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Spherical Waves

Welcome friends, this is the next lecture on acoustics and noise control. So, till now, we

had  been  studying  the  acoustic  plane  waves.  In  particular,  we  have  formulated  the

equations,  we have  looked at  the  solutions,  we had also  looked at  a  very important

application of acoustic plane waves which applies in industrial application for muffler

design.  We had quite elaborately discussed the procedure of muffler design based on

plane wave theory,  but now in the remaining part  of the course, we will quickly run

through the 3 dimensional acoustics and in particular the spherical waves.
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So, the topic of this last module is 3 dimensional acoustics. So, towards that end, we start

again with the governing equations of acoustics. You will recall that we had derived the

governing equations of acoustics in the early part of the course and that equation was

derived in a general 3 dimensional settings. So, the equation if you recall would was

given in this form del square P is equals to 1 by C square del 2 P del t 2.



So, will start from here and we will develop the 3 dimensional acoustics wave solution

just as we did for the one dimensional case. So, in the one dimensional case, again to

recall in 1 D acoustics, we simply simplified this Laplacean operator to be the second

derivative with respect to our space coordinates which was defined as x. So, what we

will now firstly look at in 3 dimensional acoustics is the category of spherical waves and

in spherical waves as the name suggest the wave fronts are no longer planar. So, what we

will expect is that all points on a spherical surface this time and since I cannot draw a

sphere in my plane of the tablet, I would rather draw a circle, but you should understand

this is actually a sphere which is drawn.

So,  all  points  in  this  sphere  will  have  identical  pressure  identical  velocity  identical

intensity all quantities of interest. So, just like in a plane wave, we define all quantities of

interest are identical in planes and these planes happened to be normal to the direction of

wave propagation  exactly  the same wave for  spherical  waves  all  points  on spherical

surface  have  identical  acoustic  pressure  acoustic  velocity  and  everything  related  to

acoustics is same at these points.

So, thus we say that the wave fronts this time are spherical so in contrast to the planar

wave fronts which we studied in plane waves. Now we will study the spherical waves

which bears spherical wave fronts and towards that end, we will change over now to a

coordinate system which is spherical. So, will recall as spherical coordinate system is

indicated by an r theta phi by an r theta phi specification where r is the radius vector

theta is this angle and when you drop a perpendicular then the angle that is subtended in

this  plane  would  be  marked  as  phi.  So,  r  theta  phi  r  the  variables  in  the  spherical

coordinate system as opposed to X, Y, Z in the Cartesian gold net system.

So, we will start from the solution of the governing equations of acoustics in 3 D, but in

a spherical coordinate system.
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Because we are looking for a spherical wave solution in our case. So, here is what we

will do. So, we will try to solve del square P is equals to 1 by C square del 2 P del t 2 and

del square is the Laplacean in the spherical coordinate system and this expression for a

Laplacean in a spherical coordinate is available in any book on engineering mathematics,

in particular, I will refer the book by Kreyszig engineering mathematics by Kreyszig, it

has the expression for the Laplacean in a spherical coordinate system. So, I do not wish

to derive these expressions.

So, I will simply you the result which is del square P in the spherical coordinate system

will be written as del 2 P del r 2 plus 2 by r del P del r plus 1 by r square sign square not

signs square sin theta 1 by r square sin theta del del theta sin theta del del theta plus 1 by

r square sin square theta del 2 del 5 2 and there is a P here; there is a P here. So, with this

is the expression for the Laplacean of the variable P acoustic pressure is given in this

form, once you open it up in the spherical coordinate system r theta phi and r theta phi is

as indicated in this diagram.

Now, going forward, we realize that we are looking for a spherical wave solution which

means  there  is  absolutely  no dependence  in  the  angular  variables,  all  points  on  this

sphere will have identical acoustic pressure that is after the definition of spherical waves

and therefore, if all points have go to have the same pressure distribution at a particular

radius, it cannot have any dependences with the theta variable or the phi variable. So,



therefore,  as we are looking for spherical  wave solutions we can happily set  these 2

conditions to be 0 which implies that there is no dependence of any angular variables.

So, with that being the simplification, now we can look to solve this simplified equation

which is del to P del r 2 plus 2 by r del P del r is equals to 1 by C square del to P del t 2

and what we can now do is we can open this term a little further to give us del 2 P del r 2

plus 1 by r del P del r plus 1 by r del P del r is equals to del 2 P del t 2 1 by C square. So,

what I will do is I will multiply throughout by r and get it in the following form. So, if I

multiply throughout by r, I get r del 2 P del r 2 plus del P del r plus del P del r again is

equals  to  1  by  C  square  and  the  r  multiplication  here  can  be  carried  within  the

differentiation process. After all the space variable which is the variable r symbolized by

the variable r does not lead to any problems here because del r del t is 0; that is space

variable and time variables are independent. So, this step should be perfectly valid as far

as the mathematics is concerned.

Next we can group these terms in the following fashion, we can write it as del del r of r

del P del r because r del P del r is going to give when you differentiate it. It is going to

give the first term as r del 2 P del r 2 and del del r are of r is just 1. So, this is the second

term arising out of it plus del P del r again is equals to 1 by C square del 2 del t 2 of P r

and  this  we  can  further  simplify  in  the  following  fashion.  We  can  collect  the

differentiation process together and then write r del P; del r plus P, right. This is the left

hand side of the previous step and that is equals to 1 by C square del 2 del t 2 P r. So, we

have to simplify this a little further. So, I will just copy paste this equation in the next

page to make that simplification happen.
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So, again I restart from this last step and let us see what the next step leads us to. So, in

the next step, I realize that the quantity under the bracket is nothing, but del del r of P r.

So, again this is a product of 2 quantities P and r. So, when you take the differentiation

with respect to r, the first quantity you will get is r times del P del r and the second

quantity you will get is P times derivative of r with respect to r which is unity which is

exactly what is shown in the previous step.

So, this simplification should also be justified to you and finally, we get it the right hand

side  is  as  it  is.  So,  this  equation  in  turn  implies  that  I  have  to  actual  take  second

derivative of the P r variable on the left hand side and that is essentially equals to 1 by C

square del 2 del t 2 o f P r. So, the final equation that I am looking to solve, after all this

simplification for these spherical  waves looks like this; so, here you will  realize this

equation is identical to the plane wave equation except for the change that instead of P r;

you had P in the plane wave equation. So, I will just make a recall here. So, recall the

plane wave equations where derived to be del 2 P del x 2 equals to 1 by C square del 2 P

del t 2.

So, the only difference between the plane wave equation and the spherical wave equation

as we have derived lies in the fact is in that the space variable x has been replaced by the

radius variable r and instead of solving for P. We now seemed can solve for P times r

other than that everything else is just the same and we will also recall the solution of the



plane  wave was derived with D Alembert  solution  and everything was derived as  P

equals to f of C t minus x plus g of C t plus x.

So, this was our solution for plane wave equation, the equation itself was stated as I have

given here. So, therefore, by analogy with plane wave equation, we should be able to

construct the solution for the spherical waves in no without any trouble. So, that is what

we are going to do. So, that by analogy with plane wave equation, the solution of the

spherical wave equation is therefore, given as is given as. So, this time, it is going to be P

r which is going to be my variable of interest  and P r will have an identical type of

solution like a plane wave just that the variable x will get replaced by the variable r and

therefore, if P is our quantity of interest, the final solution for P is now pretty trivial to

contemplate.
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So, the solution for P can be written as follows. So, all that we have to do is to divided

the r over here. On the left hand side, we instead of multiplying by r, we multiply the

right hand side with 1 by r, I mean; we divide the right hand side with r. So, this is the

solution for the plane wave equation. So, this is the; sorry, solution for this spherical

wave equation. So, this is the solution for the spherical wave equation. So, this represents

waves  which  are  completely  symmetric  which  are  dependent  only  on  the  radially

coordinates; does not depend upon the angular coordinates and the characteristic of this

wave is  this  that  all  points  which lies  at  the same radial  location  have got identical



pressure, identical velocity, identical intensity, everything, if pressure is same velocity is

after all derived from the pressure through the Euler equations.

So, therefore, if pressure is same velocity also has got to be the same the intensity is also

have got to be the same. So, therefore, what I have presented to you is that the spherical

wave equation is an easy fallout, if you can understand the development of the plane

wave  equation,  spherical  wave  equation  is  a  very  smooth  transition,  if  not  an  easy

transition. So, let us carry on to understand the interpretation of these 2 solution as was

talked earlier, this represents just like in the case of plane wave; in the case of plane

wave, we understood that this represents an outgoing wave or a forward wave and this

represents an incoming or backward wave right AFNG has this characteristics 

Now, here also, the same rule applies except for the fact that as it goes out or comes in,

the amplitude no longer remains constant, but it has; it varies in proportion to 1 by r. But

firstly, let us make this observation that this first term is associated with outgoing waves

and the next term is associated with the incoming waves and also we will make this

observation  that  in  contrast  to  plane  waves  which  propagate  without  any  change  in

amplitude. Spherical waves propagate with a changing amplitude or a varying amplitude

the amplitude varies in proportion to I or I should say inverse proportional to the radial

distance radial distance.

So, this is very useful that the amplitude by itself is going to have a fall if I just plot the

amplitude it will have a L by r D K. So, the amplitude against distance; so, this is the

distance  which  is  from the  origin  where  you are  interested.  So,  the  distance;  as  the

distance  from the  origin  increases  then  the  amplitude  is  seem  to  fall.  This  is  very

interesting in terms of applications. So, in terms of plane waves, what we understood was

that  the  amplitude  being constant,  we had to  put  in  muffler  such that  we get  some

reduction  of  the  amplitude  at  the  point  where  the  exhaust  is  opening  out  to  the

atmosphere, but in case of spherical waves it so happens that as the wave is spreading; as

the wave is going to a far; going to distances which are further of then the wave itself

suffers a drop in amplitude and that essential means that the noise associated with these

spherical waves will drop drastically as you go a little further away from the source.

So, in terms of noise control applications, it has got huge implications one way by which

you can appreciate this result is by doing; by recalling something which you very often



do in your everyday experiences. When you actually put your ear phone on to the ears

then you are residing the ear phone place out  as sound such that  the radial  distance

between the location of the sound and your eardrum is very minimal which is why the

ear phone when inserted into the ear is actually producing a very appreciable quantity of

music and sometimes it could be very loud music also, but hold the earphone just away

from your ear and the sound is barely audible. So, what happens at that time is that when

you are  holding the  ear  phone just  away from your ear  drum,  you are  occupying a

position as indicated by this red line. So, here you see, you have now in encountered a

drastic fall in the sound levels.

So, therefore, you cannot hear the music, if you happen to hold the ear phone away from

your ear, but even if it is very close, but away from your ear, there is a drastic fall in the

sound level and you cannot here it any longer. What happens in a speaker on the other

hand when you are hearing a sound through a speaker as possibly you are at this time in

that case, we are talking about 2; if you are hearing music from a speaker, then possible

you are already standing far away from the speaker and then if you go a little bit further

then you possible are at let us say this position and between these 2 positions, there is

hardly any difference in the amplitude of sound.

So, once you are all; your base line is already faraway then going a little further away

does not create much of a perceptual difference in terms of perception of sound, but if as

in the first example, if the base line or if you are referencing a sound measurement with

respect to the situation where the sound is produced at almost very close to your ear

drums then; obviously, it will very loud. But once you increase the separation between

the ear drums and the place where it is produced, in this case, it is the ear phones then

you will find a drastic fall in the sound levels and that drastic fall could in actually mean

that the sound is not even audible to your ears. So, this has important ramifications as I

explained.

So, what I will now do is that form the pressure expression that we have obtained, will

go to the velocity expression, but before that just like as we did for plane waves, we will

now no longer take an arbitrary time dependence, remember in the development of the

plane waves, we first took the time variable into consideration, but when we said, we

will be interested only in a harmonic time dependence because that is what leads to study



state noise and in case of harmonic time dependence, we found that the solutions are

much easier to handle and yet it has got very many applications.
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So, therefore, we will introduce from here on we will be introducing the harmonic time

dependence which again to recall then this implies any quantity of interest I mean it is

mostly  the  pressure  and  velocity,  I  would  rather  be  specific  by  saying  pressure  and

velocity or even more specifically pressure and particle velocity has a time dependence

of the form of e to the power i omega t as was again done for plane wave theory. In plane

wave theory, we said that all the pressure, we assume that the pressure does not have an

arbitrary time dependence,  but  it  has a time dependence  which is  harmonic  and that

essentially meant that n pressure at for plane wave P x comma t, we said is given as P x

into e to the power i omega t. Same, we will do for the spherical waves also, just that we

will  replace  the x variable  with the r  variable,  r  denoting the radial  location.  So, an

omega is the frequency; it is a circular frequency rather than the frequency which is

reciprocal  of the time period.  So, this  is  circular  frequency and you know what  that

means.

So, with this substitution, we can appeal to the Euler equations which again is a general

equation for a fluid and that stated that main density times del u del t should be equals to

minus of gradient of P where u is the particle velocity. So, derived this equation in one of

our very early classes, I will just recall that result for you at this stage, what we need is



the radial velocity at this point because we are talking about a spherical wave when we

are  taking  about  a  spherical  wave,  please  understand;  again  from the  figure  that  all

particles will have to move only in the radial direction because of the symmetry because

of the symmetry there cannot be any angular motion because any angular motion of the

particle will break the cemetery of the problem. Everything should depend only on the

radial  coordinates  and therefore,  the radial  velocity  alone  should be non 0 the  other

angular velocities should be 0 that is again coming from the symmetry arguments.

So, if we specialize this equation towards the radial velocity, this is what we will get.

Radiant of P will be simplified to del P del r, but now since all variable of interest are

having harmonic time dependence, we can write del del t equivalent to i times omega

and rho 0 stays times u r to be equals to minus del P del r and we already know that P of r

has got to be of this form f of C t minus r plus g of C t plus r. So, let us consider the

outgoing wave to start with. So, will consider the outgoing wave and the outgoing wave

form will be given as so, the outgoing wave with harmonic dependence just like we did

for plane wave.

So, in the plane wave case, we replace this C t minus r to basically omega t minus K r

where omega by K turned out to be C, exactly the same thing we are repeating now. So,

with harmonic dependence P at any radial location will be given in this form e to the

power i omega t minus K r by r plus b by r e to the power i omega t plus K r, but then we

said that we are not going to look at incoming waves. So, this is the incoming wave, if

you are interested only in the outgoing wave, you should take only the outgoing wave

term which is this is the outgoing wave term the other term is the incoming wave.

So, for the present derivation we will take only the outgoing wave term which reads as P

r is equals to A e to the power i omega t minus K r. So, when we make this substitution

here and we calculate the del P del r. So, if P is equals to A by r e to the power i omega t

K minus r and e to the power i omega t will be suppressed from here on because again

this is in consonance with what we did earlier for plane waves we just suppressed this for

brevity e to the power i omega t is implied we do not have to write it again and again.

So, therefore, we write this in a short form as P r e to the power minus i K r. So, this is

the harmonic outgoing spherical wave. So, let us do a little bit of analysis related to this

equation.
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So, if P r is A by r e to the power minus i K r then del P del r is given by minus A by r

square e to the power minus i K r minus i K A by r e to the power minus i K r and if we

take minus A e to the power minus i K r by r as common, then what we will get is the

following; 1 by r plus I K and from the Euler equations, what we need is the following.

We need rho 0 i omega rho 0 into u r must be minus del P del r which now reads as A e to

the power minus i K r by r into 1 by r plus i k, but then this group of term A e to the

power A by r e to the power minus i K r is nothing, but the pressure at the location r.

So, that change we will make and as a result we will get to see, sorry, 1 by r plus i k. So,

then in the next step what we will do is we will change A we will recall that omega by C

is K and as a result i rho 0. So, instead of writing omega I will write it as C times K u r

will be equals to P into 1 plus i K r by r and that too in the next step we will see as P by u

r to be i rho 0 C K r by 1 plus i K r little more simplification rho 0 C times i K r divided

by 1 plus i K r which could also be written as rho 0 C 1 divided by 1 by i K r plus 1.
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So, this is very crucial result that for outgoing harmonic plane waves A, sorry, not plane

spherical waves, we have this crucial result which is the pressure denoted by P acoustic

pressure denoted y P divided by radial particle velocity denoted by u r that quantity is

turning out to be rho 0 C into 1 plus 1 by i K r plus 1, we identified this sort of a quantity

pressure by velocity in our earlier analysis as impedance. So, we will continue doing so.

So, we will call this quantity as the characteristic impedance of spherical waves and that

turns to be rho 0 C multiplied by this quantity and rho 0 C; you will remember is the

characteristic impedance of the plane wave.

So, the characteristic impedance of the plane wave and the characteristic impedance of

this spherical wave is related and the relation is given in this equation; what we can

quickly note is that if we have the situation that K r is large; K r is going large which

means that this also implies that 2 pi by lambda into r is a large number which means that

the distances that we are looking at is much larger than the wave length of the acoustic

wave that is propagating and wavelength again has the same connotation, it basically

means the distance between the 2 maxima or the 2 minima of the wave.

So, if you have this situation that the distance is far greater than the wavelength then you

will land up into this situation that K r is a large quantity and if K r is a large quantity

then 1 by i K r will become a small quantity and therefore, the characteristic impedance

of  the  spherical  wave  which  I  can  call  as  ZSP will  be  same  as  the  characteristic



impedance of the plane wave ZSP will tend to ZP. So, spherical wave impedance will

approach the plane wave impedance.
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So, in other words, let me just consolidate the findings, what we have to found is that as

the distance from the source increases, the pressure is going to fall off and therefore, we

when you are talking about distances which are large vary at very large distances, let us

say this zone where in you have this condition coming in that K r is large. So, here let us

say K r has gone much much greater than 1 which is like it is going towards infinity.

So, here you see that the acoustic pressure amplitude. So, this is the plot of pressure by

the way here we can say that the decay in this region of space for the acoustic pressure is

minimal  and  also  the  impedance  in  this  region  we  will  see  we  will  say  is  almost

approaching the plane wave impedance because K r is large if K r is large we seen have

that this spherical wave impedance has become the plane wave impedance.

So, if the impedance is same as rho naught C and the pressure is not dropping; that

means, we essential have the plane wave condition that is the velocity in the direction of

propagation of the wave will be given by rho not C multiplied by the pressure and that is

exactly the same situation that we had in plane wave. So, thus in the region K r much

greater than 1, we have minimal decay of the acoustic pressure amplitude and also we

have the plane wave, we have the impedance to be approaching rho naught C which is

the impedance of plane wave.



So, therefore, the particle velocity in the direction of wave propagation which was u r is

basically rho naught C times the acoustic pressure and the same formula is obtained was

obtained even for the plane wave. So, in this sense spherical wave, propagation at large

distances  away from the source is  basically  boiling down to the case of plane wave

propagation and that is why we spend the major part of this course in the analysis of

plane wave propagation because usually more often than not we are interested in the

propagation of the sound which is quite far away from the source.

So, where you will usually have this condition K r must greater than 1 to be satisfied and

at least in that case, you can completely rely on the plane wave analysis to give you good

approximate  answers.  So,  does  if  K  r  is  large  then  plane  wave  conditions  are

approximated by the spherical wave. So, that is really nice that all our analysis for for

plane waves carries over to this case also together with some I mean to I mean it is not

exact that is understandable, but at least it is approximates.

So, we can hold on to that part of the analysis the other point which I must elaborate is

about the incoming radial wave solutions.
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So, you can understand that if you have something like sphere which is pulsating radially

in and out. So, we have this balloon like object balloon like structure if you make. So,

call it and just like heart beating it is pumping in out and contemplate this situation that

this balloon like object is there in the complete 3 dimensional place r 3.



So, in there is only one object which is this balloon like object which is pulsating radially

inward and outward and there is absolutely no enclosures no barriers nothing. So, you

expect that it will lead to outgoing radial waves, right and these are exactly the outgoing

spherical waves that we have talked about and as the wave propagates there is a decay in

amplitude in propagation to the distance from the center of this sphere and also as you go

to distances further and further away then you get to the condition where the impedance

of this spherical wave approaches that of the plane wave and thereby you get your plane

wave conditions to be approximated very nicely.

But what happens on the other. So, this was the outgoing wave solution if we simply

contemplate the situation of a time reversal; that means, if we have just like there can be

an outgoing wave solution there can be mathematically an incoming wave solution also

remember this happened even in the case of plane wave in the plane waves also when we

did  the  problem  of  a  duct,  which  is  infinite  and  then  we  had  only  one  excitation

mathematics showed us that there could be a forward wave. There could be a backward

wave, but then we applied our physical logic and physical intuition associated with the

problem and then we said that no the incoming wave is infect not possible.

This is not possible, this will only be made possible if the duct is bounded. The duct once

got bounded, we understood that there is an incoming wave which will  get reflected

because of the incident wave, it will get reflected and you will get to see left word or a

backward travelling wave, but if the duct where to be infinite, then this b wave does not

arise that we argued pretty much the same pretty much elaborately.

Relying  on  that  logic,  the  same  thing  happens  in  this  spherical  wave  propagation

problem also,  mathematically,  we have understood that  there was 2 solutions  as was

derived. There is an outgoing wave solution, there is an incoming wave solution, but then

in this case, just like you do not have reflection in an infinite duct and thus the incoming

solution does not arise. Similarly the incoming wave solution does not arise incoming

wave solution does not arise in case of an unbounded domain unbounded domain that is

a domain where in there is no boundary.

However if you can contemplate a slight complication of the same problem that is you

have a pulsating sphere, but this time, this pulsating sphere is residing in a spherical

cavity, you have a spherical room in which you are doing this experiment of having a



pulsating sphere. So, the sphere is pulsating as before right it is pulsating as before and

that leads to spherical wave propagation as we understood. So, in initially there will be

only outgoing waves,  right.  So, these blue waves will  travel outwards and at  certain

instant of time, it will meet the boundary which is denoted by this green line and once it

hits the boundary the incoming waves will start, right.

So, the incoming waves can start only because of the boundary effect, it cannot start by

itself, right. Just like we had it in the case of planar wave propagation in an acoustic duct,

the b wave is possible only if this duct ends in certain termination, whether it is a rigid

termination or whether it is a open termination or whether it is an impedance termination,

any of these situations will lead to a incoming wave which is basically the reflected wave

which is been created after the incident wave has fallen on to this obstacle, but if there is

no obstacle then there is no chance of that incoming wave to come.

So, similarly I wish to make this remark that the incoming wave solution is triggered

only  due  to  reflections  from  the  boundary  that  is  the  crucial  aspect  and  once  the

reflections from the boundaries are set in, then you are going to an incoming wave A,

strange, it may appear strange that once you have this incoming wave as the wave will

propagate,  it  will  have the radial  distance will  go smaller and smaller,  the r  variable

associated will go smaller for the outgoing wave, the r variable is going larger.  As a

result, it is going to attenuate whereas, for the incoming wave, as the wave is travelling,

the  r  variable  is  going  to  get  smaller  and actually  as  the  wave is  travelling,  it  will

increase its amplitude in the direction of its propagation because remember the direction

of propagation of the wave, the incoming wave is inwards.

So, along the direction of propagation, the wave will actually increase its amplitude. So,

that is as a little counter intuitive, but that is the way it is because you will understand

that  as  the  wave is  increasing,  it  is  getting  focused  into  a  more  narrow region  and

therefore, the amplitude had to increase. So, this type of solution is very important in

acoustics and this solution will lead us to what is called as the monopole and dipole

which is what we will do in the next part of the course. With that we end today’s class.

Thank you.


