from where the simulation start. As you see this wave will

reach the point x equals to 0 after how much time? After 9 units of time in tau because

this is minus 10 and this minus 9 and this is 0. So, the distance from here to here is

actually minus 9. So, exactly after and a lapse of 9 units of time this initial profile will

advance in the positive direction to this profile which is shown in red; so, so far so good

absolutely no problem.



So, a tau equals to 9 you have the condition where the pulse or the wave has just reached

the  boundary  right  after  then  the  story  of  reflection  starts;  but  before  we go to  the

reflected wave lets us quickly derive the time history corresponding to this pulse. If we

know that at time tau equals to 0 you have this triangular wave, then at x equals to 0 for

this forward wave alone we could determine the time history as we know this is just the

flipped version of this blue triangle which is going to be this.

So, corresponding to the forward wave at x equals to 0 if you take a sensor and record

the time history of the pressure at x equals to 0 which is what has been done here p 0 tau

then you will see that at tau equals to 9, suddenly the sensor show the response with

decays. So, this is exactly the flipped version of the other triangle.

So, now you can realize that there is going to be some trouble; because at x equals to 0

between 9 to 10 seconds you get to see between tau equals to 9 to tau equals to 10 I

should not say seconds because this is our rescale time between tau equals to 9 to tau

equals  to  10  the  pressure  is  not  0.  We were  interested  to  firstly,  solve  for  the  soft

boundary condition or the Dirichlet condition where the pressure is supposed to be 0; if

you have only a forward wave or nothing else then you readily see that the forward wave

brings out a non zero condition as x equals to 0.

So, it is not possible that the forward wave alone is there in the case where you have a

certain boundary condition to be specified at x equals to 0. So, what is the solution that

nature will take course to? The nature will induce another wave solution and the wave

solution will be such that it will exactly negate this time is history at x equal to 0.



(Refer Slide Time: 29:16)

So, let us look at that. So, the incident wave has created a time history which is as shown

in this solid light right. So, what nature would like to do now in order to enforce the

boundary condition at x equal to 0, at x equal to 0 the condition pressure equals to 0 can

be maintain only if there is a another wave that is created and that wave must have a

corresponding  time  history  which  is  exactly  the  opposite  of  the  time  history  that  is

created by the incident wave. So, if the incident wave has created this time history, the

reflected wave must create the exactly the opposite time history at the boundary point x

equal  to  0.  So,  the  response  due  to  the  reflected  wave  and the  incident  wave must

undergo  a  mutual  cancellation  at  x  equal  to  0,  if  the  boundary  condition  has  to  be

enforced.

So, the boundary condition at x equal to 0 can only be enforced if there is a backward

wave or if there is a reflected wave I should say which will have a corresponding time

history which is exactly the negative of the time history generated by the incident wave

right. And this reflected wave in other words if it gives time history equals to this dotted

line at x equal to 0. Now we can construct that for this time history to occur what is the

snapshot, what is wave profile over space right because we know that the reflected wave

has to be a backward travelling wave right there is an incident wave which is forward

travelling. Therefore, a backward travelling wave has to get generated; we know the time

history at x equal to 0 corresponding to that wave. So, what is left to determine is at time



tau equals to  0 what  is  the profile of this  pressure corresponding to different  spatial

points x.

(Refer Slide Time: 31:19)

So, here is the plot. So, we have already found that what we are trying to do get at is we

are trying to get at a wave such that p 0 comma tau has this profile, if p 0 comma tau has

this profile and if we are sure that it has got to be backward travelling, then p 0 comma

tau will have the same form as p x comma tau at tau equals to 0 or p x comma 0 and p 0

comma tau has got to be the same feature, because a backward travelling wave as we

understood is given by f of x plus tau right. So, the time history plot and the snapshot in

terms of space will look identical.

So, the blue time history plot that you see on the upper graph as got to be exactly same as

the blue snapshot which is the pressure plotted against x, but at time tau equals to 0. So,

this is what this plot it, but please note this analysis, therefore reveals that this profile is

actually there in the positive part, but we have said that our special domain is only in the

negative really axis there is nothing in the positive real axis. So, that is why I introduce

the fictitious domain. So, fictitiously at tau equals to 0 we now contemplative that there

is a reflected wave which is sitting beyond the physical extent of the medium right; it is

sitting here which actually cannot be seen therefore, it is not seen because the physical

extent of the medium as stopped at x equal to 0; you can only see what happens in this

domain you cannot see what happens in this domain.



So, the reflected wave is there sitting at tau equals to at tau equals to 0 it is just that the

reflected  wave  is  like  mathematically  extending  outside  the  physical  extent  of  your

medium  and  therefore,  it  is  not  visible  to  you  physical.  But  then  what  happens

progressively  at  different  times  this  wave  will  start  traveling  backward.  So,  at  each

consecutive instance of time it will move ahead by a unit distance because here I have

shown unit intervals of time. At tau equals to 0 if the profile is shown in blue then at

consecutive tau instance of tau the profiles are shown in red and black. So, at each of

these instances you have this wave advancing in the backward direction, and what will

happen  after  a  certain  time?  After  a  certain  time  because  a  progressive  backward

advancement it will actually cross over this wave.

So, the wave will actually be physically visible to you after it is crossed over and it has

fallen  in  the physical  extent  that  you are looking at,  but  this  is  a nice mathematical

artifact in the sense that you are believing that the wave was always there it is just that

you have it was there outside the physical extent of the body that is why you are not

being able to see it right.

(Refer Slide Time: 34:30)

And carrying down this analogy further what we have therefore, seen is that the this is

the backward wave and this is the forward wave. So, the forward wave or the incident

wave as I told you that a tau equals to 0 it is here at tau equals to 9 it is somewhere here

at 9.5 it is indicated by green, at 10 it is indicated by black.



Now, the backward wave at tau equals to 0 is exactly the flick version of this of this

incident  wave  which  is  what  is  shown  in  blue  here.  Now  what  happens  at  9  this

backward wave has just reached the point x equal to 0. So, the backward wave at tau

equals to sorry the red colour is corresponding 9 the blue colour is corresponding to tau

equals to 0 the legend is not correct the legend has to read as the red colour corresponds

to tau equals t 9 and the blue colour corresponds to tau equals to 0. But none the same at

this point please realize that at tau equals to 0 you have the blue coloured wave, at tau

equals to 9 you have this red profile and exactly at 9 you will see that the incident and

the reflected wave have started meeting each other.

At 9.5 you have the green wave from the reflected side; you have the green wave from

the incident side shown here in. So, actually there is a overlap between the incident and

the reflected wave at an instant let us say 9.5, but please note during this entire course of

event what is happening is whatever is the response that is generated at x equals to 0, due

to the incident wave is getting actually negative by the reflected wave and thereby you

are satisfying the boundary condition at x equals to 0 right and then progressively what

happens for example,  at  tau equals to 10 is  that,  you gets  this  black white  coloured

incident wave which has now actually surpassed the physical extent of the medium and

now the backward wave as fallen completely inside the physical in extent of the media.

So, after the instant 9 what will happen is progressively the backward wave will be seen

and progressively the forward wave will vanish into (Refer Time: 36:58), but the crucial

fact that you should remember is that reflection has been induced because the boundary

condition had to be enforced, that is why when we travel when we analyzed the traveling

wave in isolation we took this viewpoint that out medium is infinitely extended there is

no boundary condition and as a result we did not have to deal two waves simultaneously.

But once you have a boundary and associated with the boundary you have a boundary

condition  then  this  argument  proves  that  you  cannot  deal  with  an  incident  wave  in

isolation, there has to be both an incident and the reflected wave because the incident

wave in isolation will not be able to satisfy the boundary condition, the reflected wave

will  be induced such that  it  exactly  nullifies  the  effect  of  the incident  wave,  and in

totality the incident wave and the reflected wave will create a condition where by the

boundary condition will be satisfied.



So, we will take it from here in a next class we will meet.


