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Cuton Waves in duct
 

Till  now we have been looking at  plane waves in  our  discussion on Acoustic  Wave

Propagation. Today we will look at one variant of plane wave. It is technically called the

cut on waves. These are not really plane waves, but then we will understand these waves

as super position of plane waves. So, let us take the problem head on.
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So,  the  problem  that  we  will  be  interested  looks  pretty  similar  that  we  have  been

analyzing earlier also. So, again to start with, there is a long infinite duct and we have

already seen that sort of a problem and the similarity also lies in the fact that it will be

excited by a piston, but the piston till now we were taking as a rigid piston which would

oscillate to and fro in the following fashion. So, these are the extreme configurations

within which we were assuming that the piston would be oscillating. Now, we will take

things in a different fashion. So, we will no longer say that the piston is completely rigid.

We will rather think that the piston itself is a flexible structure and therefore, it vibrates

not like a rigid to and fro motion, but it will vibrate like a sinusoidal fashion. So, this is



how it vibrate. So, each and every point of this piston is going to move up and down

between these two dotted lines as is indicated. So, the piston will be assume to lie at x

equals to 0. So, this is our coordinate axis. So, the piston is at x equals to 0 and as usual

this is an infinite wave infinite duct to start with. So, here we will refer to this problem

which is called the cut on problem in acoustic ducts. Acoustic cut on modes is what

specifically we wish to study.

So,  from  here  on  we  will  need  to  appreciate  the  fact  that  in  contrast  or  previous

derivation,  we  were  saying  that  nothing  changes  in  the  y  direction.  Here  we  are

expecting a particular change because right at the location x equals to 0, we do not, we

are not expecting that all particles to be moving at the same velocity because the velocity

of the piston after all is in a sinusoidal fashion or may be the displacement. You will refer

to is as shown in this figure is definitely in a sinusoidal form. So, therefore, you do not

expect  all  the  particles  which  are  sort  of  kissing  the  surface  of  this  piston  to  have

identical motion.

So,  therefore,  we  will  not  expect  a  one-dimensional  wave,  definitely  not  a  one-

dimensional plane wave to be induced in this situation. So, to start with, we will have

that at x equals to 0, there is a flexible piston vibrating with a velocity u x. It is in the

direction of x as a function of y because this  piston does not have uniform velocity

across all its points. So, it is a function of y and we will take this point to be y equals to

plus l and the bottom is to be y equals to minus l which means that the width of this duct

is 2L. So, the from of this function is such that it has a maxima at x equals to 0, y equals

to 0 and it is falling to a zero level at the edges.

So, we can assume this form to be cos of pi y y 2L, right and there is certain amplitudes.

So, we will call that may be capital U, capital U0. So, the piston is vibrating in this form

and obviously, it is vibrating harmonically. So, that goes without saying e to the power i

omega t is implied. So, the question is what are the acoustic response at various points

that as set up due to this condition, right. So, towards that end we firstly realize that the

velocity of the piston which sort of excise the acoustic response is having a specific form

along the y direction which is given in this equation.

So, to recall the acoustic wave equation that we need to solve is given by del 2 p del x 2

plus del 2 p del y 2 plus k square p equals to 0, where k square or where k is omega by c.



Omega is the angular frequency of the oscillations and c is the sound speed, right. So,

here we have to solve this equation with the understanding that the velocity at x equals to

0 should exactly confirm to the velocity of the structure, the equation for which is given

in equation 1, right. So, let us assume a specific form for this p.

This time we are already having a lead to the form of the y dependence in this acoustic

pressure function p. The form of y dependence should possibly be at this stage. I cannot

say should be, but I will say qualify that as should possibly be of the same form as the

velocity because y dependence of the velocity is showing a form which is like cos sin pi

y by 2L. So, let us bet on this function p of x, y is some function on x times cos of pi y

by 2L. At this stage, it is just an assumption, but we will prove that this assumption is in

fact holding good, right.

So, we will see that in as we go along, so if we make this substitution in to the governing

equation, substituting this in equation 2 where this is my equation 2, what is it we will

get? We will get the following cos of pi y by 2L del 2 p del x 2 can now be written as d 2

p  d  x  2  because  that  is  the  only  variable  of  x.  Being  the  only  variable  that  is  left

independent, the y dependence has been assumed to be cosine.

So, if you now take second derivative of this function with respect to y, you are going to

get a minus pi y by 2L whole square cos pi y by 2L in to p plus k square p cos of pi y by

2L, right pi by 2L. There is no y here this pi by 2L, right. So, now this in other words can

be written as d 2 p d x 2 plus k square minus pi by 2L whole square p equals to 0, right.
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So, in the next step what I will do is, I will just rewrite this in the following form d 2 p d

x 2 plus k x square p is equals to 0, where k x square is k square minus pi by 2L whole

square. That is exactly what we had right, but the solution for this is already known. The

solution for this is p as a function of x will be a e to the power plus i k x in to x plus b e

to the power minus i k x into x, right.

This is the same old situation as the one d acoustic plane wave equation. Just that we

have k x appearing instead of k and this being A1, this equation being identical to the one

acoustic plane wave equation except for the fact that k x has taken the place of k. This

solution can simply be coated as the sum of two complex exponentials. Each of them has

a physical  characteristic  associated  with it.  This represents  an inward or a  backward

travelling  wave  and  these  represents  a  forward  travelling  wave  because  the  time

dependence is e to the power i omega t.

So, we have thus argued that a wave is an incoming wave which is coming into the point

x equals to 0, but we realize that in this situation, this a wave is not plausible because it is

an incoming wave. There is no reflection that can come in because we are at present

dealing with the situation that the duct is infinite.

So, the only wave that is expected because of an excitation at x equals to 0 is a forward

way within the duct. So, accordingly we will choose only the forward wave to be the

solution. So, backward wave is implausible, thus p x will be chosen as b e power minus i



k x in to x, right and now for the value of b, for that we will refer to the moment, the

Euler  equation  or  the  momentum  equation,  so  that  you  will  recall  is  given  by  the

following rho naught del u x del t is equals to minus del p del x right, where d u x is the.

So, this u x refers to the velocity, particle velocity along x direction, right.

So, i omega rho 0 u x has got to be with the minus sign. This will become plus i k x in to

p which in again gives us to the equation that we had already obtained earlier that u x or

the particle velocity would be k x divided by omega rho 0 into p, right. So, therefore, the

particle velocity is k x by omega rho 0 into b e to the power i minus k x x, but then there

p is a function of both x, y right and x, y is p x into cos of pi y by 2L. So, we can bring

that in.

So,  that  is  cos  of  pi  y  by 2L which  will  multiply  this  factor,  but  then  we want  by

kinematic continuity condition, we want that u x and x equals to 0 should exactly match

the velocity conditions of the piston which is now assumed to be flexible.
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So, we had this equation. So, at x equals to 0, we will have Ux to be given by k x by

omega rho 0 b cos of pi y by 2L, but by kinematic continuity at x equals to 0 velocity of

the structure must be equals to velocity of the neighboring acoustic fluid particles. So, at

x equals to 0. What we must have is k x by omega rho 0 b into cosine of pi y by 2L must

be equal to u 0 cosine of pi y by 2L which was exactly the form of the piston velocity



that we have assumed we had given a certain piston which is moving in a particular way

cosine pi y by 2L and the amplitude being U0.

So, now we are substituting that and with that we should, we make two conclusions. One

is that our choice of at the remember at the opening we said that let us assume that y

dependence associated with the acoustic pressure function bared the same cos sinusoidal

dependence  and  that  assumption  is  now  proved  to  be  correct  because  with  that

assumption, we are led to a velocity form which exactly matches to the velocity form of

the driving structure, right.

Therefore, the fact that these two velocity forms are same: thus, the assumption of p x y

being a product of A p function of an s function, sorry together with the same y function

as was embedded in the velocity of the piston, we are now seeing that assumption is in

fact  justified  because  it  is  only  with  that  assumption  we  are  getting  2;  the  final

conclusion that the acoustic fluid particle is having the same velocity as the neighboring

structural particles.

So, had you taken any other functional dependence in y, you would not have got to this

conclusion, right. So, therefore, this is correct and this also means that B is U 0 omega

rho 0 divided by k x. So, we have been able to find the amplitude. Also the amplitude of

the wave is given by this formula, where k x is given by this formula, right. Now, other

than facts that the mathematical derivation is over, let us try to once more understand the

physical implications of this solution.
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So, we are having a duct wherein we are getting the p x, y to be some amplitude which is

U0 omega rho 0 by k x in to e to the power minus i k x x into cosine of pi y by 2L, where

k x is actually omega square by c square minus pi by 2L whole square square root of it,

right. So, the first question is, do we always get a travelling wave solution? What do we

mean by wave? This time I must, may clarify that once again by the very form of it. So, I

will put a few remarks.

The first remark is that note in contrast to plane waves, plane travelling waves herein

there is y dependence of acoustic pressure. By definition a plane wave is a wave wherein

a perpendicular to the direction of travel we expected all the particles to have identical

acoustic pressure.  Identical  acoustic  velocities,  everything had got to remain constant

over planes which are perpendicular to the direction of travel, but now noting from the

formula that we have derived mathematically we are saying this is not true. We cannot

identify  the  plane  perpendicular  to  the  x  direction  to  be  the  plane  wherein  nothing

changes no things are actually changing at any y.

So, at any specific plane if you see the pressures are not constant, so in other words at

any specific plane given by x equals to constant, any constant you choose at any specific

plane pressure p x y is not constant. So, therefore, these are not plane wave solutions. So,

this  is  our  first  encounter  with  waves  which  do  not  have  a  plane  wave  type  of

characteristics, but the next question is, are they travelling wave. So, here specifically the



form that happens on along any x equals to constant line, the acoustic pressure will have

the exactly same dependence as the velocity profile. So, if you take along this section, if

you happen to  compute  what  is  the  acoustic  pressure,  it  will  have  the  same sort  of

dependence as you had for the velocity of the piston, right.

So, it no longer is a plane wave, but none the same it has a particular profile, right the

profile of which is as indicated in this red line. So, the next question which we turn is

that is this a travelling wave? May not be a plane travelling wave, but is this a travelling

wave? You still have an e to the power minus i k x sort of dependence. So, e to the power

i omega t into the power i minus k x x is still there.

So, the point is if k x is real and positive, so then what we are getting is p x, y is U0, U0

omega rho 0 by k 0 k x into cosine of pi y by 2L into e to the power minus i k x x, right.
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So, if k x is real and positive, then obviously this is a travelling wave because with e to

the power i omega t, this represents a travelling in plus x direction represents a wave

travelling in plus x direction, right. So, that part is easy to conclude, but then there is a

big if is k x real and positive look at the expression for k x. K x will be real only if

omega by c is greater than pi by 2L. So, this wave will be a travelling wave provided

omega by c is greater than pi by 2L. So, from this equation which I guess I should call it

3. So, from 3, it is clear that k x is real if and only if omega by c is greater than pi by 2L

or omega is greater than pi by c pi c by 2L, right.



So, in other words, yes this is a travelling wave, but only for frequencies higher than a

particular value, right. So, this is why it is called a cut on wave because beyond the

frequency it  is  a  travelling  wave.  So,  it  is  like  a  switch  which  is  switching on at  a

frequency beyond this value pi c by 2L and only beyond this value, the solution is that of

a travelling wave, right. Thus, these waves are referred to as cut on. Sometimes it is also

interpreted the other way round cut off waves. So, what is the interpretation of cut off?

So, definitely they exist at high frequencies, but when you are lowering your frequencies

below a critical limit, the waves will no longer have a travelling nature.

So,  therefore,  in  that  sense  it  is  a  cut  off  wave  also.  So,  cut  on  and  cut  off  is

interchangeably used if you take this idea that you are sweeping the frequency range,

then the point is this sort of a wave will exist only when the frequency is high enough the

critical frequency being given by pi c by 2L, right. So, that is one aspect of it. So, this is

y and it is called cut on and cut off wave.
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So, the question is what happens? The third remark that I would like to place is what

happens if omega is less than the cut on frequency by the way pi c by 2L is called the cut

on frequency, I should make that comment also. So, the frequency I will just elaborate

this point a little more. These waves are referred to as cut on waves since they have

travelling characteristics only beyond a certain frequency. This frequency is referred to

as the cut on or the cut off frequency.



So, in the above case, the cut off frequency is shown to be pi c by 2L, right. So, this

wave mode will be a travelling wave mode only beyond that particular frequency. So, the

next question is what happens if the frequency is lesser than that? So, if the frequency is

lesser than that, k x a square root omega square by c square minus pi by 2L whole square

and in this case, you could write this as plus or minus i square root pi by 2L whole square

minus omega square c square because pi by 2L is more than omega by c. We have just

shuffled this  around and what is  the form of p x y that  we are looking at.  We have

already derived p x y to be of this form. So, let me cut and paste this formula.

So, this is the formula that we have already derived. So, let us take this as plus or minus i

into a. So, basically a is this under root quantity and it is positive because it is just what

you get by using your calculator. So, now this k x here, I would like to substitute it with

let us say if I substitute this with i times a, what happens is I get a minus i square and

minus i square is plus 1, right. So, therefore I will get a growing solution. In this case, e

to the power minus i square which is plus 1 a x and by our assumption that a has been

chosen to be greater than 0. This implies a growing solution which again is physically

infeasible.

What about the other choice of sign? The other choice of sign if we now choose k x to be

minus i times a into x, I have just replaced k x as plus i times say in on the right hand

side and I am now replacing k x as minus i times a in this part of the derivation. So, that

will possibly through up more interesting solution. This part remains the same. So, this

time you have e to the power minus a x as the solution. This is decaying solution. So, it

decays at as it travel. So, here is your duct. So, some excitation is given at x equals to 0.

Here what you see is that the response along x is decaying.

So, after a certain distance away you are not going to get much of the acoustic pressure.

So, whatever is happening is happening in the region near to the source. So, again the

situation of a near field or evanescent wave comes in wherein you have the acoustic

pressures to be active only near to the source something which we had seen even in the

previous problem, where we took a bending wave to be travelling and we saw that below

the  coincidence  frequency  that  there  is  only  a  near  field  region,  where  the  acoustic

particles are active and you are getting an acoustic pressure, but the acoustic pressure

rapidly decays in the direction transverse to the bending source.



Here the interpretation of the source is that of the vibrating piston which is vibrating in a

sinusoidal fashion and here you have seen the same physical implications coming out

that  it  is  only  below a  particular  frequency  which  is  technically  turned as  a  cut  on

frequency that you are getting an evanescent wave, wherein the acoustic pressure waves

are rapidly decaying within a region very close to the source, but far away from the

source there is no response.

So, here what we see is that far away from the source and by far away I mean I choose x,

such that a times x is large, right. So, if I choose again a times x is like 10, then I would

get a decay which is e to the power minus 10 which is pretty large number, right. So, that

may be a pretty large value, large decay compared to what is happening at the source.
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So, far away from the source, the acoustic pressure decays, right. So, these waves are

called evanescent waves or near field waves, right. So, we could possibly draw a similar

dispersion curve also, but this time it is with respect to k x and omega. So, k x and

omega plot would emerge. So, the critical value is this value which is pi c by 2L. The cut

on frequency is as we have derived is pi c by 2L for frequencies which are more than pi c

by 2L. We expected travelling wave characteristics and accordingly k x is real positive

and that is why it leads to a travelling along plus x direction type of a solution. So, if this

equation is now plotted, I call this equation as the dispersion equation. So, these equation



which is let us say equation 4 as of today. So, if this equation 4 is plotted, it would look

something like this. 

Firstly, the plot is only valid for values of omega which is greater than pi c by 2L. It is

not valid for the other part of it because then it will be imaginary. We are not drawing the

imaginary k x numbers. So, it will look something like this. Remember if omega is very

large, then this quantity or pi by 2L will have minimal effect. So, it will tend to, as omega

tends to infinity, k x will again tend to omega by c because pi by 2L that time will look

like a very small number in comparison to omega by c and we will not be able to nullify

much of the effect.  The negative nullification,  the partial  nullification I should say is

minimal.

So, therefore, this plot would finally tend to approach the omega by c curve at large

values of omega. So, this is like a curve which starts out at pi c by 2L, but tries to latch

on, but will never be actually hitting that value, but it will sort of asymptotically touch

the curve omega by c. This is the dispersion curve corresponding to the cut on mode and

this frequency is called the cut on frequency and this region, this frequency region you

will get near field waves or evanescent waves, right. Let us have another interpretation

now associated with this solution. So, this will be my remark 4. So, again I will copy and

paste may be this equation. Firstly, I need to select, ok.
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So, we will have another interpretation of this solution which is possibly, which should

possibly tie things up with respect to our plane wave analysis. So, we did make a remark

that this sort of a solution is not a plane wave because it does not satisfy the conditions

of, it  does not satisfy the conditions that you know sections which are normal to the

direction of travel should remain at the same invariant conditions. All particles should be

having identical response. It does not satisfy that. So, this does not qualify to be called as

a plane wave, but it is possible to decompose this solution as a super position of two

plane waves. Let me show you how. 

So, I could always decompose this cos quantity as the sum of two exponential quantities,

right. I could write this as e to the power i pi y by 2L plus e to the power minus i pi y by

2L divided by 2. That is exactly cause of pi y by 2L and e to the power minus i k x x is as

usual. So, this in the next step, I will just rewrite this solution in the following form. So,

we will have e to the power minus i k x x plus i pi y by l is 2 here which I should write

plus e to the power minus i k x x minus i pi y by 2L, right. So, if I choose let us say k y

equals to pi y, sorry pi by 2L, so if I choose k y to be pi by 2L, then this solution is

written as p x y equals to u 0 omega by rho 0 divided by 2 k x e to the power minus i k x

x plus i k y y plus e to the power minus i k x x minus i k y y.

In this form, we realize that though in its entire, in its totality p x y is not a plane wave,

but what we have essentially done now is that we have decomposed the solution, the

response in terms of two plane waves. We already know that both of these are plane

wave solutions, but they have an important feature. One, both of them are travelling in

the positive x direction, but one of them is travelling in the positive y direction. The other

is  travelling  in the negative y direction,  right.  So,  accordingly if  we have to draw a

diagram, then this wave I may change the color may of this. So, I will do this in red,

correct: E to the power minus i k x x min minus i k y y given in red.

So, what is the wave? What is the direction of travel? For this wave with k x and k y both

positive, it is going to be in the first quadrant. It will travel in the first quadrant. What

about the other wave here? This wave will travel in the fourth quadrant, right. So, what

you have here is that the total acoustic pressure is now seen to be the super position of

these two waves: one traveling in the first quadrant;  the other traveling in the fourth

quadrant together.



As you can understand the component of these two waves are traveling in the opposite

directions with regard to the y direction, right so in the y direction you have a component

of the red wave to be going in the upward direction whereas, the component of the blue

wave is travelling in the negative direction. So, in the y direction you have two waves

which are travelling in the opposite direction and thus, they create a standing wave.
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In the y direction, we have already seen standing wave in the context of acoustic ducts.

So, here again what we see is that in the y direction, we have two oppositely directed

travelling waves. These super pose to give a standing y wave along y which is precisely

this form cos pi y by 2L. So, cos pi y by 2L is like a mode shape, but that is only along y.

This observation does not hold for the x direction. In the x direction, the two waves are

travelling in the identical direction. So, that is why it is travelling in x, but it is standing

in y.

So, there is a standing wave profile which is generated in the y direction which travels

along x. That is the interpretation of the cut on waves that I would like to bring up out.

So, basically what happens is that once you have an excitation which is anything, but like

of a rigid piston, not only this cosine you can try it with anything else also. What will

happen is that plane waves actually will emerge, but they will keep getting bouncing on

and off. So, what will happen is that this will get reflected.



Now, you already know that the angle of incidence, angle of reflection formula if you

apply, what happens is that this will have a multiple reflection, there are plane waves, but

these multiple reflections will keep happening and these multiple reflections note from

the schematic figure itself is clear that these multiple reflections are not going to have

any travelling characteristics in the y direction, but in totality the wave or the acoustic

pressure profile will have a travelling wave characteristics in the y direction, in the x

direction, but in the y direction, it will remain stagnant or it will remain standing wave

because it cannot escape in the y direction. It is always going to get reflected back within

the domain  and as  a  result  in  the standing wave, there  is  a  standing wave which  is

generated in the y direction, but in the x direction, it is going to be a travelling wave. 

So, these are very important class of waves which we have now encountered. These are

called cut on waves. So, we will meet again in the next lecture and then, we will take it

up from here.

Thank you.


