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In the last class we looked at the important source which is called monopole and we

approached monopole as a pulsating sphere. With K a tending to 0, but then the strength

of the monopole which was defined as 4 pi a square into the velocity is held constant as

this limiting process is undertaken. So, it turned out that the pressure at any point was i

omega rho 0 times q e to the power minus i k r by 4 pi r.

That was the illustration that we did in the last class. Also we looked at a simple case of a

dipole wherein we had two monopoles vibrating in, pulsating in opposite phase and we

aligned this dipole and along the coordinate axis and we calculated the. So, this distance

was 2 epsilon and this location was given as y and we found the pressure at any point x

in the previous derivation. We will slightly generalize this derivation today by saying that

this dipole is arbitrarily aligned to any coordinate axis, need not be along. We will no

longer simplify the situation by saying that the dipole axis is align with a coordinate axis,

the dipole axis could be completely arbitrary.
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So, in other words what we will do is that, we will employ a perfectly general coordinate

axis, call this i j k. We will have as usual two monopoles; one with a plus sign and the

other with a minus sign, but this time the vector joining these two monopoles which is of

length 2 epsilon. That is not necessarily aligned with any coordinate axis and the center

of this  dipole is again located at y and we would be interested to know, what is the

pressure at the receiver location which is denoted by the vector x and r would be the

vector from y to x. So, this is the problem at hand. So, we were interested to determine

the pressure at the point x due to dipole aligned, due to a dipole at y; the dipole axis

being along the vector  epsilon.  So, this  2 epsilon or epsilon is  going to indicate  the

direction of the dipole axis from the negative monopole to the positive monopole.

Again exactly the same situations are true, that both of them monopoles have volume

velocity source or volume velocity source of magnitude q, is just that one is coming with

a minus sign. So, pressure at any point x would; obviously, be given by i omega rho 0

that part is common into q e to the power minus i k r 1 by 4 pi r 1 minus q into e to the

power minus i k r 2 by 4 pi r 2. And what are these r 1 and r 2 quantities? r one is exactly

from the positive monopole, you will have the vector to be denoted as r 1 and from the

negative monopole the vector is denoted as r 2. So, r 1 and r 2 in this diagram are the

vectors. When I indicate r 1 and r 2 without the vector sign, I mean the magnitude of

those vectors.



So, in particular r 1 would denote square root of x 1 minus y 1 plus epsilon 1 plus x 2

minus y 2 plus epsilon 2 whole square plus x 3 minus y 3 plus epsilon 3 whole square.

So, this is the quantity r 1 and similarly the quantity r 2 would be denoted by under root

x 1 minus y 1 minus epsilon 1 this time whole square plus x 2 minus y 2 minus epsilon 2

whole  square  plus  x  3  minus  y  3  minus  epsilon  3  whole  square.  So,  these  are  the

expressions for r 1 and r 2, both treated as perturbations to the quantity y. So, remember

the y here is having three coordinates; y 1, y 2, y 3. By the subscript 1, I did not mean the

components along the direction I, the subscript 2 stands for components of the vector

along the direction j and by subscript 3, I imply the components of the vector along the

direction k.

So, in this form we realize both r 1 and r 2 are taken to be functions of port all values of

this y vector which has components y 1, y 2 and y 3 along the three coordinate axis

respectively. So, what we are going to do is that this quantity e to the power minus i k r 1

by 4 pi r 1.

 This will be taken as a function of y plus epsilon vector. This time it is a vector not a

scalar. Last time when we did the derivation the y associated was a scalar it was in fact, a

perturbation of only y 1, but now it is turning out to be a perturbation of y plus epsilon

vector; both y and epsilon are vector. Now by Taylors Rule applied to a multivariable

problem we will have this simplification that f of y plus epsilon could also be given as f

of y just like you had it for single variable, the same thing will go through except for the

fact that you will now have to deal with a multivariable calculus operation.

So, epsilon dot del y is what comes in the first order, I will tell you what that exactly

means into the function evaluated at y plus higher order terms which does not worry us. I

will just open out this expression a little bit more for you to be unambiguous. So, epsilon

dot del y would mean epsilon 1 del del y 1 plus epsilon 2 del del y 2 plus epsilon 3 del

del y 3. So, that is why I put a subscript y along with the gradient sign to remind myself

that this gradient operation, in this gradient operation it is the primary variable is y not in

terms of x. So, this will be the relation for f of y plus epsilon right.

Similarly, we could write the other expression which is e to the power minus i k r 2

divided by 4 pi r 2.
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That would be written as f of y minus epsilon which will be f of y minus epsilon dot del

y  of  f  evaluated  at  y.  So now,  what  we have  to  do  is  we have  to  subtract  the  two

expressions out, which means if you subtract these two expressions written for e to the

power minus i k r 1 by 4 pi r 1 and e to the power minus i k r 2 by 4 pi r 2. The f y term

will get knocked off what remains is the second term which has the gradient effect.

So, now what we will do is therefore, e to the power i k minus i k r 1 divided by 4 pi r 1

minus e to the power minus i k r 2 divided by 4 pi r 2 will read as 2 epsilon dot gradient

in respect of the y variable of the function y calculated at the vector y of the function f

calculated at the vector value of y. So, this is the expression and remember f y would be

e to the power minus i k r by 4 pi r, not r 1, not r 2, but at r. So, this is what we will have.

So, therefore, the total pressure at the point of interest will be i omega rho 0 q into 2

epsilon dot del y into f evaluated at y, but epsilon is a vector we will keep track of that.

Similarly gradient is a vector operator; we will keep track of that also.

So, we could write this expression in the following fashion; i omega rho 0 q 2 epsilon dot

del y f evaluated at y, but then del y of f evaluated at y could also be written as f of y is

this quantity. So, we will write this as del del r of f evaluated at y into del or into gradient

with respect to y of r. This is just the chain rule of calculus, that here we are first taking

the derivative with respect to y and then we are doing this chain rule. And then f y if we

substitute that above expression we will get del del r into e to the power, del del r of e to



the power minus i k r 4 pi r. This is the first term and the second term is going to be del y

of r, the del y of r; r as a scalar sorry not vector r is the scalar quantity. And what was r? r

is square root of x 1 minus y 1 whole square plus x 2 minus y 2 whole square plus x 3

minus y 3 whole square.

(Refer Slide Time: 13:32)

So, therefore, let us evaluate del y of r. So, del y of r where, r is this quantity needs to be

evaluated and I will just open up this gradient operation once more. We will get del del y

1 of r along the first coordinate direction plus del del y 2 of r along the second coordinate

direction, del del y 3 of r along the third coordinate direction. And then what is del r, del

y 1? You will get x y 1 minus x 1 by r right because we have a square root x 1 minus y 1

whole square, if you take that derivative you will get 2 in the denominator and then

entire thing will come out.

So, therefore, this is the expression for the differentiation I am not detailing out that step.

So, this will be y 1 minus x 1 into in the i direction and similarly this second term will be

y 2 minus x 2 by r in the j direction and similarly y 3 minus x 3 by r in the k direction,

but then this is exactly the numerator is exactly minus r, what is r? r is a vector, if you

look at this diagram r as a vector is x vector minus y vector. So, r is x 1 minus y 1 in the i

direction plus x 2 minus y 2 in the j direction plus x 3 minus y 3 in the k direction; from

this diagram it is evident.



So, therefore, this quantity can be written as minus r vector. So, i have to be careful about

r as a vector and r as a scalar. So, minus r by r is what I have the numerator r is a vector,

the  denominator  r  is  just  the  scalar  which  is  the  magnitude  of  that  vector.  So,  this

quantity can be represented as the unit vector in the direction of r. So, n is the unit vector

along r which is from the source point to the receiver point. The source point is given the

coordinate y or is given the position vector y and the receiver point is given the position

vector x. So, therefore, you have n to be denoting that above quantity and if you make

that substitution in the derivation, you get the following. So, here we will have i omega

rho 0 q 2 epsilon dot of this quantity and this gradient of y f y is now computed as del del

r of e to the power minus i k r by 4 pi r into del y of r. So, that quantity is minus n, n is a

unit vector. So, then a minus has to be accounted for; that is all we have.

So, therefore, this expression can be just simplified to the following i omega rho 0 q del

del r of e to the power minus i k r by 4 pi r into 2 epsilon dot in, but it comes with a

minus sign because there is a minus sign associated with n. Please note that the final

answer is a scalar, that is true for because we are looking for a pressure quantity and 2

epsilon dot n is going to give you that scalar. You would have seen the effect of Cos theta

in the last derivation. So, that Cos theta effect is now replaced by this dot product and

this dot product is also precisely pointing towards the same sort of directivity relation.

The  directivity  happens  because  there  is  a  direction  associated  between  the  vector

pointing from the source to the receiver and the dipole axis itself.

So, in particular if you are pointing along the direction which is perpendicular to the, if

the receiver is perpendicular to the dipole axis then, again you will see that this quantity

will give you a 0. So, this is something that we had noted in our simplistic calculation

also where we sort of align the dipole axis along one coordinate axis and obtain a Cos

theta in contrast to this derivation. This derivation is slightly more general because if you

have multiple dipoles then, there is no way that you can align your coordinate axis to

each of  those dipole  axis;  you rather  work with  one fixed coordinate  axis  and have

expressions associated with each dipoles.

So,  here  this  expression serves  that  job.  It  just  uses  multivariable  calculus  and little

machinery from vector calculus is also used in this derivation, but the final answer is this

that you have the pressure at any field point to be given by i omega rho 0 q del del r of e

to the power minus i  k r  by 4 pi  r  with a  negative  sign popping out  and there is  a



directivity  term,  which  is  captured  through  this  effect  which  is  2  epsilon  dot  n.

Sometimes q times 2 epsilon is called the dipole moment.

q  is  this  scalar  which  is  the  associated  velocity  strength  of  the  monopoles  and that

multiplied with the distance between the two monopoles taken in a vector form is going

to give the dipole moment. So, with this machinery of monopoles and dipoles in place

will go forward into the next topic which is about inhomogeneous wave equation. Till

now what we have been looking at is, that we have looked at up to this point we were

looking at  the solution  of  the homogeneous  wave equation.  Either  the  homogeneous

wave equation which is del 2, which we derived in its  full entirety as del square P is

equals to 1 by C square del 2 p del t 2. It is a homogeneous equation because if you

transfer this term on the right hand side all quantities associated with the unknown P, if

you transfer it on the left hand side the right hand side is left with 0.

So, it is like the situation of a x is equals to 0 or m x double dot plus k x equals, this is

homogeneous equation. And we understood that the solution in such systems we looked

at either this wave equation or we looked at the steady state form of this which is del

square P plus k square P equals to 0, which is the Helmholtz Equation. In either case both

of them are homogeneous equation and this solution get triggered because of a certain

boundary condition. You had a certain domain and specifically with the duct problems

and in the duct problems when we said that one of the boundaries is given a certain

excited that over bridge oscillator piston of a flexible piston once there was a boundary

condition that was non homogeneous that triggered a certain pressure waves with in this

domain of interest  and that  was what we are solving for.  We will  adopt  the slightly

different perspective now. We will say that the region of interest now, will be the entire

three dimensional space.
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And within these three dimensional  space,  we will  try to embed all  these sources of

sound we will not exclude anything, but we will try to include these sources of sound

itself.  What  we were doing in  the  previous  approved is  that  we were excluding  the

sources of the sound; that means, the oscillating piston was just at the boundary of our

domain. It was not included in the domain right, the rigid oscillating piston or fixable

piston in the case of the duct problems were at the boundary of our domain of interest.

Whereas now we would like to include all such oscillating sources or fluid dynamics

sources if it is of interest will be included within the region of interest which is the entire

three dimensional region.

So, therefore, our fundamental approach will change will we will not try to solve a P d

with a given boundary condition, but we will try to solve an inhomogeneous P d which

includes the effects of the sources of sounds. So the effects of the sources of sound will

be includes in the inhomogeneity associated with the wave equation. Just like you know

any non homogeneous  equation  would  imply,  that  there  is  a  right  hand side  to  that

equation  which  is  the  non  homogeneous  stuff.  So  all  the  sources  of  sound  would

contribute  to  such  right  hand  side  in  the  equation  and  they  will  be  called  as  in

homogeneities. But physically speaking we must understand that, what is the reason of

this  in  homogeneities?  Till  now  if  you  understood  the  derivation  of  acoustic  wave

equation,  the  fundamental  principle  was  that  the  conservation  laws  namely  the

conservation  of  mass,  conservation  of  momentum and thermodynamics  consideration



together with certain asymptotic arguments and some mathematical simplifications lead

as to this,

Essentially saying that mass is conserved and momentum is conserved within the volume

of our interest. And obviously, we had good reasons of thinking so, but now let us say

that  we  are  worried  about  this  entire  three  dimensional  world,  but  in  this  three

dimensional one there is a pulsating sphere, a sphere with just pulses readily inwards and

outwards right. So, now, can we say that the volume is really concerned? No because of

the mass in turn is not concerned because now this sphere is pumping in the mass and

also sucking in the mass at alternative time cycles right.

So, we would like to include the effect of such in homogeneities and again rederive from

those very first principles by including these effects of non homogeneities. So, instead of,

see the way we approach the solution of monopole or pulsating sphere was to consider

what happens exterior to the sphere. We were trying to match the vibration velocities,

exterior to the sphere and thereby we got the outgoing wave solution, but now you are

saying that  instead of trying to  match the exterior  to these sphere we will  keep this

sphere included within our domain of interest, but we will just say that at this point there

is an imbalance of mass or volume which ever you may call it. There is an imbalance in

mass and this imbalance in mass will have to be rightly accommodated. If that can be

accommodated we will get the inhomogeneous wave equation.

So,  let  us  turn  to  that  argument.  So,  we will  look  at  conservation  of  mass.  So,  the

conservation of mass gave us del rho del t plus rho 0 del dot u is equals to 0 in the case

of at the order one. I am not redoing the entire analysis, but if you look sorry not at order

one at the order epsilon. So, at the acoustic order this was the equation that was obtained,

right rho 0 is the ambient or mean density, u is the acoustic particle velocity and rho is

the  acoustic  density;  that  means,  the  total  density  is  the  ambient  density  plus  of

fluctuation over it which is the acoustic density. So, when we did the derivation for the

wave equation that we have done at order epsilon we had this expression if you turn back

to your notes that is what you are going to find.

But now this expression needs to be modified instead of getting a 0 here you are going to

get a change in a mass imbalance that is going to come and the mass imbalance is going

to be the volume imbalance multiplied by density. So, this is the imbalance in the mass.



So instead of 0 you are now going to get an imbalance which is precisely going to be rho

0 times q; q is the volume velocity of the source q equal to volume velocity. So, what we

are pretending is that in this entire three dimensional region there could be lots of this

small pulsating spheres or monopoles whatever you may call and each of these pulsating

spheres are going to cause imbalance in the mass conservation. And we have to strictly

account for them, the other way of doing the problem would have been to leave out these

volumes and to considered the fluid which is exterior to pulsating sphere. In which case

there  is  no  imbalances  in  the  conservation  of  mass  right  at  all  those.  So,  the  two

approaches I will just high light once more suppose; in one case we could consider the

region of interest to be everything outside this pulsating sphere.

This is my pulsating spheres if we consider all  point which exterior to this pulsating

spheres then, there is no question of any imbalance in the conservation law associated

with the mass. But in the second case which is what we are doing now if we wish to

considered the entire volume as our region of interest. So we are considering the entire

volume as our region of interest right. We have to understand that it this case there is a

mass in balance which will be set up at this point right. So, the mass imbalance function

will be q x equals to q into delta x; assuming this is at the origin. So, at the origin this

pulsating  sphere  is  going to  create  an  mass  imbalance.  We have to  account  for  that

strictly in the conservation laws right that is exactly what we done right.

Now,  consider  the  conservation  of  momentum  equation  also.  So,  conservation  of

momentum equation act order epsilon which is the acoustic order reads as rho 0 del u del

t equals to minus of grad P right and u is the vector, I should have put a vector sign here

also u is the acoustic particle velocity rho 0 is the ambient density and P is the acoustic

pressure, p I should write as acoustic pressure.

So, therefore, this is a vector equation I could just turn this equation around by saying

that rho 0 del u del t plus gradient of P equals to 0 at order epsilon. This is what happens

when there are  no imbalance  is  within the region, but  just  like we contemplated the

situation of pulsating sphere; now if you considered this sphere instead of pulsating it is

rather oscillating. So, considered this that if you have a strider and in a beaker of water

you are just oscillating this strider then, what are you doing with your stridering effect?

You are only imported the momentum to the fuelled right. So, there is, so in top view the

situation would look like this. This is the region of the strider I could as well mark this



with the highlighted. So, this is the region of the strider. So, this strider is supposedly

oscillating up and down in this fashion right. So, around this point there is a force which

is given from the external source to the fluid domain of interest.

So, there at this point precisely there is a imbalance of the momentum equation and you

need to account for the right. So, the imbalance of this momentum would now cause a

right hand side to appear in this case which I will denote as f. So, f is the force per unit

volume because everything here is per unit volume, f is the force per unit volume which

is there within the fluid domain. Because in the present picture we are not excluding the

sources we are including the sources. So, the effect of the sources would be to either

create an imbalance in mass or an imbalance in the momentum loss and this needs to be

accommodated correctly in the equations of motion and finally, there are just these two

primary equations of motion I mean continuum laws that we have to satisfy. The other

very important law, that of the thermodynamic process that is exactly the same and does

not need any modification.

So, the thermodynamic process basically tells us that P is equals to rho C square where,

C is the sound velocity, sound speed in the medium using the arguments that it is an

adiabatic process and using the Taylor Series in all of that you can, this part remains just

identical.  So,  I  am not repeating.  So, what I  will  now do is  that  I  will  do the same

essentially do the same simplifications that we did in arriving at the homogeneous form

of the wave equation and we will just using the same step we will now be derive the

modification to that homogeneous wave equation which we will now see will have a

certain right hand side and will call those as a inhomogeneous wave equation. So, the

two equations I will just copy may be I do not need it, I can just write it once more. So,

the two equations I have is, I think copying is better.
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First part is that we will change over from rho to P rho the acoustic density, but we have

already seen that the accounting density can be related in terms of the acoustic pressure

in the following fashion right. So, that simplification is done, now we will take the as

usual will take the time derivative of this equation; so taking time derivative of the first

equation.

What will get is this 1 by C square del 2 P del t 2 plus rho 0 del del t del dot u plus equals

to rho 0 del q del t.  That is the first  equation and the second equation we will  take

divergence. So, will take the divergence this is what we will get, rho 0 del dot del u del t

and u is the vector plus del dot del P which is del square P plus equals to del dot f and f is

the vector right.

So therefore, at this stage we see that these two terms are equal and therefore, if we

subtract. So, I will just indicate that these two terms are equal. It does not matter whether

you take divergence first and then take time derivative or you take time derivative first or

divergence if the rules of calculus says that,  if the function of interest  is sufficiently

smooth then order of the derivative processes can be interchange. And thereby you will

have those two terms to be equal. So, therefore, if we subtract these two, we will get 1 by

C square or maybe I will take del square P minus 1 by C square del 1 P del t 2 is equals

to del dot f minus rho 0 del q del t right.



So,  this  is  the  inhomogeneous  wave equation  in  contrast  to  the  homogeneous  wave

equation which had the right hand side to be 0. Now you have the right hand side to be

little  more  complicated,  but  the  benefits  here  is  that  you  do  not  have  to  deal  with

boundary conditions any longer. In the homogeneous wave equation you are dealing with

the equation in a specified domain together with its boundary and it was the boundary

condition which was the trigger for the solution. Here the trigger for the solution is not in

the boundary, there is no boundary in fact, because everything is included. The entire

volume  of  interest  is  that  the  entire  three  dimensional  space  which  means  there  is

absolutely no boundary of our interest.

So, therefore, the trigger to the solution is not the boundary condition. You do not have to

deal with the boundary condition; that is the advantage of inhomogeneous equation, but

you done the same have to deal with this right hand side in homogeneity. So, that is the

two contrasting approach between the homogeneous wave equation and inhomogeneous

wave  equation.  So,  this  is  marked  as  the  inhomogeneous  wave  equation  and  if  the

inhomogeneous wave equation has come then the inhomogeneous Helmholtz Equation

cannot  be  any  different.  To  arrive  at  the  inhomogeneous  Helmholtz  equation  we

understand that the quantity of interest which is p will have to be replaced by e to the

power p times e to the power i omega t. Not only p quantity of interest will be harmonic

right and we have to do frequency by frequency analysis.

So therefore, any quantity will can have only harmonic time dependent. In particular p

will  have  a  harmonic  time  dependences,  q  will  also  have  exactly  the  same type  of

harmonic dependences; which means the above equation will now read as del square p

plus omega square by C square p is equals to del dot f minus i omega rho 0 times q. This

is the inhomogeneous wave equation right.

And now sorry inhomogeneous Helmholtz equation and now we have to see how we can

solve this equation right. It is fine to formulate the equation, but we now need to look at

how to solve this equation.
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So, del square p plus omega square by C square p is equals to del dot f minus i omega

rho 0 q is the equation that we are looking to solve. And just to shorten our notion will

call this entire term as minus Q. So, del square p. So, the objective will be to solve del

square p plus omega square by C square p is equals to minus of capital  Q, which in

journal in the function of the space variables also. Because the how does this x arise?

Because  depending  upon  the  locations  where  you  are  oscillating  spheres  and  your

pulsating spheres are located at different positions, you will have different sources and

all sources also would have different strings right. The strength of the oscillations of the

source, strength of the pulsation of the source could be different at different points and as

a result you will have a spatial dependence.

Now, the question is how do you solve this equation? Any ideas at this point? A PDE

with a right hand side; yes you know how to solve this equation?

Student: It is like or a spring mass.

Spring mass in ODE, it is a PDE with the right hand side.

Student: Separation of variable.

Separation of variables would have work with zero left hand side, but so where as zeer or

non zero does separation of variables. How does it keep track of? In the case of ODEs,

how do you solve non homogeneous ODEs? Sorry.



Student: Complementary function; particularly complementary function.

All that is very good, but complementary function; obviously, does not depend upon the

non homogeneity. It is the solution for homogeneous system right.

Student: particular integral.

Particular integral depends. So, you find the particular integral associates with the 

Student: Right hand side.

Right hand side.  How do you do for spring mass system with the particular right hand

side? You found particular integrals really?

Student: (Refer Time: 43:38)

But  for  to  go  to  convolution  integral,  before  convolution  integral  something  else  is

required, what is required? 

Student: Impulse response. 

Impulse response function. So, what is an impulse response function? You are actually

for  solving,  for  the  system  with  an  impulse  right.  The  actual  system  that  you  are

interested is M x double dot plus k x is equals f of d, but to solve that problem you water

it down and you say let us first try to solve with f of t is equals to delta of t. The solution

to that is impulse response and then using convolution integral you con cog the solution

with for an arbitrary forcing. Because that particular integral the problem is very strange

that you know we remember everything that is written in our school books, but we forget

everything that we study in our universities and higher education system that or that

never settles anyway. So, the point is that finding that particular integral is not possible

for, except for very specific cases. Whereas convolution integral is at list numerically can

be implemented for any for arbitrary function right.

So, therefore, convolution integral is the better approach. So, we will adopt exactly the

same technique here. What we will do is that; we will first solve this equation for the

case of a delta function and where should this delta function be located? So, instead of

solving for q of x we will solve for a delta function which is located at say which is

centred at some point say y. All of these are functions of x, p is the function of x, q is a



function of x. Now this would denote that this is a solution to the inhomogeneous wave

equation or inhomogeneous Helmholtz Equation.

I am sorry with the in homogeneity, in the form of the delta function. And I hope you

know, what are the different properties of delta function? Most of those properties are

going to be same whether you considered in one dimensional time or three dimensional

space; does not matter. So, we just carry over at least loosely most of those properties

and will deal with them as and when it is required. So, the point is that we will try to

solve this equation which is a in homogeneity wave equation with inhomogeneous in the

form of delta function, at a certain position which we are calling it as y. The solution to

this  equation,  anyone knows what  the solution  to this  equation  is  called  with the in

homogeneity? In the form of delta function? This is called Greens Function and this can

make you grow go green actually literally.

An entire this string notation also; it has to include this notation of y because it depends

upon both the source and the receiver. Basically what it is saying that the, it is an in

homogeneity which is located at y, but it gives you the answer of what is the pressure at

any point x, due to an in homogeneity located at a specific point y.

So, we have to look at how to find Greens Function and basically what we will see is that

it, at least in one special case the Greens Function is exactly found out by now actually. It

is the monopole source, the monopole source will turn out to be the Greens Function at

least for one very nice case which is called the Free Space Greens Function and that will

enable us to solve the complete problem of acoustic in terms of an integral equation. So,

that is some mathematical derivation which is left in the course. This part is going to be

really rigorously mathematical and you will do well to brush up your vector calculus and

there is something called Greens Theorem. Please learn Greens Theorem, before you

come to next class anyway.

Thanks you.


