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Near Field Acoustic Waves
 

In the last class, we talked about fractional waves or bending waves that were generated

in, that is possible to be generated in a beam.
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So, we started with the governing equations of beam and found out that at any frequency,

it is possible that the fractional waves will be induced in a beam type of structure.

(Refer Slide Time: 00:37)

We found a very important result that in contrast to the acoustic waves or one-dimension

acoustic waves, we have rather two different types of fractional waves; one is a travelling

wave and the other is the evanescent wave. Evanescent wave is generally associated with

the imaginary wave numbers, whereas the real wave numbers are associated with the

travelling components, right.



So,  today  we shall  see  certain  aspects  of  how these  fractional  waves  once  they  are

induced in the structure, then that leads to acoustic radiation. So, let us see what we do

today.

(Refer Slide Time: 01:20)

So, here is our beam structure and again at present we are taking this to be infinite, right.

So, we have an infinite beam structure and we are assuming that there is a travelling

wave which is somehow induced in this beam structure because something is happening

upstream and that leads to a travelling wave. So, we will say that this travelling waves,

so there is a travelling wave in beam is induced and just to keep things specific, we can

call that a travelling wave of an amplitude a, but now since it is a travelling wave and it

is also travelling in the positive direction,  the travelling wave has to be of this form,

where K b is fourth root of m omega square divided by E l, right.

So, there has got as per this hypothesis of this problem, we are saying that the structure is

bearing a harmonic travelling one-dimensional wave right, but now as opposed to usual

codes in structure dynamics where we assume that the structure is vibrating in vacuum

here, we have the structure on one side of the structure, we have the acoustic fluid, right.

So,  these  vibrations  are  supposed  to  be  conveyed  into  the  acoustic  fluid  and  those

oscillations  of  this  structure  should  induce  oscillations  in  the  acoustic,  neighboring

acoustic fluid particle which should get communicated all the way up to our ear drums

leading to the perception of sound, right.



So, therefore, what we are looking for is that because of these harmonic fractional waves

which are induced in the beam, what is the acoustic pressure filled in the fluid. This is

the  very  fundamental  problem  because  we  know  that  the  vibration  of  the  structure

definitely leads to perception of sound, but the question is how is the vibration of the

structure getting conveyed into the fluid and leading to the perception of sound. That is

the question that we will try to answer through this simple exercise. So, accordingly what

we do firstly is that we will mark off our coordinate axis as x and y. We had already said

that the travelling wave in a beam is A e to the power minus i K b x.

So,  the  point  is  at  we will  again  appeal  to  our  usual  continuity  conditions.  So,  the

kinematic continuity conditions here would be stated in the following manner that this

structural velocity must be equal to the acoustic particle velocity at the fluid structure

interface. The fluid structure interface is exactly this y equals to zero condition. So, at y

equals  to  0,  you must  have  the  structural  particle  velocities  matching  with  the  fluid

particle velocities.

The  displacements  of  the  structural  particle  velocities  should  match  with  the

displacement of the fluid particle velocities because the structural particles can neither

penetrate  into  the fluid particles  nor can it  lead  to  some kind of  a vacuous opening

between the fluid and the structure. So, this is called what kinematic continuity condition

is. It is a very obvious condition and it will keep coming back in various applications of

both vibrio acoustics as well as in a general problem of fluid structure interaction. So,

this is an important condition.

Now, in this problem we are expecting this is the two-dimensional problem because the

structure is 1D. The acoustic fluid is in a two-dimensional space. So, we already know

that in a two-dimensional space, we are expecting solutions in the form of, so for 2D

acoustic space, the plane wave is given as I will call this b e to the power minus i K x x

plus K y y, right. So, if K x and K y are both positive, then the wave will look in this

fashion. If K x and K y are both negative, then the wave will look in this fashion, right. If

one of them if let us say K x is positive, but K y is negative, then how will it look like? If

K x is positive, but K y is negative, then it will look like this, right. The wave will look

like this.

So, let us do this carefully. So, again let us draw the picture. This is the beam structure.
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So, if K x and K y are both positive, then the acoustic wave, plane wave that is going out

that is being set out in the fluid is going to be looking in this fashion in red. We can mark

the opposite situation, where both K x and K y are negative. If K x is positive, but K y is

negative, then it will have this situation. So, this is the situation when K x is positive and

K y is negative and finally,  we will  have this situation where you will  have K x as

negative, but K y as positive.

So, these are the four possible plane waves which could go out in the acoustic space, but

in all these situations, you must have K x square plus K y square to be equal to omega

square by c square, but let us think carefully that out of these four waves if we can rule

out certain possibilities, right the bending wave that was going in the structure. So, the

bending wave in the structure is having the form a e to the power i minus i K b x as we

wrote in the previous page. So, the bending wave has this form and K b is positive, but

then if this is the pattern of the bending displacement, then what is the profile for the

bending velocity.

The bending velocity I can call them as, call it as b x is given by i omega a e to the power

minus i K b x, right. So, the bending wave in terms of its velocities rather that transverse

velocities of the particles on the beam will have a functional dependence on x which is

given as e to the power minus i K b x, right.



Now, as I said i kinematic continuity condition you have got to match the conditions at

the interface. So, the velocity of the acoustic fluid at the interface which is y equals to 0

plus right from the positive side if you look at the acoustic particle velocity along the x

direction, that must also bear a functional dependence of exactly the same form which is

e to the power minus i K b x. In other words, the wave number associated with the x

component should be same as I mean should have the same feature as the wave number

associated  with  the  bending  wave,  right  because  you  have  to  match  the  continuity

condition at the interface.

So, therefore, what we see is that the acoustic particle velocity, the acoustic wave will

have a forward in x component which means I am taking the 2D acoustic plane wave as

b e to the power minus i K x x plus K y y, right. So, with K x and K y both 0, I am going

to get this forward sign here, the wave to be travelling in the forward x direction as well

as the forward y direction, right.

Now, this is not yet ruled out, but these two possibilities, therefore are ruled out which

will have a negative travelling component in the x direction. It has to have a positive

travelling component in the x directions. So, these two possibilities are ruled out, right.

So, K x must, it must travel in the positive direction is what we are getting right now

between these two components.

Again if you look carefully what is happening is that here it is the black wave is actually

coming from infinity towards the structure whereas, the blue wave, the one with K x and

K y both greater than 0 is going from the structure towards infinity. So, this is actually an

outgoing wave. Outgoing in the sense that it is going outward from the structure into the

region of the fluid, whereas the wave which is shown in black is coming from infinity

and hitting the structure; it is like an incident wave on to the structure here. We are taking

this perspective that we are trying to evaluate the wave which is radiated due to the

vibration of the sound.

So, the physical cause of the acoustic wave is the vibration of the beam structure, right.

So, therefore, the physically plausible condition would be this wave number because that

will lead to an outward wave whereas, the other one will lead to an inward wave. That

inward wave we have seen time and again, we are ruling out the possibility of inward

waves in an infinite medium because inward waves if at all it happens, it will happen



because of reflection, but we are at present assuming that the acoustic fluid is infinite in

its extent. So, there is no possibility of reflection. So, that rules out this combination also.

So, therefore, the only possibility that we will look at is that this is the structure and this

is the acoustic wave with components K x and K y greater than 0.

So, again to repeat myself the bending wave is denoted by as a e to the power minus i K

b x and the acoustic plane waves p x, y can now be written as b e to the power minus i K

x x plus K y y, right because this is the only component which seems to satisfy both the

condition that is it  is able to lead to a to a condition,  where the kinematic continuity

conditions can be matched at y equals to 0 and it is also leading to an outward wave

rather than an inward wave.

The red and the black wave that is shown in this diagram is an inward wave whereas, the

magenta and the blue are the outward wave, but the magenta wave will not satisfy the

condition of the interface which demands that you at the interface, you must have a wave

which goes in the positive x direction and not in the negative x direction. The component

of the magenta wave is travelling in the negative x direction. So, that also is ruled out.

So, therefore, the only possibility that is left is p x, y must be this situation. So, now

again u x which is the part acoustic particles velocity can be determined in a similar

fashion as we derived in the last class, K x divided by rho 0 b e to the power minus i K x

x plus K y y, right. So, that is the particle velocity associated with this acoustic wave, but

this  particle  velocity  is  in the x direction.  Particle  velocity  is  a vector and it  has its

direction.  We are  looking at  x  direction.  So,  what  we must  have is  that  the  particle

velocity in the y direction which we we call is u y x, y that will also be given as K y rho

0 omega b e to the power minus i K x x plus K y y, right.

Now, y equals to 0 and the normal velocities should match, right because the tangential

velocities would not match because we are assuming an inviscid acoustic fluid, but the

normal velocity should match. What is the normal velocity at y equals to 0? What is the

direction of it? It is perpendicular to the direction of our beam structure which is in the

direction of y.

So, by kinematic continuity condition we must have have u y for all axis, but y to be

taken as 0 plus, just it is at 0.
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On the positive side of 0 to know to sort of demarcate that it is the point corresponding to

the acoustic fluid and that must equal the structural velocity which is v x. Remember v a

w x  is  the  transverse  displacement  of  the  structure.  It  is  the  displacement  which  is

occurring  normal  to  the  axis  of  the  beam.  So,  it  is  a  transverse  displacement  v  x.

Similarly  it  is  a transverse velocity  of the structure.  So,  we are basically  equating y

directional velocity of both this structure as well as the fluid; so the y directional velocity

as a function of x. So, v as a function of x is this and this is the structural velocity exactly

at the plane y equals to 0 which corresponds to the structure, right and that must match

the plane which is just neighboring to the structural plane, but that plane comprises of the

acoustic fluid particles. So, that is what we are balancing.

Now, if u y x 0 plus if we now put in this formula, if we bring y equals to 0, what we will

get is the following K y by rho 0 omega b e to the power minus i K x x, right. That is all

that remains because y has been put as 0, right and that must be equal to i omega A e to

the power minus i K b x. This is what we demand and this must be true for all x. The

only  way  to  make  this  happen  is  to  choose  K x  equals  to  K  b.  There  is  no  other

possibility can this equality be satisfied for all axis. It can be satisfied for some axis, but

it cannot be satisfied for all axis unless you have the condition that K x must be equal to

K b.



So, therefore, K x must be equal to K b is one condition and the amplitude can also be

determined as i omega square rho 0 by K y into a i omega square rho 0 divided by K y is

the associated amplitude, but then if K x equals to K b, then what is K y? K y is square

root omega square by c square minus K b square, right. So, therefore associated with

this, the wave which we started off with is b e to the power minus i K x x plus K y y

where K x is equal to K b and K y is as it gives. So, all this undetermined constants b K x

K y have been determined at this stage, but the physical interpretation of this equation is

what I want to emphasize on.

There are two conditions that we should look at one condition is when omega by c or the

acoustic wave number if it is greater than K b, then no issues. K y is real positive. We

will rule out the negative K y’s because the negative K y’s will be associated with an

incoming acoustic wave that is physically in plausible. So, that does not bother us.

Omega by c greater than K b under this condition, K y is real and we will choose the

positive sign out of it which simply means that a under this circumstances we are going

to get a travelling wave which travels along the direction given by the wave number

vector. So, K x, K y basically reveals the direction of the wave or in other words, theta is

equal to tan inwards K y by K x will give us the direction of this wave. So, this is our

structure, this is the acoustic wave and this is theta which is tan inwards K x by K y by K

x. This is all nice and simple, but what happens if we have the other condition that is

omega by c is less than K b. So, that condition is equally interesting.
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So, if we will have omega by c to be less than K b, remember K b is the bending wave

number and as I said the bending wave is generated by a process which is set up in the

structure. The structure has some excitation on it. Because of those structural excitation,

there is a bending wave which generated within the structure.  So, that bending wave

number is completely independent of what is happening in the acoustic space, right.

So, we could have a situation where the bending wave number of the structure can be

lesser than the value omega by c which incidentally is the acoustic plane wave, wave

number associated with the acoustic plane wave or it could be the other way round when

K b is less than omega y c. If K b is less than omega by c, the associated K y is real

positive and we have a plane wave condition all that is verify, but if then K y in this

condition if K b is greater than omega by c, then we will have omega by c omega square

by c square minus K b square.

This is imaginary, right. You cannot have a real number for it because omega square by c

square is less than K b square. You will not be able to get a positive number sitting inside

the  under  root  sign.  There  has  to  be  a  negative  number  and  therefore,  there  is  no

possibility that the associated K y will now be a a real positive sign which is associated

with the travelling wave, right.

So, here you will get K y is purely imaginary because it is square root of a negative

number,  right.  Now, what is  the sign that we are going to choose for this  imaginary



number? Is it positive imaginary or is it negative imaginary? To look at that let us look at

it carefully. B e to the power minus i K x x is not a problem. The next part of it is minus i

K y y, right. So, K y by now we know has got to be either i times some number a or

minus i times the same number a and a is positive, right.

So,  the  point  is  which  number  should  I  choose.  What  happens  if  I  make  the  first

possibility? If I choose the first possibility, it is minus i times i a into y which gives us as

e to the power a y minus i square is plus 1. So, that goes e to the power a y. So, what is

the  characteristics  associated  with  this?  This  is  growing  in  the  y  direction.  So,  this

implies growing in y direction. What is associated with the other possibility is, e to the

power minus i into minus i a y. This would lead to minus and minus will be plus and

then, i square will be minus. This is minus a y and a is positive.

So, this will lead to decay in plus y direction, right. Now, again we will have to appeal to

our physical reasoning to choose between these two signs. This is physically in plausible

because it is leading to a growing acoustic pressure wave as you go further and further

away from the structure. Remember the structure is at y equals to 0, right. So, it is very

physically infusible to contemplate the situation that you will have a very high acoustic

pressure as you go further from the source, right.

So, this is associated with the growing wave solution, but that is not physically plausible.

The other solution therefore has to be taken in which is a decaying wave solution. What

is a decaying wave solution? The decaying wave solution implies that this is the structure

which  is  y  equals  to  zero  plane  and  along  the  direction  of  y,  the  acoustic  pressure

amplitude keeps on decreasing, but along the x direction, it remains draw better diagram.

So, at x at y equals to 0 along x, this is how the plot would look like, but if I travel a little

up to a positive value of y, then I would get something like this.

So, I hope you realize that the amplitude of the red wave is lesser than the amplitude of

the blue wave right, but the wavelength I mean peak to peak distance in the red and the

peak to peak distance in the blue is same because the K x value did not change across the

different layers of y, but the K y value seems it is leading to a decay that has caused

actually a reduced amplitude of this sinusoid as you travel upwards in the direction of y,

right. So, at the end of the day what is it that you will get it? So, by the time it has gone

quite a few, quite some distance, what will happen is that these amplitudes will become



extremely low to be of any consequence, right. It is extremely low and therefore, what

we will say is that this sort of a response will be present only in the near field. So, this is

any significant acoustic pressure is there only in the near field. Once you go far away and

by far away I mean exactly this condition. So, if a y, right what is a? A is the factor which

is leading to the exponential decay in the y direction.

So, if a y is taken as let us say 10, if a y value is 10 or you choose a value of y such that a

y value becomes 10 which means y is  10 by a,  in  that  case you are going to get a

response which is e to the power minus 10 times that which is happening at this structure

and e to the power 10 is pretty large number, right. I mean it is e to the power minus 10, I

am sorry is a very small number.

So,  therefore  the  response  would  have  gone down by a  huge factor,  right  from this

structure to a distance let us say y which is given by 10 by a is a huge reduction in the

acoustic pressure response and that is happening naturally. You are not doing anything

about it, but it is just that the acoustic fluid is not being able to convey this structural

disturbance within its domain.

The acoustic disturbances are concentrated within a very narrow region or what we call

as near field region, away from the near field region, the responses are too feeble to even

start accounting for it or do analysis for it. So, therefore we say that these are very near

field waves and this is exactly the evanescent character that you are now seeing even in

the acoustic domain, right.

In the last class, we talked about an evanescent wave characteristics from the perspective

of the fractional wave. There we saw that the fractional wave can lead to a travelling

wave component. It can also lead to a decaying wave component. So, the decaying wave

component was also alternatively qualified as a evanescent wave characteristics. Here we

have an evanescent  wave, acoustic  wave characteristic  which is  coming out  in the y

direction and not in the x direction because it is coming out in the y direction, we are

calling it as a near field wave because all the activities seems to be concentrated in the

values of y which are near the structure.

The structure is at  y equals to 0. For small  values of y,  you will  get an appreciable

acoustic  pressure  response,  but  soon enough as  you travel  to  distances  y  which  are

greater and you are getting into a condition, where a y is becoming large, you are getting



a sharp fall in the acoustic pressure by itself and this is what is needing to a near field

acoustic wave or evanescent acoustic wave in the y direction.

(Refer Slide Time: 30:31)

So, therefore to summarize what we have done is that we have found two conditions. So,

I will again draw this graph. This is the graph of omega by c and omega by c is the

acoustic  wave number,  right.  So,  I  am drawing the dispersion curves  omega by c is

associated with the plane acoustic wave, right and the other graph is associated with K b

which is the bending wave and it is proportional to square root omega, right. So, what we

have seen is that for situations where K b is less than omega, this situation we are going

to have a radiation region, right.

The condition of radiation is met that is you are going to get a plane wave and this plane

wave is going to have the same amplitude throughout. There is no decay associated with

plane wave, with this plane wave as it travels. So, this is nice and fine. So, the radiation

condition will be met in this region which is more, I mean sorry here the the region were

you will have K b to be less than omega by c, right where as in the other region where K

b  is  greater  than  omega  by  c,  there  you  are  not  going  to  have  a  travelling  wave

component, but you are only going to have a near field acoustic wave, right.

So, in this region you are going to have a near field acoustic wave which rapidly decays

away from the source. By source I mean the structural vibration or the structural bending

wave which is source, right. The source of the sound is the structural bending wave, but



then this  rapidly decays,  right.  So, that is a unimportant  observation where as in the

region where you have K b to be less than omega by c, you will have harmonic traveling

wave and here you will have the amplitude remains constant for all y.

There is no drop in amplitude, there is no growth either, but the amplitude for all points

within the acoustic fluid is got to remain same. Even if you are sitting in infinity, you are

going to get an appreciable amount of sound, right. So, this is what is resulting in this

characteristics  and  this  frequency  where  things  are  just  merging  the  acoustic  wave

number is matching with the bending wave number is called the coincidence frequency.

Coincidence frequency is the frequency where the acoustic wave number when c is the

frequency at which the acoustic wave number omega by c is equal to the structural wave

number K b.

(Refer Slide Time: 34:54)

Now, let us look try to interpret that modified bell jar experiment as I told you. So, as I

said that in the bell jar experiment, you had a sound source which is inside a certain bell

jar. So, this is the source of sound, right. In the first step you evacuated this. So, when

you are evacuated, then the sound turns feeble. In the second step of this experiment

which is now the modified bell jar experiment, you put back hydrogen in the same bell

jar. So, now you can no longer say that the sound is turning feeble because there is no

material, right.



Definitely sound requires material for its propagation and the bell jar. The classical bell

jar experiment demonstrates that a material is required for the propagation of the sound,

but then if I replace this evacuated chamber with the source and everything is same, but I

pump in hydrogen, right and now I rest out the atmospheric pressure within this chamber.

So, it  is the medium there,  but just  that the medium has been replaced by hydrogen

instead of air. Here it turns out that the sound is even more feeble.

Let us understand why this is happening? It turns out that the sound speed associated

with hydrogen is much greater about five times than with the sound speed with air, right.

So, what is happening let us draw these dispersion characteristic graphs once more.
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So,  the  structural  wave  will  assume  remains  the  same.  There  is  no  change  in  the

structural characteristics. Accordingly whatever waves are there in the structure that is

not affected whether you put hydrogen, whether you put air, whether you evacuate the

chamber does not matter. So, this K b graph which is proportional to square root omega

remains the same, right. When you have air, you had an omega by c which looks like

this. So, this is omega by c air right, but now you know that c of hydrogen is more than c

of air which means the omega by c of hydrogen plot will be always lower than the omega

by c of air plot because c of hydrogen is more the denominator being, more the factor

omega by c will be lower, right.



So, let us plot in graph what that would look like. So, omega by c of hydrogen would

look like this, right. So, in the first case we had how many waves? I mean what would be

the waves which would radiate the waves? All these waves would satisfy the coincidence

condition in the first case whereas, in the second case only these waves are going to

satisfy  the  coincidence  condition.  The radiation  condition  will  be met  only  by these

waves. So, these waves radiate in the case 2 whereas, here these waves radiate in case 1

which is air and case 2 is hydrogen, right.

Therefore,  now you realize that  quite  a few waves are  not going to contribute these

regions.  All  this  bending  waves  are  rendered  ineffective  when  you  are  refilling  the

chamber with hydrogen because these waves which are shown in these halves portion are

no longer able to meet the radiation condition and though they are leading to the same

vibration of the sound source, that vibration is not producing any acoustic radiation far

away from the source.

By far away you mean one means further away from the near field of the acoustics and it

so happens that the near field conditions I mean our ear it happens to be in the far field

and not in the near field because finally you are outside the bell jar and the conditions

will be met, such that you are not in the near field, but in the far field. So, there is a rapid

decay associated with these waves. These waves will rapidly decay out as it travels away

from the source, right and your ear is away from the source and that is why the sound is

turning more feeble than it was with air right and this is very important observation in

vibrio acoustics.

This will end the class here for the day.


