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Friends welcome to the third lecture on Acoustics and Noise Control. So, we have been 

taxing for a while we have been giving you motivational staff us to why the topic of 

acoustics and noise control is a very important topic in today’s engineering community, 

we will deeper today. 
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So, just to recall we understood that the cause the perception of sound is the pressure 

fluctuations which are impinging on our ear drum. And the pressure fluctuations are 

conveyed from the sound source to the receiver within the ambient fluid medium which 

in this case as we are talking is the air. 

So, in certain Navil applications obviously, this fluid medium could be water. So, the 

question of transmission is off the sound is essentially boiling down to the question of 

how the pressure fluctuations are getting transmitted from the source to the receiver and 

it so happens to be in the form of wave. What is a wave and how do we arrive at this 

conclusion we will see that right in today’s class; and just a few common things the it is 



well known the sound wave speed in air is about 340 meters per second it does a change 

a bit depending upon temperature atmospheric pressure and so on and so forth. 

So, we will see to it that how the sound wave speed is derive. So, this is something that 

we at this point take it as an elementary fact that we just believe in, but we will derive it 

soon and half. So, the pressure fluctuations are not just an isolated phenomena, so the 

pressure fluctuations are accompanied by density and velocity fluctuations in the 

medium. So, there are density fluctuations which essentially mean that the fluid now 

essentially is not an incompressible fluid, but a compressible fluid because you have to 

accommodate for the fact that the density is going to change as the acoustic waves are 

going to travel. So, pressure fluctuations are accompanied by density fluctuations for 

sure and velocity fluctuations in the media. Fluctuations themselves are being conveyed 

in the form of the wave within the acoustic medium, and their travelling at the sonic 

speed which basically means the sound waves speed numerically the value is near about 

340 meter per second. 

(Refer Slide Time: 02:41) 

 

So, therefore, the prospective that we will look at is that the sound transmission within 

the fluid medium in particular air is just a special case of fluid dynamic; it is a fluid 

dynamic phenomena because of which the sound is travelling from one point to another 

at least within the air. We are not talking about structure bond sound at least for now, but 

we are talking about the transmission of sound from the source to the receiver; this is 



basically the transmission of pressure fluctuations accompanied by density fluctuations 

from the source point to the fluid to the receiver point. Accordingly we will treat 

acoustics or sound transmission more specifically sound transmission to be a special case 

of the fluid dynamic equations and that is how we will derive the governing equations of 

acoustic in the present class. 

So, acoustics we know is a study of various issues related to sound, but we also 

understand from this argument that it is a special case of fluid dynamics where in the 

flow variables are small oscillations over the mean value. Remember that is the 

perspective we had right from the first class that over and above the atmospheric 

pressure there are some small fluctuations which is basically hitting your eardrum that is 

how you are hearing my voice. So, these small fluctuations are the acoustic quantities of 

interest, the fluctuations will be in the form of pressure, will be in the form of velocity 

will be in the form of density. And we will since there is a density fluctuation we are 

which we are going to trace out, so this density fluctuation can be accommodated only if 

we have a model of the fluid dynamic equations as that of a compressible fluid flow 

rather than an incompressible fluid flow. An incompressible fluid dynamic equation will 

not be able to cater for fluctuations in density. 

So, therefore, the perspective that we will adopt from here on is that the acoustics is a 

special case of compressible fluid dynamics or compressible fluid flow, but unlike a true 

gas dynamics course where the these density fluctuations can be of any erotic fashion, 

what we have short of laid down is that these density fluctuations are necessarily small; 

what I mean by small I will come to it in a moment, but at least in conical times it is 

small in comparison to the mean value and I have some numbers to show you as to what 

I mean by that.  

So, essentially what I mean is that all the flow variables namely pressure velocity and 

density can be decomposed into two parts, one which is the mean component and the 

other which is the small acoustic oscillating or fluctuating component right. So, that is 

how we will treat all the variables that arises in acoustics, over and above the mean value 

there is a small acoustic oscillating component and it is the small acoustic oscillating 

component the magnitude of this oscillating component that we will try to track we will 

try to figure out what are the implications of these small fluctuating components are and 

that is the acoustic quantity of interest. 



So, that is the agenda for the day, just to give you a feel as to what the order of 

magnitude of different variables are. Considering a very intense sound source of 100 

decibels which is like very close to a let us say an aircraft engine you will hear this kind 

of sound, it is something which is really heard and thankfully. So, that it is very rare that 

you will hear sound of the order of 100 dB so in fact, you should not be exposed to 100 

db sound in normal day to day life, but a very intense sound of 100 decibels will have a 

mean component for this sound if we now try to decompose the fluid dynamic variables 

into two parts the mean component and acoustic component the breakup goes in this 

fashion for the fluid pressure there is a mean pressure which is 101 kilopascal effectively 

the atmospheric pressure right; the atmospheric pressure is 101 kilopascal so the mean 

component of the pressure is 101 kilopascal in this case. 

The acoustic component is just 2 Pascal right. So, which means it is 2 divided by 100 

into 10 to the power minus 3, that is the ratio between the acoustic component and mean 

component it is very very small. Similarly if you look at the density the density of air 

roughly is 1.2 kilo gram per meter cube in standard conditions, but then even due to a 

100 decibel intense sound, the acoustic component is that much and it is up fifth decimal 

place that you get to see a significant digit. So, it is pretty small this acoustic component 

is pretty small in comparison to mean component right. Similarly if you look at the 

velocities if velocity is in air even if it is a severe cyclonic storm it can go at the most of 

the order of 100 kilometer per hour, but the acoustic component can really go more than 

5 millimeter per second. So, 5 millimeter per second is all that you have in terms of the 

velocity of the fluid particles as it is oscillating. 

But yes if you really considered a quiet room of the sort of this recording studio, then the 

velocity is can be assumed to be nearly 0 that there is no mean flow in this room. So, the 

mean component of the medium that we are talking it could range from 0 in a quiet room 

to a very large value which is happening in the cyclonic storm sort of a case, but the 

acoustic component done the same remains small. So, suffice to say that acoustic 

pressure acoustic density and acoustic velocity is are all small quantities in comparison 

to the mean quantities, its only under a quiet room assumption that you get to see the 

mean component of velocity to be also 0 in which case you just do not worry about the 

mean component, but in some error acoustic cases you are also interested to know what 



happens due to a bulk fluid flow, and those bulk fluid flows are definitely much larger 

than 5 millimeters per second. 

So, this will give us the queue as to how we will go about tackling this problem of 

acoustic wave propagation from the source to the receiver. So, we will essentially 

breakup all our variables of interest in two parts a mean part and an oscillating part. The 

oscillating part we will do a book keeping and we will have a way to show that these 

oscillating party remains small, and we will track out the equations that we get off this 

small oscillating part. We are not interested in the mean part that is what is done in a 

course in fluid mechanics when they will talk about how the equations of mean flow 

evolve, but here we are not worried about the equation of mean flow here we are worried 

about the equation of the oscillating or the fluctuating part right that is the acoustic case 

for our interest.  
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So the process is this way that there are flow variables which is velocity pressure and 

density and the governing equations for this fluid flow variables are continuity equations 

and momentum equation right; something which you have done in your undergraduate 

classes in case you need to refresh please look at any blocked in fluid mechanics to know 

what are the continuity equations and momentum equation you should you could 

possibly look at its derivation also.  



But what we will do is we will appeal to these equations without really going to the 

derivation of continuity and momentum equation we will appeal through this equations 

together with a thermodynamic process, for the compressible flow because as you know 

the compressible flow essentially means that there is a change in pressure as well as 

density. So, if you assume a suitable model for the thermodynamic process which in this 

case will be assumed to be as adiabatic process and if you make that assumption then 

you will get one more equation which is the thermodynamic process equation if you can 

further we will make an assumption today that the bulk fluid is stationary or quite it is 

not having any mean flow. 

So, we are typically interested as of now in an ambient fluid medium where there is no 

mean flow right, we are not talking about severe cyclonic storms why there are large 

mean flow created. We will assume that the fluid is homogenous that is the properties of 

the fluid is uniform throughout the region of interest, there is no change in density or 

there is no change in temp temperature of the mean components there can be change in 

the oscillating part, when we say the fluid is homogenous we will essentially mean that 

the mean density of the fluid at the mean pressure of the fluid is constant over the entire 

region of the fluid, it does change when the sound flows through, but that we will 

separately track through our accounting equations. Another very crucial assumption we 

will do to for now is that the fluid viscosity are neglected in the development that we will 

do today which is the acoustic wave equation. 

So, in this development the reason why fluid viscosity is will be neglected is because the 

effect of fluid viscosity can be shown to be equivalent to an energy loss that is actually 

pretty easy to understand because viscosity is an energy dissipation mechanism. So, the 

inclusion of fluid viscosity which is truly there is going to induce some additional losses 

in to the acoustic wave propagation, because of which the wave will sort of decay as it 

travels further distances, but the presence of this decaying aspect will be ignored. We 

will simply assume today that there are no energy dissipation mechanisms in the fluid 

and we will try to figure out that what is the equations governing the transmission of 

waves on transmission of sound as I should say from the point of generation to the point 

of reception. 

So, using these equations acoustic wave equation will be derived. So, let me show you 

the derivation.  
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So, here we will derive the governing equations for acoustics we will start by specifying 

all the flow variables of interest. So, flow variables of interest are one pressure, so that 

we will denote by the symbol p and we will break this up into two parts, the mean 

component pm and the acoustic component are the fluctuating part as we have said. So, 

this is the mean component and this is the acoustic or fluctuating component. So far so 

good now to make sure that we understand that the acoustic component is much lesser 

than the mean component what we will do is we will introduce a bookkeeping parameter 

epsilon. So, epsilon is a small book keeping fictitious parameter and the reason for its 

introduction is just to keep track of the orders of magnitude of different variables. 

So, it does not have any physical relevance, but we will see it will be very useful in the 

derivation process if we introduce this epsilon notation here. So, similarly the density can 

be broken down into two components; one which we will do denote has rho subscript n 

meaning again the mean component plus rho a, and just as usual this is the acoustic or 

the fluctuating part of density right and again since we know that the acoustic or the 

fluctuating part of density is small in comparison to the mean density, we will precede 

this rho a with an epsilon term. So, wherever we see this epsilon level we will understand 

that it is small in comparison with other terms which does not have this epsilon 

component right and lastly for the velocity which is a vector we will denoted as u with a 

vector symbol, and we will ignore the presence of any mean component as we said that 



we are going to think that the fluid is not having any mean component it is having only a 

fluctuating components. 

So, accordingly this will be denoted as epsilon u a right. So, there is no mean flow in the 

fluid medium as per our assumption. So, with this setup let us now look at each of the 

above each of the fluid dynamical equation we will start with the continuity equation. 
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So, the continuity equation you will recall from any fluid dynamics undergraduate level 

text book is given by del rho del t plus del dot rho u is equals to 0, this is the continuity 

equation. So, if we substitute rho is equals to rho m plus epsilon rho a and u is equals to 

epsilon u a in this equation what we get is the following, del rho m del t plus epsilon 

times del rho a del t is what we get from the first term, plus class del dot rho m plus 

epsilon rho a into epsilon u a u vector is being replaced by u a because there is no mean 

component as per our assumption, so that must be equal to 0. 

So, we will open this up and what we get is the following del rho m plus del t. So, 

derivative with of the mean density with respect to time, plus epsilon times del rho a del 

t. So, derivative of the acoustic density with respect to time plus divergence of the 

following quantity epsilon rho m u a, plus epsilon square rho a u a is equals to 0. So, this 

in turn would mean del rho m del t plus epsilon times del rho a del t, plus del dot rho m u 

a plus epsilon square del dot rho a u a is equals to 0 right? Now we note the following we 

understand that this is an order one term, where as this term which is the square 



bracketed term multiplied by epsilon since it is getting multiplied by epsilon, we call this 

term as order epsilon term and similarly this term is an order epsilon square term right? 

By our basic assumption epsilon is a small number which means that though this 

equation says that on the left hand side you have 3 terms and some of these 3 term 

should be 0, but we realize that there is a difference in orders of magnitude between the 3 

terms. 

There is a the first term which is of order one, there is a second term which is after which 

is order epsilon that is it is necessarily smaller compared to the first term and if you note 

the third term the third term is even smaller because it gets pre multiplied by epsilon 

square if epsilon is small epsilon square is even smaller. So, therefore, what we have 

here is sum of 3 terms on the left hand side equated to 0, but then each of these 3 terms 

are having different orders of magnitude. So, using the fact that these 3 terms of different 

orders of magnitude there is no possibility that these 3 terms can mutually cancel each 

other because they are at different orders of magnitude, one is very large the other is 

small the third one is even smaller. 

So, therefore, the only way in which the sum of these 3 terms can go to 0 is by the 

argument that each of these 3 terms has to be 0 this is what we call as an asymptotic 

argument or an order of magnitude study.  
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So, by order of magnitude arguments we conclude that each of the terms each of the 3 

terms are zero right which means at order one at order one we have del rho m del t equals 

to 0, which implies that the mean density of the medium does not change with time also 

we have assumed the medium to be homogenous which implies that mean density rho m 

is constant over space as well. So, we have as a result rho m is constant over space and 

time right. So, this is our inference at order one, going back to order epsilon what we get 

is the following at order epsilon if we look at the equation we will get the following that 

del rho a del t, plus divergence of rho m u a has got to be 0. So, del rho a del t plus del 

dot rho m u a has got to be 0, but rho m as we have seen is constant over both space and 

time which means you can pull rho m out of the differentiation process within this 

divergence operation. 

So, that essentially means del rho a del t plus rho m del dot u a has got to be 0. This is an 

important equation which we mark it as equation one; at order epsilon square you get 

another equation, but this is not of our interest. So, continuity equation basically gives us 

two very important inferences one is that the mean density is actually constant overtime 

it is also assume to be constant over space because my assumption we are now dealing 

with a homogenous medium, at order epsilon we get this equation one as our result. 
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Now coming to the momentum equation or the Euler equation; Euler equation is a 

special case of the Navier-Stokes equation for inviscid fluid recall by our assumption we 



are dealing with inviscid fluid for now. This equation is stated is the following rho times 

D u D t and u is a vector is equals to minus gradient of p, and D u D t, D D t rather is 

called the material derivative and it has two parts one is it is simply partial derivative 

with respect to time plus u dot del.  

U dot del you may open it up in the following fashion del del t plus u x del del x, plus u y 

del del y plus u z del del z if you want to. So, this is this statement of the Euler equation 

which is available in any fluid mechanics book if you want you can check it. So, now, 

we will proceed from here on in our derivation for the acoustic governing equation. So, 

this is given as follows so firstly, we will try to make a simplification for the material 

derivative. So, the material derivative Du Dt will be written as del u del t, plus u dot del 

of u itself right the vector u itself.  

So, therefore, now substitute the fact that the velocity vector is actually comprising of the 

small acoustic component and nothing else. So, we have already define the velocity 

vector to be u is equals to epsilon u a, u is equals to epsilon u a was define. So, using this 

definition we will simply make the appropriate substitution in the material derivative that 

we see here. So, again you see that D u D t therefore, is epsilon del u del t plus epsilon u 

dot gradient of epsilon u. So, that again means that the first term is order epsilon and the 

second term is epsilon square u dot del u. 

So, therefore, as you as one can understand from these derivations this is a higher order 

term or order epsilon square term. So, I will put in a here. So, del u del t the formula for 

del u del t will now read as the following will have epsilon del y a del t, plus epsilon u a 

dot del gradient of epsilon u a. So, u a is a vector quantities, I appropriately put a vector 

sign here and then in the next step if I simplify the second term you will see that what I 

have done is I have taken the two of epsilons out and this is epsilons square. So, the 

second term is epsilon square u a dot of gradient of u a. Now please note that we have 

already said that epsilon is a small fictitious quantities, epsilon square is even smaller. 

So, as a result this second term is order epsilon square, where as the first term is of order 

epsilon. So, definitely the first term is larger than the second term because it has only 

order epsilon sitting in front of it, where as the second term is having an order epsilon 

square effect and as a result is small. So, we might as well choose to ignore the second 

term and write this as epsilon del u a del t from here. So, therefore, a material derivative 



of u in the Euler equation will from here on the simplified to epsilon del u a del t, del del 

t is just the partial derivative with respect to the time. 
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So, what we have derived is that the material derivative Du D t is equal to del u a del t, is 

equal to del u a del t for the acoustic component, that is what we have derive in the 

previous page of the notes. So, I will pick it up from here that del u del t is effectively 

epsilon times del u a del t. So, next we appeal to the momentum equation which we had 

written it here. So, this momentum equation I am bringing it again here, and now what I 

will do is I will keep substituting the form of density in its mean plus the acoustic or the 

fluctuating form d u d t is already known to be epsilon del u a del t and finally, on the 

right hand side we have gradient of mean pressure plus epsilon times acoustic pressure. 

Now, what we do is that we again from this equation look at what happens at each order. 

So, at order one, we include those terms which do not have any effect of epsilon that 

gives us gradient of P m to be 0. So, this means that the gradient of the mean pressure is 

0, that is actually no surprise because you will recall we have neglected the effect of any 

mean flow since the effect of mean flow is neglected it is, but natural that the mean 

pressure gradient has to be 0. 

Because remember if there is a mean pressure gradient there has to be a mean flow 

accompanying that part, but now since we are ignoring the effect of mean flow we are 

treating that the medium is essentially quite there is no mean flow so therefore, mean 



pressure will not bother us so the gradient of mean pressure will be 0. So, will usually 

not worry about this order one equation at the acoustic level, this is what will give us the 

mean flow effects if at all it is there; here we choose to ignore them in for effect so 

therefore, it is not to our interest from here up. 

Next if we collect the terms of order epsilon we get to see rho m del u a del t on the left 

hand side, and that must be equals to minus gradient of p a this is what happens at order 

epsilon. There is also one more term at order epsilon square which would read as rho a 

del u a del t, but we understand that order epsilon square being small we will choose to 

ignore this affect, we are only going to look at equations at order epsilon. So, the 

equation at order epsilon as we have written is this equation. So, this equation is 

basically the momentum equation for our acoustic case. Please understand that this is a 

simplification to the Euler equations are the general Navier stokes equation, now what 

we are reading as the momentum equation from here on in the acoustic case will be this 

and this is what we will use correspondingly in the subsequent derivation also, but for 

now this is the final form of the momentum equation for the acoustic fluid. 

So, there are two equations that we have derived, a third equation will come from the 

thermodynamic process.  
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So, the thermodynamic process states that the pressure and the densities have got to be 

related. So, the thermodynamic laws essentially relates the pressure of the fluid and 



density of the fluid as the compressible flow process is taking place. Now using Taylors 

theorem and treating this as any obvious function nice and smooth and continuous, we 

could write this as P minus P 0 is equals to d P d rho evaluated at the mean quantity into 

rho minus rho m, m is the subscript for the mean quantity some times in some books it is 

just called 0, but we will use the subscript m for the mean quantity. 

So, the value of the pressure about the mean point can be obtained in terms of the value 

of the density about the mean point, and the function relationship between the two is just 

related by the gradient of the pressure with respect to the density, but then P minus P m 

exactly the acoustic pressure. So, P minus P m if you recall is epsilon P a. So, that must 

be equals to d P d rho into epsilon rho a. So, similarly rho minus rho m by our definition 

is epsilon times rho a. So, what we have got as a result of this thermodynamic analysis is 

that the acoustic pressure is related to the acoustic density through this relation right.  

We will call this gradient d P d rho evaluated at the mean condition as c square, we will 

see that c eventually will turn out to be the wave speed, but that discussion will have it 

probably in the next lecture, but at present we are just assuming this quantity to be c 

square and let us see where that takes us. So, now, what we have is P a is equals to c 

square rho a right. So, the acoustic pressure is related to the acoustic density in the above 

manner. So, we have got all the 3 ingredients in place continuity equation, momentum 

equation and the thermodynamic process what remains is just do a few simplification.  

(Refer Slide Time: 36:53) 

 



So, the simplifications will be in the following manner, if you recall the equation one that 

we wrote down for continuity equation stated the following that this is the equation one. 

So, equation one I will just write it once again del rho a del t, plus rho m del dot u a is 

equal to 0, and similarly this is basically equation one. 

So, now using 3 what we have is rho a is equals to 1 by c square P a right. So, therefore, 

we have del P a del t, 1 by c square plus rho m del dot u a as our equation of interest; and 

similarly if we now look at equation two what we get was this. So, this equation two I 

will rewrite again with gives me as rho m del u a del t is equals to minus del p a. So, this 

equation I will take divergence of this equation. So, taking divergence of this equation 

which means I will just do a del dot operation on this equation or maybe I will do that in 

the next. So, step taking divergence of this equation. So, this equation can be rewritten as 

rho m del u a del t, plus del P a the left hand side of it. So, now, I want to take divergence 

of it. So, I will give del dot and that must also be equal to 0. 

So, therefore, what we have is rho m del dot del u a del t remember rho m is a constant in 

space and time. So, the divergence operational got nothing to do with rho m, it just 

comes out and del dot del p a is del dot del is the laplacian. So, we will get del square p a 

that must be equals to 0. Now in this equation we take time derivative once again we 

take del del t of this equation once again. So, when we take del del t of this equation 

what we get is the following 1 by c square, del 2 P a del t 2, plus rho m del dot u a and 

this guy has got to take a time derivative of right.  

Now look at these two equation. So, this I will call it my equation 4, and this I will call it 

my equation 5. Look at these two equations you have the same term sitting here, these 

two terms this one and this one adjust the same. The order of the differentiation process 

can be inter changed the first you can take the time derivative and then to the divergence 

or first you can take the divergence and then do the time derivative both will give you the 

same answer as long as you are dealing with nice and continuous function. 

So, these two equations have sometimes mistake in the miss the sign for the vector 

please be here with me on that, but now that I have corrected it you can understand these 

two terms are same. So, therefore, if we take a subtraction between these two equation, 

so subtracting 4 from 5 we can get to this equation 1 by c square del p a del t taken twice 

is equals to del square P a this is the acoustic wave equation.  
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So, acoustic wave equation is the equation dell square P a which is on the acoustic 

pressure is equals to 1 by c square, del 2 P a del t 2. Since from here on we will be 

always dealing with acoustic pressure we would not be dealing with mean pressure. So, 

without loss of any clarity we may as well omit this subscript a, the understanding would 

be that when we write P without any subscript essentially means that it is the acoustic 

pressure because we are not interested in the mean pressure in this course at least so 

therefore, the acoustic wave equation will be given in this form. In the next class we will 

elaborate more about the properties of this acoustic wave equation, but that is it for now. 

Thank you. 


