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Kirchoff Helmholtz Integral Equation

Welcome friends to this talk on acoustics and noise control. So, till now we had looked

at. 
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So, the inhomogeneous wave equation is del square p plus k square p is equals to minus

Q. Till now possibly we had looked at situations where the space variable would have

been denoted by the vector x, the position vector x, but here I am changing over my

notation that is for a specific reason which you will be able to appreciate, instead of the

vector x I will call this the vector y. So, just I am interchanging my notation between x

and y. So, pressure at any point y is given as a solution of this inhomogeneous equation.

So, here you must note that the del square in Cartesian coordinate will be given by del 2

del  y  1 square,  plus  del  2 del  y  2 square plus del  2  del  y  3 square.  So,  this  is  the

Laplacian operator. So, this is the inhomogeneous wave equation which we have studied

in some detail, though the solution has not yet been made available to you, and this is

precisely the objective of this lecture. We have also looked at a greens function, and the



greens  function  depends  upon  2  arguments  y  and  x.  So,  the  greens  function  is  the

pressure profile at y, due to a delta type of inhomogeneity which is acting at x. So, that is

why we changed over to the notation where in we used y as the field point in x as the

source point. So, minus delta y minus x that is the definition of greens function.

We also know that by reciprocity theorem greens function has this reciprocal property G

of y comma x is y by y with respect to x is same as G of x with respect to y. That is if

you interchange the source and receiver location in any domain whether unbounded or

bounded, you are going not going to affect anything the formula remains just the same.

So, today what  we will  do is  that  we will  actually  try  to derive the solution of this

inhomogeneous equation one using the greens function.

So, the objective will be to derive solution for one, solution for the inhomogeneous wave

equation  using  greens  function.  And  this  is  done  by  the  following  steps.  So,  if  we

multiply equation one by the greens function itself G y comma x, what we get is the

following. G y comma x into del square p y plus K square p at point y into G y x is

equals to minus Q y into G y x, and we will multiply the second equation with p y. So,

multiply 2 by p y. So, what we will get here is the following, p y multiplied by Laplacian

of the greens function plus K square p y multiplied by the greens function is equals to

minus delta y minus x into the into p y.

Next we will substract these 2 equations, substract and integrate over the volume. So,

when we do that this term these 2 terms are going to get canceled, and we will be left

with the following G y bar x del square p y, minus p y del square G y bar x integrate over

the volume and that will be delta y minus x, p y within the volume plus or minus Q y G y

bar x d V. So, this  is just an elementary calculation,  but we will  make some further

simplification which is why I will copy and paste this derivation this final form in the

next page. 
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So, here we have the relation which we have derived.

So, we will have G y bar x del square p y, minus p y del square G y bar x, the entire thing

is a volume integral we will also bring the other volume integral on Q on the left hand

side with a positive sign. So, therefore, this will be Q y G y bar x d V over the volume

and on the left hand side what remains is delta y minus x p y d V. Remember here we are

doing the calculation wherein the variable is essentially y it is not x it is essentially y. So,

each of these variables of integration is basically on y. So, just to remind ourselves we

can put that y in the subscript here. So, that we do not we are able to appreciate this fact.

Now we can also reduce this volume integral, this is this can be reduced to a surface

integral using the greens function using the greens theorem, and the greens theorem was

discussed elaborately in one of the previous details I am not repeating here. So, using

greens theorem this above volume integral can be reduced to a surface integral which is

given by S y G y bar x. So, the Laplacian will now become the gradient, minus p y again

the Laplacian becomes the gradient and finally, you have to take a dot product with the

outward normal of the surface, and the other terms remains as it is.

Greens function d V over v, and on the right hand side we have to appreciate that if x

belongs to the volume then the right hand side is going to be p of x. So, this is going to

be p of x. If x belongs to this volume, but if x is outside the volume then this quantity is

going to be 0, because just like we had delta functions in one dimension the essential



property of delta function if you recall is f x delta x minus x naught integrated over the

volume is going to be f of x naught, if x naught is within this volume of integration. If it

is not if x naught let me write it cleanly if x naught is within the volume then this is what

the integration should be, and if x naught is not in the volume then this integral should

actually will 0 that is the definition of the delta function.

So, similarly we have in three dimensions now. So, this is this being the digression of

what a delta function property should be. So, if x is chosen to be within the volume

interior to the volume, then this should read as p x. That is no big deal and it should read

as 0 if it is true that x does not belong to the volume, but there is a crucial transition

between these 2 cases, what if x belongs to the boundary. So, you can have x within the

volume. So, let us say this is the volume. So, x can be within the volume x can be outside

the volume or x can be on the boundary. So, it is neither within the volume nor outside

the volume. It so turns out that which may be actually intuitively obvious, but there is a

very  rigorous  mathematical  proof,  but  for  this  result,  but  the  essential  result  is  if  x

belongs to the boundary of the domain of interest, then this integral on the right hand

side is going to read as p x by 2.

So,  this  is  essentially  going to be the right  hand side depending upon where do we

choose x. So, p x can be either if x is on the volume, the right hand side will read as p x

if x is on the boundary, it will be p x by 2 and if its x is on outside the volume exterior to

it then it will be 0. So, therefore, this is the equation which is the grand equation in

acoustic it is called as the Kirchoff Helmholtz equation in acoustics.
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So, this is p x is given by integral Q y G y bar x d V over the volume, will keep putting

that subscript to remind ourselves that the field of integration is essentially the y variable

and in the surface integral we have the following G y comma x, gradient of p minus p

gradient of G y bar x dot with the outward normal n d S again we will put that subscript

y to remind ourselves that this is what it should be for one of the integration variable is

essentially the y variable.

Now, let us try. So, this this equation as I said is called the Kirchoff Helmholtz integral

equation. So, let us see what is the applicability of this equation. If you choose to analyze

the entire three dimensional domain, you do not wish to analyze any bounded domain or

I mean there can be 2 many many cases, lets first consider that you are interested in the

entire three dimensional space, and within the three dimensional space; obviously, there

is some region which is the source of sound and this region could be an aeroacoustic

source or it could be a vibratory source. In this approach what you are going to do is that

you are going to demarcate a certain region, and find this quantity which is basically the

in homogeneity associated with the Helmholtz equation.

So, Q y is basically the strength of the source and since in this approach there is no

boundary. So, therefore,  the boundary integral terms will vanish. So, in this approach

when we are taking the entire three dimensional domain into consideration, p x will be

simply  given  by  integral  of  Q  y  G  y  bar  x  d  V.  Provided  you  know  what  is  the



distribution this is a very useful way in which you can determine the acoustic pressure at

any point. This is usually done for aero acoustic applications where if you know the flow

field and if you know the turbulence, and you have a CFD simulation which accurately

predicts,  the properties associated with the turbulent  flow field,  then it  is possible  to

determine  this  source  distribution  the  strength  of  the  source  Q  y  tub,  it  can  be

determined. Once it is determined the only calculation that is left is to integrate this out

together with the greens function. I have not given you the expression of greens function,

but I will give that to you, it is a very simple expression and once that is done it will the

pressure at any point can be determined.

Next consider to be r to be your region of interest to be in the in the zone which is R 3

minus some quantity V. So, what I mean is that there is a space which is V and you are

interested to know what happens outside to of this space. So, this is a typical problem of

vibro acoustics, you may have a vibrating body and you may be interested to look what

happens exterior to the vibrating body. So, this is exactly the acoustic radiation problem

which appears in the case of vibro acoustics. So, this is called vibro acoustic radiation. 

So, in here the velocity on the surface is known right. So, the first job is to know the

surface acoustic  pressure and towards that  end we appeal  to  the Kirchoff  Helmholtz

integral equation, this integral equation is if x belongs to the volume, but if x belongs to

the boundary, then it will be replaced by p x by 2 as I argued this out. So, p x will be

replaced by p x by 2 if I wish to determine the surface acoustic pressure. So, once I

determine the surface acoustic pressure, I will show you that I can determine the pressure

everywhere else. 

So, p x by 2 is equals to Now, what happens is that? There is no other source of interest

except this vibro acoustic source. So, therefore, the Q y term associated with this volume

the shaded volume in particular not the V volume, the volume exterior to it the shaded

volume and in this case the normal will point inwards because the volume of interest is

the shaded volume. So, when you have this condition Q y will be 0 because there are no

other sources in the shaded volume which is the volume of interest. So, because Q y is 0

therefore, p x by 2 is replaced by is going to be evaluated by just this surface integral

equation, which is del p dot n minus P on the surface gradient of G y bar x dot n d s.



Now, note that from Euler equation we know that I omega rho 0 U n where the part U n

is the particle velocity, U n is the normal particle velocity, i omega rho 0 U n must be

equal to minus del p del n which is also minus gradient of p dot n. So, typically the vibra

caustic problem the vibration analysis is first done and you know what is the vibration

velocity on the surface. So, from the knowledge of the vibration velocity on the surface

U n is known and therefore, del p del n is known. So, del p del n is known the greens

function is known I have not give you the given you the expression, but I will give it to

you before the conclusion  of  this  class let  us  say the greens function is  known. So,

therefore, the only unknown here both in the left hand side and the right hand side is

pressure on the surface.
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So, in this integral equation the only unknown is the only unknown is the pressure is the

surface acoustic pressure. So, at least you have a well posed problem in the sense that

you have only one unknown to be determined; obviously, you cannot expect that this can

this problem can be solved in pen and paper, rather it has to be solved numerically, but

you must understand that in this first step we are we are determining the surface acoustic

pressure numerically, in this equation there being only one unknown which is the surface

acoustic  pressure,  you  can  adopt  a  discretization  procedure,  and  the  discretization

procedure that we choose in the numerical process which is called boundary element

method is go to discretize this pressure variable exactly the same way, in which the finite

element method does for structural simulations and as a result the only unknown that will



be left over is the pressure variables, and that pressure variables can be solved for and at

the end of the day you will have a pressure at the boundary.

Please note also from this integral equation what is evident is that you need to know only

the velocity conditions at the boundary, you do not need to know what happens interior

to the boundary interior to the volume, you because this is a boundary integral equation.

So, accordingly when the discretization takes place the discretization has to take place

only on the boundary,  you need not discretize the volume.  So, despite  being a three

dimensional problem this shaded region is the three dimensional region excluding this

volume v. So, this is definitely a three dimensional region, but because of the form of the

Kirchhoff  Helmholtz  integral  equation,  which  we  have  seen  and  because  of  this

condition that Q y that there are no sources within the region of our interest therefore, Q

y has gone 0. So, therefore, there are no volume integrals that are left with, and you are

left with a greens function a surface integral of the greens function.

So, therefore, what we have is that we have a well posed problem which can be solved

numerically, and the numerical procedure essentially is a methodology is a methodology

by which you discretize this boundary, and once this boundary is discretized you are able

you should be able to get the solution of the pressure at discrete points on the boundary.

So,  essentially  numerical  methods such as  b e  m such as  boundary element  method

discretize is the surface integral and computes the surface acoustic pressure. Once the

surface acoustic pressure is available pressure at any point can be calculated very easily

using  the  Kirchhoff  Helmholtz  integral  equation,  again  we  will  appeal  to  the  same

equation essentially, but without this factor of half. So, p x will be given by exactly the

same quantity G y bar x p gradient of p minus p into gradient of G y bar x dot product of

with the outward normal, and this is a surface integral. Note that Qy is going to be 0

because we are not considering any source which is outside this vibrating body.

So, therefore, as a result of this please note del p dot n is known. So, I should have taken

the dot n inside. So, del p dot n which is related to the surface velocities is known. So,

we need to know the del p dot  in  on the surface that is  already known because the

vibration velocity on the surface is known through a vibration analysis. We also know the

p at this point which is the which was the first step. So, p at the surface is also known

and therefore, what we have is the entire right hand side is known. We could in principle

integrate this out and determine pressure at x, for any x in the region of our interest. This



is exactly what boundary element method does; it first finds the surface acoustic pressure

which  is  actually  the  critical  step.  Once  the  surface  acoustic  pressure  is  known

numerically  it  uses  again  the  same  surface  acous  the Kirchhoff  Helmholtz  integral

equation  puts  this  back  where  only  the  surface  acoustic  pressure  and  the  surface

velocities are required surface velocities are anyway given to us as a matter of boundary

condition, surface acoustic pressure is what has been determined in the previous state.

So, this being the essential step of boundary element method, this is where the numerics

takes over and this is where this is why I said that any problem in acoustics will be

boiling  down to just  a game of greens  function,  and just  a  game of monopole  sand

dipoles.

I will close this talk with by giving you the expression of at least one form of greens

function. As I said greens function is the solution to the equation del square G y comma

x minus plus k square, G y comma x equals to minus delta y minus x right. So, x is the

location of the source which is taken as an impulse. So, greens function is a solution of

that.  Please note that  at  this  in this  definition of greens function we are actually  not

specified the domain of the greens function, it could be anything we have not specified

any boundary condition or the domain of application of this equation. So, no boundary

conditions or domain of solution of the problem is specified in this deformation in this

definition. Accordingly for different boundary conditions and different domains you will

have different greens function.
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 For example if you have a room and in a room you are interested to know that what if

you have a delta source at a certain point, what is the response acoustic response at some

other point.  This greens function will  not be the same as if  the room is let  us say a

anechoic chamber. If it is a semi anechoic chamber and you may put the source and the

receiver exactly at the same location, but just the bound the domain under consideration

is different. So, the greens function associated with the domains will be different and it

will  capture  the  idea that  what  is  the room under  which  you are  doing the acoustic

analysis. In particular one domain which is of high interest is the unbounded domain. So,

if you take the free space or R 3 without any boundaries. So, this is like saying that we

are interested in the entire three dimensional spaces which does not have any boundary.

So, it is like a completely anechoic chamber it is not having any boundaries and as such

as no extra flexions are expected. So, associated with this condition you can expect that

the  boundary  condition  associated  with  this  domain  is  the  Summerfield  radiation

condition. Which basically states that you are going to have only outwardly propagating

wave  inward  waves  are  not  allowed,  and  we have  talked  in  great  details  about  the

Summerfield radiation condition in one of the earlier  talks.  So, I am not repeating it

again, but the point is this that the greens function at least for the free space turns out to

be a very easy expression, and that expression is denoted by g x comma y given as e to

the power minus i k r by 4 pi r and you will recall this is very similar to the monopole

expression, which we also derived in one of the previous classes.

So, the free space greens function is given by this  form and unfortunately we in the

current course we do not have time and opportunity left for the derivation of this idea, it

is not a very difficult idea, but none the same it could not be derived within the time and

opportunity  permitted  within  this  course.  So,  I  request  you  to  take  this  derivation

derivation as an exercise you will find it in advanced books in a caustic, that this is called

the free space greens function that is greens function in a completely unbounded three

dimensional domain. So, what this is one choice of greens function by the way there can

be many greens function depending upon which domain which boundary condition you

are  choosing.  If  you  happen  to  choose  an  infinite  three  dimensional  domain  in  the

absence of any boundaries, then you will end up with the free space greens function. But

please note that the Kirchhoff Helmholtz integral equation that we have talked here the

derivation which we have given, is applicable for any of such greens function.



So, the greens function whether it is a free space green function or it is a greens function

in a particular room Kirchhoff Helmholtz integral equation is always applicable.  And

therefore,  in particular in the Kirchhoff Helmholtz integral equation if we choose the

greens function to be the free space greens function it is a perfectly legitimate choice and

that is why I said that greens function is known and I will give the expression for greens

function, which is what I have done here. So, returning back to the Kirchhoff Helmholtz

integral  equation  you  will  now  appreciate  that.  In  fact,  all  these  greens  function

expressions can be replaced by the free space greens function which is just a monopole

like term, and this also sort of again reinforces the idea that when you have this sort of an

integration with respect to greens function, it basically suggests that it is a superposition

of monopoles. Similarly you should be able to verify that the gray gradient of greens

functions or rather the normal derivative of the greens function is actually a dipole like

term right.

So, therefore, in one of the earlier classes I made a remark that every vibro acoustics

source  can  be  decomposed  into  only  monopoles  and  dipoles,  and  the  Kirchhoff

Helmholtz integral equation is to is the answer to that question. So, Kirchhoff Helmholtz

integral equation all resources have been reduced to integration over either the greens

function or the gradient the normal derivative of the greens function. It turns out that the

green one choice of greens function is  the free space greens function which has the

expression exactly like that of a monopole and the derivation of it is available in the

literature, and similarly the normal derivative of the greens function is exactly having the

expression like that of a dipole. And therefore, all vibro acoustic source turns out to be

super position of monopoles and dipoles.

From here onwards it will be a computational analysis procedure as I said this equation

cannot be solved by pen and paper and by analytical calculation, it needs to be solved

using computational procedure and what we have done is we have been able to formulate

the  equation  which  has  to  be  numerically  implemented  through  a  boundary  element

method  type  of  calculation,  and  that  will  lead  us  to  the  solution  or  at  least  the

computational solution of the acoustic response due to any vibrating object. And with

that comment I think you should be able to appreciate that at this point at least all the

equations  of  acoustics  are  known  to  you,  and  from here  on  it  is,  but  a  numerical

implementation it is, but the numerics that will play through that you have to implement



on this equation to get the solution procedure, fortunately there are lots of commercial

softwares which are available which already implemented this idea you should be able to

use such commercial softwares and get meaningful result.

So, with that I would like to conclude this lecture as well as this course, I hope you

enjoyed  the  course  we  from our  side  we  have  really  enjoyed  preparing  this  course

material, we also enjoyed interacting with you during the course and the course forum.

So, we hope that this course will set you up for your career in acoustics and if you wish

to know anything further, you definite this is not definitely the end of the course in the

sense that this is not all that is there to acoustics this subject is vast, but this is just an

introduction for you such that from here on you should be able to pick up more advanced

literature, and pursue those read possibly read and understand them by yourself. 

And please remember the stress on this course has been the formulation related issues,

the  objective  was  to  be  able  to  appreciate  how  the  equations  are  formulated

computational procedure as I said is anyway available these days. So, the compute the

exact  calculation  procedure  using  a  computer;  obviously,  depends  upon  the  exact

procedures available in each softwares. So, that was not a part of this course. So, with

that I would like to take your leave I hope this course is beneficial to your life.

Thank you.


