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Green’s Function

Today to start with we look at some elementary results in vector calculus the first one is

gauss divergence theorem.
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So, this states that a volume integral of the form del dot u d V can be written as a surface

integral u dot n d S, it  is like it is a close surface integral.  So, if you have a certain

volume v and the boundary of that volume is s, the outward normal is n, then this is what

gauss divergence theorem states we are not going to prove it we will just going to take it

on fat,  but the proof can be found in any book on vector calculus or some advanced

engineering mathematics book.

So, this theorem has got usage in let us say fluid mechanics and so many other places, we

are going to use this theorem to know proof what is known as greens theorem in vector

calculus.  So, greens theorem talks about the reduction of integrals  of this form u del

square v, minus v del square u and del square is the Laplacian. So, we are going to see

how we can reduce this volume integral into a surface integral. So, towards that end what



we do is  the  following;  we add del  u  dot  del  v  and also substract  the  same in this

expression.

So, will add and subtract del u dot del v, that should be perfectly fine, but then this first

integral would look like gradient of some quantity. So, if you look at del divergence of u

del v is del u dot del v plus u del square v. Similarly divergence of v del u is, del u dot

del v plus v del square u this is u del square v. So, this is again just elementary rules of

vector  calculus  I  am not  proving it.  So,  using this  identity  we can  now reduce  that

volume integral into 2 divergences del dot u del v, minus del dot v del u d V. And now

we know that each of these divergences can be put in the form of a surface integral using

gauss divergence theorem.

So, these two volume integrals which are divergence of some vector field can be written

in  terms  of  two  volume  integrals  and  the  volume  integrals  sorry  each  of  these  two

divergences  of volume integrals  can be written as two surface integrals.  The surface

integrals therefore, will be u del v dot n minus v del u dot n over the bounding surface

where n is the exterior normal.  So, the moral of the story for greens theorem is this

volume integral of u del square v minus v del square u d V has got to be surface integral

of u del v minus v del u dot product it with the unit normal vector. So, this is greens

theorem and we will use that in our study of greens function.
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In the last class we introduce the notion of greens functions, greens function it was said

is  the  solution  to  this  differential  equation  hear.  That  is  it  is  the  inhomogeneous

Helmholtz equation, the in homogeneity being in the form of a delta functions centered

at a specific point y right. So, the solution of this equation was called the greens function.
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So, we will take it up from there now. So, the solution of the inhomogeneous Helmholtz

equation is the greens function. Greens function is actually a very generic concept for

any  partial  differential  equation  with  inhomogeneity  you  can  talk  about  it  is  greens

function, but in the present course we are only dealing with the Helmholtz equation. So,

this is the greens function more particularly of the Helmholtz equation ok.

So, in particular we will have this condition the Helmholtz function is designated as G x

comma y or bar y, plus k square G x bar y is equals to minus delta x minus y. So, this is

the equation which the greens function is supposed to satisfy right. Remember at this

stage we are not talking about the boundary condition, but depending upon the domain of

interest  the  boundary  condition  could  be  virtually  anything.  So,  the  greens  function

satisfies the above equation the boundary condition of the greens function is decided as

per the domain of interest.

What do I mean by that suppose I am interested in a domain which looks like this. So, if

this is my V and if I know for sure that the pressure at the boundary is equals to 0, then

what I will say that a greens function will also satisfy this boundary condition. This is a



finite volume problem. So, if for a certain finite problem we are sure that the volume that

we  are  looking  at  terminates  with  a  rigid  boundary,  then  the  corresponding  greens

function will also satisfy the very same boundary condition right. Similarly so, sorry this

is this is P equals to 0 this is not velocity equals to 0, because the greens function is after

all a pressure like quantity it is not a velocity like quantity right.

So, if similarly if you have any other arbitrary shaped quantity arbitrary shaped volume,

and there in you have a portion of the boundary where in P equals to 0, and some other

portion where V equals to 0. So, here we have let us say V equals  to 0 and on the red

hashed surface we have v equals to 0 sorry P equals to 0 and then on some other portion

somewhere here we have a certain impedance Z that is specified. Then the corresponding

greens function will also have to necessarily have to satisfy these boundary condition

that the greens function itself must be 0 over the region where P is 0. Because greens

function is pressure like quantity, similarly if the normal velocity as 0 this I should say as

normal velocity it is not velocity at every direction, but normal velocity.

So, if the normal velocity is 0 then the gradient of the greens function along the direction

of the normal should be 0, because del p dot n is the particle velocity along that normal

direction.  So,  the  moral  of  the  story  is  this  that  for  finite  volume cases,  the  greens

function satisfies either G x comma y equals to 0 in the region gamma P or S p let us call

this S p wherein p equals to 0 right. So, this red region is S p where pressure has been

specified it will also satisfy gradient of G x comma y dot n equals to 0 in the region S v

where in V n equals to 0. This is the region where V n equals to 0 and in this region you

must have the gradient of the greens function dotted with the outward normal which is

something like this that also should be 0.

And in some other regions where it is only the impedance which is specified neither the

pressure nor the velocity, but it is the pressure by velocity ratio which gets specified due

to the effect of an absorbing boundary conditions let us say. So, therein again you will

have this ratio which is G x y, gradient G x y dot n could be specified in the region S z.

So, this region I will call as S z where the impedance is as specified in the region where

S z where impedance is specified. So, that is the story as far as finite volume situations

arise  the  greens  function  can  be  chosen  to  satisfy  the  exactly  the  same  boundary

conditions as is dictated by the domain of interest but what happens for a infinite volume

case? 
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For an infinite volume case as I said that in acoustics exterior acoustic specifically, we

would be interested in the volume which is the entire three dimensional space. So, for V

which is equals to entire  three dimensional  space and this type of problem generally

occurs in exterior acoustics. Where we are interested in the complete domain there is no

boundary  that  we  wish  to  consider.  Let  us  say  we  were  talking  about  the  acoustic

radiation due to a submarine which is at the middle of the Pacific Ocean. So, therefore, it

can it is virtually in an infinite media similarly we are talking about an aero plane which

is media. So, we are talking again about an infinite media.

So, in that case how do we specify? The boundary condition associated with this domain

and the corresponding greens function. So, all that we will now call upon is the fact that

what we have seen in our study of pall setting fears and monopoles, is that everything

must reduce to plane wave situation. And plane wave situation demands that the pressure

by velocity of the impedance should finally, v row c that is only thing which is there in

our  hand.  So,  somehow we want  this  quantity  pressure by  velocity  along the  radial

direction should go to row naught C which is the plane wave impedance, but this should

happen only as at large distances as r tends to infinity.

So, at large distances the boundary conditions that is demanded is for a complete infinite

domain problem is that the pressure by velocity is should go to row naught C, but then

you will realize there is also another condition that both pressure as well as the velocity



will have a 1 by r decay. We have seen the 1 by r decay effect in the pressure you could

work out the 1 by r decay for the radial velocity also by appealing to the momentum

equation.  So,  both  P and  u  r  has  a  1  by  r  decay  when  we  are  talking  about  three

dimensional acoustics we have proved this from the point of view of monopole.

Now, therefore, what we will say is that P by u r should approach row naught C as r tends

to 0, it should not only be equal rather it should take the form as defined here. As r tends

to infinity P minus row naught C U r  should definitely be 0, but it is something more

demanding than this u it will be 0 even if I multiply r why is that? Because both P and u r

has a 1 by r dependence, that 1 by r dependence. So, this equality will be maintained at a

rate which is faster than the linear then the limiting condition will be attain at a rate

which is commensurate with this 1 by r decay law. So, basically what I am saying is that

this P and U r both fall as 1 by r.

But the constant part associated with the P and U r they will have a relationship and

scaling  factor  which  is  exactly  row  naught  c.  So,  this  is  the  boundary  condition

associated with exterior acoustic and this is called the Somerfield radiation condition. So,

the Summerfield radiation condition is given mathematically by this, but this is just an

intuitive proof that what is a summerfield radiation condition. Basically it is a condition

which implies that far away from the source you should have the plane wave impedance

getting satisfied and the mathematical form of it also accommodates for the fact that both

the  pressure  and  the  radial  velocity  has  a  1  by  r  decay.  So,  that  brings  us  to  the

Summerfield radiation condition

Another way of interpreting Summerfield radiation condition is this, the solution for the

pressure  which  in  fact,  satisfy  the  Summerfield  radiation  condition  is.  In  fact,  the

outgoing solution the incoming solution will not be able to satisfy this condition because

the incoming solution will demand a change of sign here. For the incoming situation you

will have P plus row naught C U r, but if you if you put it as P minus row naught C U r;

that means, the radial velocity is directed outwards right which means it is an outgoing

wave.  So,  satisfaction  of  the  Summerfield  radiation  condition  ensures  only  outgoing

wave solutions.

Incoming wave solutions  do not satisfy the above condition.  So, the greens  function

which is in V equals to R 3 in the entire infinite domain, but satisfies the Summerfields



radiation condition as mentioned above is supposed to be called as the free space greens

function.  Free  space  means  there  are  absolutely  no  boundaries,  the  space  that  is  of

interest is complete three dimensional space nothing is excluded in that, but then the only

exclusion principle  that we apply is  the principle  that  we are only going to look for

outgoing waves we are not going to look for incoming waves, and that seems physically

obvious  also  because  incoming  waves  cannot  arise  in  an  infinite  domain  problem

incoming waves only arise if there is a boundary.

But in an infinite domain problem there is no boundaries, there are no incoming waves.

So, the greens function in R3 satisfying the Summerfield radiation condition is called the

free space greens function. So, please understand that there are many greens function

associated with every domain you will get it is greens function, associated with every

domain and every boundary associated with that domain you will get one incarnation of

a greens function associated with that specific domain and it is boundary.

Associated with the free space when you are dealing with the domain which is as big as

the complete three dimensional real space, that greens function is called the free space

greens function provided it additionally satisfies the Summerfield radiation condition;

which  essentially  means  you  are  looking  for  only  the  outgoing  wave  solution  the

incoming wave solution is sort of filtered out. So, we are going to our next milestone

would be to actually derive the form for this free space greens function, and we will see

that deriving this free space greens function will be adequate for our purposes
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So, towards that end we will make a few steps but the first objective before we derive the

form of that free space greens function will be to study this very important effect of

reciprocity.  This  is  again  something  very  intuitive,  but  can  be  rigorously  proved

mathematically also. So, what it says is that considered there is a certain source and there

is a certain receiver. Greens function is after all the effect of the source on the receiver,

that is if you have a certain source at a certain point then what is the reception at the

point R. Now the point is if you flip the positions of the source and receiver; that means;

now you have receiver here and source there.

The point is will the by receiver I essentially mean a microphone or your human ear. So,

if the position of the source and the receiver is interchanged, will there be any change in

the signal that is received by your microphone or by a human ear; obviously, not it only

depends upon the distance, it does not depend upon the orientation or the location right it

only depends upon the relative distance. If me and you were to interchange our position

my sound would be appearing exactly the same, it will not change it will not change

provided I mean it will not change whether I am in this recording studio or in the open

area or in the playground does not  matter.  In any domain if  source and the receiver

interchange their position then the acoustic quantity or even any other signal quantity of

interest will not change, that is essentially the principle of reciprocity.

With that intuitive understanding let us now look for a little more formal understanding.

So, what we are looking for is that, the greens function of y 1 at y 1 when the source is

located at y 2 must be the same as the greens function at y 2 and the source is located at y



1 this is what we are  required to prove we will recall that the greens function has this

property that is del square G x y 1 plus k square G x y 1 is minus delta x minus y 1. This

is exactly what we had for the greens function rule here, we have just replaced y with y

1. Similarly we will have we also have del square G x y 2 to be satisfying this equation

right.

So, now what we will do is that will multiply this equation with G x bar y 2 and the other

equation with G x bar y 1, as a result what we will get? From the first equation we will

get G x bar y 2, del square G x bar 1 plus K square G x bar y 1, G x bar y 2 equals to

minus delta x minus y 1, G x bar y 2 right and from the second equation we will get G x

bar y 1 del square G x bar y 2 plus k square G x bar y 2, G x bar y 2 equals to minus

delta x minus y 2 G x bar y 1.

And then what we will do is we will subtract these two between these two equation we

will do a subtraction operation and as a result the second term will cancel out because

they are identical. So, what will have is the following G x bar y 2 del square G x bar y 1

minus G x bar y 1 del square G x bar y 2 is equals to delta x minus y 2, G x y 1 minus

delta x minus y 1 G x bar y 2 right simple enough and then finally, we will do a volume

integral of these quantities. So, we will integrate both sides over the volume of interest

which is actually the entire three dimensional space sorry in three dimensional space in

the case that we are looking for an exterior acoustic problem it could also be a finite

dimensional space in which in case we are looking for a finite acoustics domain right it

could be both.

So, the reciprocity definitely holds for both exterior acoustic problems as well as interior

acoustics problem. So, the volume could be anything at this stage. So, now, what we will

do in the next step is that we will use to very important results, before stating that let me

just copy and paste this in the next page. 
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So,  having obtained this  relationship,  we will  use to  very  important  results  again in

mathematical in mathematics we have this very important result, which is the integration

of a delta function with any function. So, integral of delta x minus x 0 f of x over any

volume, is supposed to be f of x 0 provided x 0 is within the volume of interest right.

So, this using this result what we have for the right hand side of this equation, that we

simply need to substitute in place of x the value of this shifted the shift in the delta

function. So, that would read as G y 2 comma y 1 minus G y 1 comma or bar y 2. So,

that is what is there in the right hand side of the equation. If you look at the left hand side

of this equation this is exactly in the form that is required by the greens theorem. So, we

will appealed to greens theorem to reduce the volume integral into a surface integral

which is G x bar y 2 gradient of G x bar y 1, minus G x bar y 1 into gradient of G x bar y

2 dot n d S and that must equal to G y 2 by y 1 minus G y 1 by y 2 ok.

Now, the point is as we said the principle of reciprocity demands that in fact, the left

hand side surface integral should be 0 right because G y 2 comma y 1 must be equal to G

y 1 comma y 2 or bar y 2. So, to get to that effect that y is the surface integral 0 will

recall that from momentum equation, we have row 0 del u del t u is the particle velocity

is minus grad P, which means i omega row 0, u in the normal direction which is having a

unit vector n outward normal is having a unit vector n. So, U n will be minus grad p dot

n right. So, this understood now also for any volume of interest whether finite or infinite



u have an impedance condition if.  So, this is the volume of interest.  So, if a certain

portion of the boundary has pressure equals to 0 that essentially means impedance is 0.

So, if p equals to 0; that means, impedance is equals to 0 if we have U n to be equals to 0

that will imply that impedance is infinite, and in other cases like in the case of three d

acoustic exterior acoustics problem you will only have a specification of an impedance

condition p b p by un equals to z is specified. So, the different boundary conditions that

can arise in any acoustics problem for them matter interior or exterior, boils down to a

specification  of  the  impedance  condition.  Both  the  (Refer  Time:  31:28)  and  normal

boundary  condition  which  are  basically  pressure  conditions  or  the  normal  velocity

conditions both of which are captured by the impedance boundary conditions.

Not  only  that  there  are  some  mix  boundary  condition  problems,  which  requires  a

specification of pressure by velocity. That ratio pressure by velocity again specified and

therefore,  we  claim  that  any  problem  in  acoustics  interior  or  exterior  involves  a

specification of the boundary condition in terms of impedance. In particular I would like

you to note that for the exterior acoustics problem it is only the boundary conditions the

exterior acoustics problem finally,  specifies the Summerfield radiation condition as is

boundary  condition  for  away  from the  source  right.  And  the  Summerfield  radiation

condition essentially is a specification of the impedance.

The impedance at large distances away from the source basically boils down to the plane

wave impedance which is row naught c that is the moral of the story. So, therefore, the

point is for any volume of interest for a well post acoustics problem you must have on

the boundary the value of the impedance specify right. 
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Which means P by U n equals to Z is specified for all points on the boundary. So, it is not

necessary that on the boundary every point must have the same value of P by U n it may

be possible that some portions of the boundary will have certain. So, it may be possible

that this portion of the boundary maybe having a value of P by U n is equals to Z 1.

And it some other portions of the boundary it may be possible that you may have P by U

n to be some other quantity Z2. Depending upon what is the absorbing layer that has

been put in the different regions or in the worst case it could a one of them could be

completely  rigid  one  of  these  walls  is  it  is  completely  rigid  then  the  associated

impedance for that wall will go to infinite right, but if some other walls is made of some

corporate  cardboard sheets as you are seeing in this wall  then it  will  have it  is  own

impedance. So, therefore, the impedance need not be a constant value throughout it is

throughout the boundary, but the important point is there has to be a specification of p by

U n which could possibly depend upon the locations of the boundary, but none the same

it has to be specified right.

So, the point is U n therefore, will be P by Z x, Z as a function of x and you n intern we

have seen is given by. So, U n here we have seen is given by gradient of P dot n divided

by i omega row 0. So, i, here what I can do is, I can put the i on the top i times gradient

of P dot n divided by omega y row 0 minus 1 by i is plus i on the numerator. 



So, this is exactly what I will  do. So, i times gradient of P dot n divided by Z x is

basically P. In other words gradient of p dot n is Z x sorry I missed out the i omega row 0

omega by row 0. So, there is omega by row 0 here right U n is i delta p by n omega by

row 0. So, there is an omega by row 0 here let us do this little.

So, this implies i omega i dealt p dot n divided by omega row 0 right is equals to P by Z

x right which means delta P dot n is equals to omega row 0 divided by i Z x into P. In

other words gradient of p dot n is some quality I called it C of x times p where C of x is

omega row 0 divided by i into Z x, Z is the impedance. Now this is what is true for

pressure is also true for the greens function because greens function is finally, a pressure

like quantity right that is the basic premise. So, therefore, this sort of a relation will also

hold for the greens function.

So, delta G x comma y 1 dot n, n is a unit normal vector is C of x, G x bar y 1 and

similarly gradient of G x bar y 2 dot n is also C of x G of x bar y 2. So, this is how we

related the two gradients in the I mean two direction derivative in the normal direction of

the greens function, with the value of the greens function itself right. So, now, with this

we turned back to this equation which again I will copy and paste. So, we were left with

this equation in our analysis.
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So, in our analysis we were left with this equation, now we what we are doing is that we

are simply going to replace gradient of G dot n to be the value of G multiplied by some

constant which does changed over the boundary, but we can keep track of that.

So, this quantity will b G x comma y 2 into c of x G x comma y 1. So, what I have done

is I have said that the gradient of G x, I have basically used this formula which I had

derived right. So, with that derivation I am led to the following G x comma y 1 gradient

of G x y 2 dot n is also C as a function of x into G x y 2 right d S. So, this c possibly

depends upon the boundary. So, I think I better notation would be instead of giving x. So,

this c depends on S the location S right x is a is the point where we are receiving the

acoustics signal. So, let us not use x. So, c that constant which in turn depends upon the

impedance right could vary from point to point on the boundary that is the points. So,

therefore, I will use a notation S.

But anyway you can understand at  this  point that  both of these terms in the surface

integral are exactly the same and therefore, this will vanish. Which leads us to the crucial

finding that the greens function has the crucial reciprocity property, which I mean this

basically turns out as 0 from where we get G y 1 y 2 is equals to G y 2 y 1. So, this is the

reciprocity of greens function proved in a mathematically rigorous passion; however, you

can have a very intuitive understanding as I just said that greens function the intuitive

understanding of greens function is that if there is a unit source or if there is an impulse

if there is a source which is located at just one point, and you are interested to find what

is the signal that is received because of a certain sources at a certain point then that signal

is denoted by the greens function right.

Obviously the signal itself that the greens function itself will depend upon the domain of

interest,  whether it is open playground and open space on a closed space. So, greens

function does depend upon the properties of the domain that you are interested with, but

no matter what be the domain if simply the position of the source and the receiver is

interchanging, without affecting the strength of the source then you can understand that

the quality and the quantity of signal received at the receiver location though the location

has changed it has swapped with the source location the signal itself will not change

right.



That is the idea of reciprocity, but none the same we have done the mathematical proof

also. The reason why I did this mathematical proof is that, exactly the same ideas will go

through  in  the  next  proof  where  in  we  will  derive  the  Kirchoff  Helmholtz  integral

equation  so  that  will  sort  of  round things  up.  But  the  proof  of  Kirchoff  Helmholtz

integral equation will make use of the reciprocity and it will proceed exactly along the

same lines where we involve greens theorem where we involve properties of the delta

function, and then once we look at Kirchoff Helmholtz integral equation we will be able

to setup the problem in three dimensional acoustics which is basically the corner stone of

the numerical I mean the equation itself may be too difficult to solve by pen and paper or

analytical means.

So, we will set things up. So, such that it can be done in a numerical fashion from they

are  all,  in  that  numerical  techniques  called  the  boundary  element  method  which;

obviously, is not within the scope of this course, but none the same the basic point is that

we will lead up to the formulation of the boundary element method right. So, with that

lets end the class here we will see you again in the next class.

Thank you.


