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Helmholtz Resonator

 So, we were looking at this problem of 2 connected springs and a mass.
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So, this is the configuration of the spring mass system that we were analyzing, we found

the equivalent circuit for this situation to be that of the forces acting on the mass, the

equivalent circuit for this situation was given in the following form. So, the impedance

effective impedance or the drive point impedance was F by v which is Z m plus Z s 1

plus Z s 2, from the equivalent circuit that part we derived it cleanly; today what we will

look at is the derivation through the transfer matrix method.

So, what we will do is again we will split this thing up into 2 parts, this sorry in the first

part we will take only the spring and in the second part w will take the mass and the

spring on the right this is the mass and this is the spring constant K 1. So, let us assume

that effectively there is an F prime force on the right half of the sub system, and there is a

force F double prime on the left half of the subsystem. So, F plus F prime plus F double



prime is going to be the total force right. So, we need to find accurately what is the

transfer matrix in this situation.

So, again we will define the station points in this fashion 1 2 3 and 4 right. So, this is 1

and this is 3 between station 1 and station 3 no big deal we can find F prime v 3 is given

by 1 plus Z m by Z s 1, Z m 1 by Z s 1 and 1 right F 1 V 1. That is a transfer matrix for

the right half of the system no big deal we also know that now we have to impose the

condition that V 1 equals to 0. So, that implies F prime is 1 plus Z m by Z s 1, F 1 and V

3 is F 1 by Z s 1. So, if we make the substitution here. So, we get V 3 Z s 1 is equals to F

1 and putting this back over here we get F prime as 1 plus Z m by Z s 1 into Z s 1 times

V 3 which effectively means I will write it here, F prime is Z s 1 plus Z m into V 3 this is

what we have for the left half of the system.

Now, for the right half of the system. So, in the right half we go back to the first principle

this is just a spring and this is station 4. So, there is as per our convention we have to

take the forces in this fashion this is F 4 and this is F tilde, which is the negative of F

double prime right and the velocities as per our convention is always directed in the

positive sense. So, this is V 4 and this is V 3 right. So, this transfer matrix is known to be

F 4 V 4 is equals to 1 0, 1 by Z s 2 where this is the spring constant K 2 and 1 times F

tilde V 3 right.

So, what I have done here is that I have just looked at the element K 2 from the first

principles I have just got the drawing back of a single spring element, at this stage I have

not invoked the boundary condition that V 4. In fact, has to be 0, but I have written the

transfer matrix none the same in a generalized situation involving V 4 V 3 and F 4 and F

tilde. F tilde just resembles in a generic sense the force F 3, but in this situation I we

understand that it does have we have got the situation exactly corresponding to where

yeah exactly corresponding to this situation right this.
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Was how we derived the elementary electromechanical analogies and also the transfer

matrix method. So, here you see the transfer matrix is of this form diagonal elements 1

and 1, of diagonal element 0 and reciprocal of 1 by reciprocal of Z s.

So, in an identical fashion we have derived this situation now things we will be neat and

clean if we just do a little bit of simplification associated with this matrix. So, that is

what I will do in the next page.
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So, this is what we have now we invoke the condition that V 4 equals to 0 as per the

boundary condition because it is fixed at the other end. So, in that case we will have F 4

is equals to F tilde, and V 4 which is 0 is equals to F tilde by Z s 2 plus V 3. That implies

V 3 into Z s 2 is equals to minus F tilde which again is F double prime. So, what we get

from here is F double prime is V 3 Z s 2; this is my second equation the first equation

was F prime is. So, this is the first equation and this is the second equation if we put both

of  these  side  by side  and then  add it  up it  will  be  easy  to  see that  the  drive  point

impedance is again matching.

So, this is equation one. So, adding 1 and 2 we will get F prime plus F double prime is

equals to V 3 into Z m plus Z s 1 plus Z s 2, which would also mean F by V 3 is equals to

Z m plus Z s 1 plus Z s 2 this is the same result as was obtained using the electric circuit

analogy. So, the electric circuit analogy and the transfer matrix method here in gives the

same result as it should. So, now, we will move on to the acoustic case till now we are

doing the  electromechanical  analogy,  somehow to  get  comfortable  with  this  analogy

techniques and the transfer matrix technique itself, but now we will apply this method to

the acoustic case, and towards that end our first problem will be to look at a duct.
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A simple uniform duct of cross section s right,  we have already defined the transfer

matrix  for  this  situation  when  we  did  the  analysis  for  the  transmission  loss  of  our



expansion chamber muffler, we arrived at the transfer matrix between the 2 ends of this

duct which is denoted by 1 and 2.

So, if you recall we had the situation P 1 P 2, V 2 is equals to P 1 V 1 is the inlet is the

downstream condition and this transfer matrix was given by the following cos KL comes

in the numerator in the diagonal terms, i Y sin KL and i by y sin KL comes in the of

diagonal terms, this is of length L and what else Y is the impedance which is C by S the

impedance is in terms of mass velocities, and yeah K is the wave number and c is the

sound speed in the medium. And please note that v 1 and v 2 are the mass velocities at 1

and 2 respectively they are not the particle velocity we had changed over from particle

velocity to mass velocity in dealing with duct problems.

So, this is the situation this is the transfer matrix which relates the upstream states and

the downstream states in that fashion, it was done in one if the earlier derivation which is

why I am not repeating it. So, if you look back at the nodes you will find the derivation

here it  go it  is  somewhere here yeah here.  So,  this  is  where it  was derived that  the

transfer matrix for a duct. So, this is what I am repeating here. Now the point is this

transfer matrix definitely is not of the form wherein you can present it as an equivalent

electrical circuit in the lumped form, because as I said in the last lecture that if you have

la electric circuit in a lamped form either in the in lined position or in the shunt position

then you must have a very specific structure of the transfer matrix that being that 1 of the

off  diagonal  term  should  be  0,  but  that  this  structure  does  not  confirm  to  lumped

electrical analogy.

So, lumped electric circuit representation is not possible; however, distributed element

representation is possible, but let us instead try to think about some approximation under

which this situation we will render itself to a lumped approximation. So however, for the

special case that KL is much lesser than 1 what does that mean? K is the wave number L

is the characteristic length of this of this of this problem. So, therefore, K time cell is the

product of the wave number and length in other words 2 pi L by lambda must be less

than 1 in which case it means that the length must be much smaller than the wavelength

of the acoustic wave that is going in this duct.

So, in this case we will have KL lesser than 1 and if wavelength is large then we also or

the other way to interpret it is that K is directly related to the frequency. So, if KL is



small this we will also mean that this is the low frequency approximation. So, under low

frequency approximation  let  us  look at  what  happens to  these entries  of  the  transfer

matrix  cos KL will  10 to 1 and sin KL will  tend to KL itself  that  is  the first  order

approximation for these 2 trigonometric terms. So, therefore, if we now put this back we

get the following P 2 v 2 is equals to 1 i Y KL, i KL by Y, 1 P 1 V 1 right. So, if you

again open these 2 equations up we get the following P 2 is equals to P 1 plus i Y KL into

V 1 and V 2 is equals to i KL by y into P 1 plus V 1.

The first equation could be written as P 2 minus P 1 divided by V 1 is equals to i Y KL

right. The second equation could be written as P 1 divided by V 2 minus V 1 is equals to

1 by i KL divided by Y. I hope I am right V 2 let us do it in 1 more step V 2 minus V 1 is

equals to i KL by Y P 1. So, P 1 by V 2 minus V 1 will have i L K in the denominator and

y in the numerator, which is exactly what I have written let us take this 2 equations for

further analysis.
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So, these are the 2 equations which I will grab. So, this could be written as delta P by v 1

is equals to i Y in fact, Y could also be turned out turns out as c by s into K into L and

this could in turn be written as I omega L by S.

P 2 minus P 1 is delta p. So, delta P by V 1 is turning out to be this quantity right please

note this is exactly of the same form as the impedance of the mass element right. You had

the impedance when you did the impedance of the mass element you will said that the



forces on the 2 sides need not be the same right and therefore, you said that delta F by v

is j omega m this is x sorry I omega m right. So, this is exactly of the same form as this

equation looks exactly of the same form as the equation of the mass element or that of

the inductor  in electrical  circuit  analogy right.  What about the second equation? The

second equation would read as P by delta v, in particular P 1 by delta v is equals to 1 by i

again instead of K, I would like to write that as omega by C L c s instead of Y I am

writing c by s.

So, this would read as 1 by i omega l times s is the volume s is the cross sectional area s

is the sorry s is the cross sectional area l is the length. So, l times s is the volume. So, I

will write l s as the volume by c square right. This resembles that of a impedance of a

spring element while looking at the spring element we said that the velocity at the 2 ends

of the spring element could jolly well be different, but the forces at the 2 n must be the

same and it turned out that force divided by the change in velocity should be 1 by i

omega times the compliance or we put capital c for compliance of the spring; capital C

may was 1 by K right.

So, now you see V by c square therefore, resembles that of the compliance of the spring.

Here we have exactly the same situation we are saying that there is we are finding the

ratio of the pressure which is the force like term divided by delta V, we understand V is

not they particle velocity, but it is the mass velocity. But the mass velocity and particle

velocity are related by product of 2 constants that is density and the cross sectional area

none of which are changing.

So, therefore, this numerator is a force like quantity, the denominator is a velocity like

quantity. So, the ratio of this force like quantity to the differential of the velocity like

quantity measured at the 2 ends of the duct gives us exactly the same form as that we got

it for a spring element. So, this is resembling. So, this situation resembles spring or a

capacitor electrical element and this represents a spring mechanical element.

In the first case this situation would resemble a mass mechanical element which is also

an typical inductor in the electrical terminology, but then for the mass or the inductor we

had the picture to be that of an inline. So, this was the ground and the inductor was to be

put in an inline position. So, this is denoted as Z m because of this analogy and this is

denoted as Z s because of the analogy, but the inductor picture is that corresponding to an



inline position whereas, the other picture that of the spring corresponded to that of a

shunt position right.

So,  now the question is  which of  these 2 positions  should we take.  There  is  a  very

interesting analysis now that we will run into.  So, what we have seeing is that the 2

equations of the 2 transfer matrices are presenting itself into 2 different forms, 1 is giving

like an inductor the other is giving situation which resembles that of a capacitor or a

spring element. Now we will consider 2 special cases case 1 S is large, S meaning the

cross sectional area.
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So, if cross sectional area is large what happens to Z m and Z s? If you look at this

expressions both Z m and Z s have s in the denominator right look at this expression s as

Z s has s in the denominator look at this expression Z m has in the denominator.

So, therefore, if S is large both Z m and Z s will go to 0 right if both Z m and Z s go to 0

then what happens to our electrical circuit, we are now confused that which 1 to choose

we have for the first equation an inline position, for the second equation we have a shunt

position, but then if we understand that both Z m and Z s are very small quantities then

the effect of an impedance in the inline position is going to be like a short. So, you are

basically shorting this right. So, you can as well delete this Z m and short it right.



So, the effect of Z m can be completely ignored whereas, the effect of Z s cannot be

ignored right. If I short the circuit here then lot of current will move flow through this

shunt path and therefore, the impedance of this the current that will flow through the

other branch will be sort of minimal right. So, you should not minimum shorting the

circuit, it is feasible to ignore the inline impedance provided it is small right, but it is not

possible to ignore the shunt impedance provided it is small right that will be the other

case.

So, in the inline impedance which is Z m can be ignored in such case. Please understand

numerically both Z m and Z s are small right. So, if you think numerically both are small

let  me ignore both  of  them that  is  not  a  valued argument  right.  You can ignore  the

impedance the inline impedance provided it is small, but if the shunt impedance is small

you should not ignore it. You should take it into account such that you are able to capture

the effect that lot of the current we will actually flow through shunt path rather than the

path which is parallel in the I mean path which is downstream the path which is after the

shunt position. And this is where electrical analogy really helps that if you understand

what is shorted and what is left open you can understand which way the current will be

flowing, the extreme cases are quite easy to intuitively think of in the electrical analogy.

So, the inline impedance Z m will be ignored in case both of them are small; however,

the shunt impedance Z s is to be accounted in such case right. So, that leaves us with the

situation that in this case we will have only Z s in the shunt position, and virtually this Z

m block is not there. So, this is ignored which means that we could resolve it. So, this Z

m block is ignored leaving us with the equivalent circuit as this, which is only in the

shunt position right, that is case 1 when the cross sectional area is large so, the other

extreme case to when s is small. When s is small what will happen is that you will have Z

m and Z s to be large right. Now if the impedance is are large and what happens in the

shunt position if you have a large impedance, that effectively means it is an open circuit.

So, it is no current will go in this parallel path of this shunt line right. So, therefore, it is

needless to consider this shunt line right whereas, if you have a large in line impedance

then there is going to be a large potential drop across the line and you should consider it

right. So, this idea that which impedance has to be taken under which circumstance is

beautifully brought out hopefully through this explanation you will appreciate that this

electrical  analogy  easily  permits  us  to  understand these  2  extreme cases,  which  is  I



thought a tag be difficult to understand from purely mechanistic point of view right. I am

only appealing to the electrical analogy here to convince you that both this situations do

happen and it is not so much about the numerical value of Z m and Z s, because strictly if

you look at it the numerical values of both Z m and Z s go to either 0 or infinity.

But it is the location in the electrical terminology; it is the location of this impedance

whether in line or shunt which decides which one has to be ignored right. So, in this

situation the shunt impedance approximates an open circuit and can be ignored whereas,

the inline impedance the shunt impedance was Z s, the in line impedance Z m is to be

accounted. So, compiling this once again what I am doing is that the Z m is there, but Z s

is virtually not there because it is large right.
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So, this is approximately an open circuit. So, if it is an open circuit you might as well

choose to ignore it, and just have the Z m in line impedance that is it ok.

Now, using  these 2 situations  now we will  build  up what  is  known as  a  Helmholtz

resonator. 
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This is the analogue of a spring mass system in acoustics. Acoustics we actually way go

the other way in the theory of vibration class first you to learn spring mass system, and

then you learn about continuous systems, and then it is shown to you that using modal

decomposition you can bring back a continuous system analysis to a spring mass system

analysis. But here we have done it the other way we have always treated the acoustic

system to be continuous system, but here for this continuous system we are bringing a

special case wherein we are showing that special case of this continuous system boils

down to a lump system as I will show you.

So, this Helmholtz resonator is simply 2 such ducts I mean in one of its in conditions

which is easy to understand is just 2 ducts 1 with a large cross section, and the other with

a small cross section. This is small cross section this is a large cross section. So, s prime

is much much smaller than s and accordingly there are 2 links if you want l prime and l

what is going to happen between these 2 ducts and we are going to look at frequencies

which are small, KL and KL prime both are small ok.

So, therefore, lumped analysis is valid and what we have shown is that when s is large

we should have the effect of a spring, and when s is small we should have the effect of a

mass. So, intuitively at this stage we are ready to understand that this volume will behave

like a spring, and this volume will behave like a mass right. So, we are basically breaking

down this collection of 2 ducts as 2 electrical system, the first one corresponding to s



prime l prime, we will have and in line impedance. The second one so, there is a ground

line which I should draw as usual, the second element corresponds to that of a shunt

impedance Z s right and what happens downstream? If we assume that this is rigid; that

means, no current has to go which means this is open, which means I need not consider

this part of the circuit.

So, therefore, and I obviously, need to complete the circuit from this side also through a

potential or a pressure right. So, therefore, this is this circuit is going to read as Z m and

Z s. Now once you have the circuit you can talk about the resonances, because you are

having a lumped electrical circuit nothing prevents you to talk about the resonances what

is Z m by the way the Z m was calculated as i omega l by s right, i omega l by s and l

prime by s prime to be more particular that is the impedance associated with the neck of

the Helmholtz resonator this region is called the neck and this region is called the cavity

and what is Z s? Z s is 1 by i omega V by c square right yeah 1 by i omega V by c square

where V is S times l right.

So, therefore, what is the total impedance of the circuit? That is Z m plus Z s which is i

omega minus or let me do it in 2 steps the total impedance of the circuit is Z is equals to

Z m plus Z s which is going to be i omega l prime s prime plus 1 by I omega V by c

square. So, this could be written as i omega l prime s prime and I could write this is

minus i on the numerator divided by omega V by c square.

So, now I can pull out and i omega l prime s prime minus 1 by omega V by c square

correct. So, this is the total impedance please note the impedance is purely imaginary.

So, it is in the reactance form there is no resistance. Please understands resistance form

of impedance will only come if there is some energy dissipation mechanism there is no

energy  dissipation  mechanism  in  this  problem.  So,  therefore,  it  is  coming  as  pure

reactance and as we know resonance is defined as a situation when the reactance part of

it this is the un damped case. So, therefore, the reactance if it is going to 0 then we will

have the un damped natural frequency.

So, therefore, the un damped natural frequency of this Helmholtz resonator can now be

obtained by equating the reactance to 0 is given by omega n which is such that omega n l

prime s prime, has got to be equal to 1 by omega n V by C square.
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So, that would mean omega n square is s prime by l prime V by c square, which means

omega n is s prime by l prime V by c square. I could make this little better also C s prime

V l prime that is how the natural frequency of the Helmholtz resonator looks like. So,

this  is  the natural frequency of the Helmholtz  resonator.  Referees whistle  is the best

example of Helmholtz resonator look at the construction of a referee whistle it is exactly

this a large cavity a small construction right.

So, what happens is that for all the sound that is incident on to this construction of a

whistle,  it  is only one frequency which gets amplified which is corresponding to the

resonance frequency of the whistle right. Same thing actually happens when you whistle

without this sort of a artifact, when you whistle you basically from the lip let me try to

draw a face of at least myself which would look horrible, but this is the throat cavity and

here is the lip region right. So, when we whistle we tend to construct a channel around

our lip region, and create this small tubular zone right and our mouth cavity is that large

volume right.

So, in between the mouth cavity and this narrow construction of our left lip region we

have a Helmholtz resonator, and the effect of that is that no matter what air blows out

through our vocal cords, it is only one frequency which will get amplified which exactly

corresponds to the resonance of this Helmholtz resonator, and how do we change the

tune when we do a whistle of a song with ten to change the diameter of our lips right



very finely we will adjust the diameters of our lips or even the length of it which will

affect one of these terms, s prime l prime as you see here is both there. As you change s

prime l prime the frequencies change by some by exactly the fashion that you want such

that the resonance is changed.

Remember that the incident voice which is coming out incident airflow which is coming

out within the through our vocal cords remains just the same. It is just by tuning the

resonance  we are  able  to  create  different  frequencies  right.  So,  this  is  exactly  what

happens in time. So, these 2 are the classical examples of a Helmholtz resonator that of a

referee. So, whistle and I think referees whistle these days have changed, but this is the

good all times referee whistles, but hopefully the art of whistling will remain.

So, those of you who whistle please remember you are using a Helmholtz resonator, but

by all means whistle by abiding all the social norms do not whistle unnecessarily and get

into trouble. 
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So, that is about  Helmholtz  resonator,  we will  quickly look at  the next topic that  of

radiation impedance. We will see how Helmholtz resonator can be adopted in mufflers to

create special situations wherein certain frequencies can get knocked out, because as I

said that in the course of muffler design what we need is a special arrangements such that

certain frequencies with wherein we know loud sound is existing should get filtered out

or should get knocked out.



So, we will see how exactly. So, what we have in a whistle is just the opposite in the case

of  whistle,  we are  amplifying  a  certain  frequencies  in  a  muffler  we need to  do  the

reverse, we need to kill a certain frequencies. So, it can be done very nicely we will talk

about it in due course, but let us quickly look at this topic of radiation impedance. Till

now we have looked at a muffler which is infinite at both ends right, we had looked at

the  situation  and  we  had  looked  at  the  transmission  loss  of  the  simple  expansion

chamber, but you will recall that it has been the analysis proceeds with the assumption

that it is infinite at both ends.

What  happens  if  instead  of  being  infinite  it  is  actually  finite  and  it  opens  into  the

atmosphere right? This is a more practical problem and this is what we should look at.

So, the actual tailpipe in reality the tailpipe opens into the atmosphere. So, if it opens into

the atmosphere what should be the boundary condition that you should use? Till now we

were saying that if it opens into the atmosphere you should have a boundary condition P

equals to zero, but then there comes one more problem. If we really use P equals to 0

boundary  condition  what  is  the  transmitted  wave  from this  point  onwards?  Nothing

should go out everything should get reflected because of P equals to 0; which means

whatever muffler you use. In fact, that you do not have to use any muffler because of a 0

pressure condition at the end everything should get reflected back towards the muffler

nothing should get transmitted outside the tailpipe right.

So, this is something which we will revisit and we will find tune this analysis such that

this contradiction is sort of mitigated and that we will bring us to the notion of radiation

impedance. So, the concept of P equals to 0 was introduced in the earlier classes as the

boundary  condition  of  the opponent  that  is  only approximate,  that  is  not  the  correct

incorporation  of  this  boundary  condition.  A  better  incorporation  of  this  boundary

condition will be through the radiation impedance condition and when we will open out

this  radiation  impedance  condition,  we will  be  able  to  show you  that  under  certain

special  cases  the  radiation  impedance  condition  will  actually  be  that  P equals  to  0

condition also, but there is a difference between a radiation impedance in general and P

equals  to  0  condition.  The  problem here  lies  in  the  fact  that  if  P equals  to  0  then;

obviously, nothing should go out.

So, if you put a microphone here or if you put a put your human ear outside just outside

the tailpipe, which is where typically you are interested no 1 is interested to hear what



happens  inside  the  tailpipe  you are  interested  to  hear  what  happens  just  outside  the

tailpipe. So, if the analysis proceeds with the boundary condition that P equals to 0 at the

tail pipe, then the travel is there is virtually no sound transmission beyond the tailpipe,

which means that you basically do not need to do anything just by itself the sound that

will come out of the exhaust should get kill, but that does not happen. 

So, we will correct this situation that simplistic assumption that we have made thus part

will  be sort  of corrected and we will  talk  about this  more sophisticated condition of

radiation impedance followed by the source impedance. So, similarly on the other end

we will have the source and we will have to account for the source impedance. So, with

that we should be able to close our discussion with mufflers. 


