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Flexural waves, evanescent waves

You will recall; in the last class, we started doing this example of oblique incidence of a

plane acoustic wave in between 2 medium.

(Refer Slide Time: 00:28)

So, there was an incident wave a which was not normally incident between the 2 medium

and the objective was to find what are the transmitted and the reflected waves in the last

class what we did find was the angle of these 2 waves the in the reflected plane wave

would be an angle theta r and theta i is the incidence angle. So, the angle of incidence

was shown equal to the angle of reflection and also we were able to prove the snails law

in the acoustic context here that is the angle at which the refracted ray or the transmitter

bears with the normal to the 2 medium that is called as theta t and we had this relation

which was shown to be the snail law.

So, today we will just complete that analysis by possibly determining the 2 amplitude.

So,  we are still  to  determine  the 2 amplitudes  the reflected  wave amplitude  and the

transmitted wave amplitude. So, we will start again with this problem.
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So, we had a medium one which is having the properties as rho one C 1 and medium 2

which is having the properties as rho 2 and C 2. So, you had an incident wave and the

complex amplitude of that  incident  wave was given as a.  So,  what we have derived

already is that the reflected wave will bear the same angle as the incident wave which

means in the region x less than 0. So, this is the interface is marked as x equals to 0.

So,  in  this  region which  is  x  less  than  0 you will  have  p x  comma y  given in  the

following fashion A e to the power minus i k x x plus k y y. So, both the components in

the x direction as well as in the y direction, so, this is my x direction and this is my y

direction along both the components, the wave is travelling in the forward direction what

has been shown in the last class is that the B wave will also have the same amplitude of

these wave numbers, but it will have a sin reversal as far as the k x component goes

because the component of the wave travels along the negative x direction not along the

positive x direction.

So, the B wave can be represented in this fashion B e to the power i k x x minus k y y.

So, here you realize that between the A and the B waves what we have is the wave

number component in the y direction as the same sin because both of them travels at

least a component of these wave travels in the positive y direction where as the sin is

flipped in the wave number component along the x direction k x the magnitude remain

same because if the magnitude changes then the angle of incidence will not be equal to



the angle of reflection the angle of incidence is equal to angle of reflection virtually gives

us that the k x associated with the B wave will be same as the k x associated with the a

wave there is just a flip in sin which shows that it is traversing in the reverse direction

along x.

So, that is as far as the x directional x lesser than 0 region goes in the x greater than 0, we

said that there is a transmitted wave and we will denote this with c. So, the transmitted

wave in this region can be represented as p x comma y as C e to the power minus i the k

x here will be different because the material is different. So, i will call this as k x prime

here plus k y y, we have already shown that the k y corresponding to the region x less

than 0 has got to be the same as the k y in the region x greater than 0. So, the k y has to

be same otherwise the continuity conditions will not get satisfied which was what was

discussed in the last lecture also. So, the k y corresponding to this 2 regions is same, but

the k x is different because finally, k x square plus k y square has got to be equal to a

constant which is omega square by C square.

So, just to recapulate here you will have the condition k x square plus k y square is

equals to omega square by C 1 square where as here you will have k x prime square plus

k y square is equals to omega square by C 2 square right. So, the fact that C 1 and C 2 is

different is the cause of k x and k x prime being different though k ys associated with

these 2 regions are same. So, again we will appeal to the continuity condition at the

interface between the 2 fluids, but in the region of medium one here we will get a plus B

into e to the power minus i k y y right by substituting x equals to 0 right and on the from

the other side what we will get is p at 0 plus is C e to the power minus i k y y.

So, that again establishes the fact that k y between these 2 regions has got to be the same

which was even way proved earlier. So, now, if these 2 freshers have to be the same, by

continuity of acoustic pressure across the interface what we have is A plus B must equals

C this is our equation one this kind of equations we had already seen even for the case of

normal  incidence  right.  So,  that  part  is  nice and simple remember  or  objective  is  to

determine B and C given A or the ratio of B by A or C by A.

So, towards that end we have got one equation we need one more. So, we will now

appeal to the equation for continuity of velocities right and this time again it will be the

continuity of velocity along the x direction right because velocity along the y direction



can still be different because you are assuming the viscosity to be negligible in the case

of acoustic derivations.

So, we will appeal to the continuity of velocity along x directions and you will recall we

had  already  derived  the  relation  between  pressure  and  velocity  along  any  specific

direction which was something like this; this boxed equation.

(Refer Slide Time: 07:58)

So, u x equals to k x divided by rho 0 omega into the pressure amplitude that gives us the

appropriate direction of the velocity.

(Refer Slide Time: 08:17)



So, we will use this condition now to work out the velocities of in the 2 region. So, u x in

the x y region corresponding to x less than 0 will be given as k x divided by rho 0 rho 0

here would stand for rho one because I said that the density in medium one is rho one

right. So, rho one by omega into A e to the power minus i k x x plus k y y, but for the B

wave it will be the other way round because the B wave is having the component along

the negative x direction. So, that will have a minus sign. So, minus k x divided by rho

one omega B e to the power i k x x minus k y y this is as far as x less than 0 region goes

and for x greater than 0 this is u x x comma y is going to be k x prime this time because

the  expression  involves  k x prime the wave number  associated  in  the x direction  is

denoted as k x prime for the region of x greater than 0 the right hand region if you might.

So, wish to call it and the density in this region is rho 2. So, that changes things.

So, C in to e to the power minus i k x x plus k y y, so, again we will establish the

continuity condition at x equals to 0. So, at x equals to 0 we could pull out k x by rho one

omega  a  minus  B into  e  to  the  power  minus  i  k  y  y  right  x  equals  to  0  has  been

substituted and in the region x greater than 0 at x equals to 0 if you was wish to find out

this value that also pretty simple k x prime by rho 2 omega C e to the power minus i k y

y.

So, at the end of the day you need to equate these 2 which means A minus B must be

equal to C into k x prime rho 1 divided by k x into rho 2 right omega is same between the

2 and thankfully we already have established k y between the 2 regions x less than 0 and

x greater than 0 has got to be the same. So, that also does not bother us what we are left

with is A minus B into k equals to C times this factor which is k x prime into rho one

divided by k x into rho 2 and this is our equation 2 and if I look back at equation 1, we

had A plus B equals to C right which is whatever equation one was. So, if we use these 2

equations we could easily relate C in terms of A. So, that reads as 2 A is equals to C into

one plus k x prime rho one divided by k x into rho 2.

So, that implies C as 2 a divided by one plus k x prime rho one divided by k x rho 2. So,

this  is  how  we  get  the  transmitted  wave  amplitude  in  terms  of  the  incident  wave

amplitude you could also find B as C minus a and that is also not to difficult to work out.

So, you can pull the a outside 2 divided by one plus k x prime rho one divided by k x rho

2 minus one and that comes out as a one minus k x prime rho one divided by k x divided

by k x rho 2 and the denominator would read just the same k x prime rho one divided by



k x rho 2. So, these are the 2 expressions for the 2 wave amplitude the reflected wave

amplitude and the transmitted wave amplitude.

So, please recall when we did normal incidence between the 2 media we had the ratio in

terms of rho 1 C 1, right, you might think why is that rho 1 C 1 ratio getting changed to

this k x prime k x is coming instead of rho c. So, that is not difficult to understand if you

recall that k x prime is omega by C 2, sorry, k x prime is I will do this in a different way.

So, recall for normal incidence the reflection ratio was shown to be dependent reflection.

(Refer Slide Time: 14:07)

And the transmission ratio where shown to be dependent on the characteristic impedance

this was the crucial quantity and you will recall characteristic impedance was given by

rho C here what we are seeing is it  is the ratio that comes back here for the case of

oblique incidence is seen to be k x prime by rho 2 or k x by rho 1.

So, wave number along x direction divided by the density of the fluid medium is what

seems to be thrown at us, but if you realize that for normal incidence, so, note for normal

incidence what is the associated k y what will be k y for normal incidence if it is incident

not obliquely, but directly in this form then what is the associated k y 0. So, for normal

incidence k y turns 0 which implies k x for medium one is going to read as omega by C 1

and k x prime for medium 2 is supposed to be omega by C 2 because either ways k y is 0

and if you make this substitutions back into this expression. So, then again you will get



to C that if I copy and paste this expression let say. So, this expression will be reading 2 a

divided by one plus instead of k x prime I have to write C 2 rho 2 and C 1.

So, I have written instead of k x prime as omega by C 2 instead of k x i have written

omega by C 1 and then the 2 omegas have cancelled each other. So, again we get back

the ratio of impedances which is what we expect for a normal in incident case. So, we

have also shown that from the oblique incidence you could recover back the results of

the normal  incidence  because normal  incidence  is  after  all  a  special  case of  oblique

incidence  oblique  incidence  is  more  general  also  there  are  other  features  like  total

internal reflection which I think it is pretty easy to understand again you can looking at

this relation you will be able to find out that this I mean going again using that argument

similar to geometric optics from this relation it is clear that the transmission angle will

prevail only if sin theta t is a number which is less than one right, but looking at this it is

pretty clear that sin theta t will depend upon C 2 by C 1.

So, if C 2 by C 1 ratio is pretty high there is a possibility that the sin theta t terms turns

more than one in which case there is no real theta t which means that there is actually no

transmission  that  is  happening  is  only  and  evanescent  wave  which  is  what  we  will

describe.  So,  that  aspect  is  called  total  internal  reflection  I  will  just  leave  with  this

comment that this aspect is just the same as you would have studied even in geometric

optics right, but it is nice to see that we could derive these results which was sort of

axioms in geometric optics from a very fundamental approach based on the mathematical

theory of wave propagation of plane waves, right.

So, I think here will close our discussion associated with oblique incidence will move on

to another crucial idea that of evanescent waves and to introduce that idea.
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We will firstly, have to have a brief discussion about flexural waves or bending waves till

now, we have been talking about acoustic waves. So, we will take a slight detour and talk

about the waves in beam for example, similar waves will also exist for plates after all

plates are the 2 dimensional counterpart of beams.

So, if you recall the it governing equations of motion for a beam equation of motion for a

beam is given as E I d 4 w d x 4 equals to q where q is the load intensity or load per unit

length E I is the flexural rigidity and w is the transverse deflection that we are interested

in for a beam right this is called the Euler Bernoulli beam which is really good enough

for our discussion right and in case you want to look up how this is derived look at any

book in like such as Timoshenko book or Borisi book right these books will have the

derivation of this equation. So, will pick the thread for our purpose from this governing

equation we are not going to derive this governing equation because that I presume is

almost an undergraduate affair.

So, we will pick up the thread from this governing equation this equation is the way it is

written in here if it is applicable to statics, but to move from statics to dynamics is a very

easy extension. So, to formulate the equations for dynamics we need to introduce inertia

forces. So, the only change that we will make at this stage where in we are looking for

the free vibration problem in absence of any forcing we wish to see whether there is a



possibility of obtaining any solution for this equation right. So, the only force that we

will include is the inertia force.

So, we are looking at the free for free vibration as we iterated a few lectures back for free

vibration there is no external for saying that we need to account for the only forcing that

has to be accounted for in this term q is going to be the inertia force and the inertia force

will be minus m times del 2 w del t 2 right where m is the mass per unit length because

as we said that q is the load intensity which is the load per unit length. So, similarly we

will have to take out the inertia force per unit length which is why we have to take ma

name as mass per unit length. So, this in terms of density would be the densities times

the area of cross section.

So, this time we all we will start using partial derivatives because now we are saying that

for dynamics we are going to have this w dependent upon 2 variables x and t for statics it

is obvious w depends only on x there is no other independent variable arrive which is

appearing in the statics problems, but for the dynamics problem there are 2 variables

namely the special variable and the time variable which is what you have seen even for

the acoustic pressure even for a one dimensional case you looked at that there was an

acoustic pressure which we dependent on both on x n t.

(Refer Slide Time: 23:55)

So, with that the equations of motion for free vibration of a beam is given as E I del 4 w

del x 4 and I am changing to partial derivatives from the ordinary derivatives that will be



minus m del 2 w del t 2 right there is no other forcing that we are interested in other than

the inertia forces now let us look for a harmonic solution. So, we look for a harmonic

solution just the same ideas as we did in acoustics. So, once we say that i am looking for

a harmonic solution w x comma t will now take a firm w x into e to the power i omega t.

So, omega is the associated frequency right. So, we are hoping that we can we are able to

find some non trivial solution of the system which is of this form w x comma t is w x

which is a function which is hesitate are known times e to the power i omega t right.

So, if you make such a substitution again then once you play your card of the temporal

dependence to be a harmonic then they only variable of the only independent variable

that  is  left  in  your  problem is  again  x.  So,  there  is  no  need  again  to  go  to  partial

derivatives because the only variable that we have is x. So, we might as well say that this

is an ordinary derivative because this is the only independent variable that is left in the

problem after invoking the harmonic dependence as e to the power i omega t and you

know that once you have selected harmonic dependence you take derivative once it has

got to be i omega times the function itself and if you take derivative twice it is i omega

times i omega which means minus omega square the function itself right.

So, here what will happen is because of 2 time derivatives you are essentially going to

get a product of omega square m times omega square the minus sign will cancel with the

minus sign that is sitting here. So, m omega square w is what you will get. So, del 2 del t

2 of w is minus omega square w if you wish to call it that right. So, this is the equation

that we need to solve at this stage we are looking for a harmonic solution and we are

looking for a I mean we are looking for solution at each omega right. So, now, we make

even one more mold assumption that we are looking for a wave solution for a wave

solution.

So, what does that mean w x because we have already invoke the time dependence as e

to the power i omega t therefore, w x also has got to be a complex exponential because

only then it will remain a wave right as we have seen in acoustic also the wave solution

essentially means the temporal dependence and the special dependence has to be of the

same form.  So,  what  we are  looking is  a  function  of  this  from possibly  with  some

constants because is a linear equation into e to the power k s right or i k x i should say

because e to the power i omega t is the complex dependence that we have taken for the

time variable.



So, if we invoke this now what we get is i k whole to the power 4 E I which is the

flexural rigidity multiplied by w must be equals to m omega square w and this implies

that E I k to the power 4 must be equals to m omega square. So, just to recapitulate what

we have done our objective  was to  find whether or not  it  is  possible  to get a wave

solution or rather a harmonic wave solution to the beam equation right according the we

invoke 2 substitutions one in time one in space in time we took the substitution a for the

temporal functional dependence to be of the form e to the power i omega t in space we

took the substitution as e to the power i k x and now what we are seeing is that yes if it is

possible that you will  get a harmonic plane wave solution associated with this  beam

provided the case and omegas are related through this equation, right.
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So, in other words if k is m omega square by E I and fourth route of these numbers then

you are going to get  a wave right.  So,  let  me write  this  note for you. So, inference

harmonic waves are possible at any frequency omega provided or other instead of saying

provided the associated once you say it is a wave there are 2 things that you must say one

is the frequency and the other is the wave number. So, associated with the frequency

omega there is a harmonic wave and the wave number of this harmonic wave is going to

be k well  k  is  given by that  equation right.  So,  the associated  wave number of this

harmonic wave is k where k to the power 4 is m omega square by E I right.



The same thing we have seen in acoustics, but in acoustics the relation was associated

with each frequency omega you are going to get a harmonic wave with wave number k

where k is k square or k is basically omega by C here we are having k to the power 4 is

m omega square by e i, but please note there is one start difference which I do not know

whether you have realized this is going to give 4 routes this is not going to give 2 routes

last time for acoustic waves we have seen that there are 2 wave number that is possible

plus omega by C and minus omega by C and the interpretation of the 2 roots was pretty

easy to understand that one of them travels in one direction the other travels in the other

direction right, but here we have slight difference in this wave number equation and this

difference is due to the fact that k comes with the power four. So, therefore, essentially

there are 4 routes to this equation what are these routes. So, let us say that the forth let us

call k b as the positive fourth root of m omega square by e i; that means, as you take the

square root in your calculator if you take the square root twice the number that you get is

k b.

So, then the roots of k will be k b minus k b, but also i k b and minus i k b right. So, the 4

roots of k would be in this form where k b is just the forth I mean square root taken twice

and if k b is denoted by just the positive real fourth root of the equation then there are

three other routes which is minus k b i k b and minus i k b. So, if we put each of these

back into our system and let us try to interpret this solution, so, accordingly what are the

waves the waves are w x comma t either is A e to the power i omega t plus k b x or you

could have A e to the power i omega t minus k b x i think i better write this way or you

could have A e to the power i omega t plus i k b x or you could have A e to the power i

omega t minus i k b x it did not come out within the allotted space.

So, I would just need to shift this little bit. So, that was easy A e to the power i omega t

minus i k b x right. So, this are the 4 solutions that are possible as per our derivation now

let us look at the physical inference associated with each of these solutions the first 2 are

pretty easy the first one is a backward travelling wave right because it has the same sign

in time as well as the Phasor as a same sign in time and space. So, this is a backward

travelling wave. So, how about this one the second solution that i have written down is a

forward travelling wave that is also no big deal the third and fourth looks a little odd, but

let  us  sort  of  open this  up  a  little  bit.  So,  what  we have  for  this  expression  is  the

following A e to the power i omega t and e to the power minus k b x, right.



So, therefore, what we see is actually here we will have in if we plot out this in terms of

x at any specific time we are going to see that it will decay as we plot in the positive x

direction right. So, this is a decaying way where as what was what was the plot of this

backward travelling wave and forward travelling wave showing it was showing that the

amplitude remains constant with time as well as space right where is here we see that the

amplitude actually falls off with space it is not the wave is getting generated at some

point, but it is not being able to travel at that fixed amplitude it is rapidly decaying it is

exponentially decaying in the positive x direction what is happening associated with this

wave can be opened up as following this will be a positive k b x right minus i square

here. So, minus i square is plus one. So, you will get e to the power i e to the power plus

k b x and k b as per hour notation is a real positive number.

So, therefore, the plot of this if this is the direction of x it will actually decay in the

negative x direction. So, that is actually natural justice if you take a wave component to

be decaying in the positive x direction by symmetry there has to be a wave component in

the negative x direction also right. So, instead of saying that it is growing in the positive

x direction we would prefer to interpret this as decaying in the negative x direction and

we will I mean if as the course probably matures you will see what are the applications

of these decaying components right, but at present we are definitely convinced through

our mathematical derivation that if we are looking for harmonic plane waves then not

only  is  there  a  possibility  of  travelling  waves  which  keeps  on travelling  at  constant

amplitude, but also there is a possibility that these travelling waves rapidly decay as they

propagate  right  we  will  always  interpret  the  direction  of  travel  associated  with  the

direction of decay right at least for now otherwise we may be mislead to think that some

waves  are  actually  growing  in  amplitude  as  their  travelling  that  is  physically  not

possible.

So, we will rather interpret the e to the power minus k b x as the one which decays in the

positive x direction and e to the power plus k b x as the one which decays in the negative

x direction instead of doing it the other waves. So, what we are going to call for these 2

waves is the following. So, this is an evanescent wave this is called an evanescent wave

both of these are evanescent waves they are actually not traveling waves travelling waves

as we have studied in great details will have this characteristics that it will have the same



nature when it propagates the amplitude should not fall with distance whereas, here we

are saying that the amplitude falls off with distance.
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So, just to give you a feel of what will happen though will not do this derivation at least

not at this stage if you have an infinite beam just like we studied the infinite acoustic

duct at the first instance before going to the finite duct if you have an infinite beam

system and infinite beam systems are not that in practical if you think of you know these

transoceanic pipelines they are like infinite structures because virtually its very long.

So, if it is excited somewhere then; obviously, now at whatever frequency of excitation

you Exide this you are going to expect that there will be some waves which are going to

get  generated  right  by physical  possibility  condition  you are going to  expect  only  a

travelling wave in this zone which travels in the positive x direction you are not going to

expect a backward wave in this zone because that is physically impossible there is no

reflection that is going to happen the source is at the middle this source can at the worst

create a forward travelling wave in this region to the right of the excitation in the region

to the left of the excitation there will be only a backward travelling wave there cannot be

a positive travelling wave because there is no reflection there is no excitation which is on

the left side of it right, but then what you will see is that using just these 2 waves just this

2 travelling waves will not be able to satisfy the boundary conditions associated with this

point what are the boundary conditions the boundary conditions is that there is jump in



shear force of the beam and that jump in shear force has to account for this excitation

force the shear forces as to change right because only then the jump in shear force the

discontinuity in the shear force diagram is essentially equal to the applied force right

because you have an applied force there is a jump in shear force.

So, there is a jump in shear force, but there is no jump in the bending moment because

there  is  no  applied  moment  and.  So,  you have  to  essentially  satisfied  three  sorry  4

conditions at this point i am calling this point x equals to 0. So, at this point x equals to 0

you need w 0 minus to be equals to w 0 plus; that means, the displacement from the 2

size must match right you must also have the slope from the 2 slides to be matching you

must have the moment from the 2 sides to be matching, but you must have a jump in the

villas in the shear force to account for the fact that there is an applied excitation force

which is f right. So, you would need to satisfy 4 boundary conditions in order to solve

this  problem using  just  2  travelling  waves  you will  not  be  able  to  satisfy  all  the  4

boundary condition right.

So, you have to satisfy the only way that is left and that is what comes out through our

mathematical derivation is to account for these 4 boundary conditions with not just this 2

traveling waves, but 2 evanescent waves also right, so, these 2 travelling waves with the

2 evanescent waves. So, totally we are having 4 waves right. So, all these 4 waves will

combine in the right proportion such that all this 4 boundary conditions get enforced

because there are 4 waves 4 boundary conditions can get satisfied where as in the case of

acoustic pressure you had a acoustic equation you had the case where you had just in the

case of acoustic pressure you had a second order equation and because it was a second

order equation you could not satisfy i mean you could satisfy only 2 boundary conditions

for the acoustic case where as here for the beam equation is a fourth order equation and

also from physical principle it is well known there are 4 associated boundary conditions

and the 4 conditions can be satisfied only if there are 4 waves to choose from and over

and above the 2 bending waves 2 travelling bending waves we get these 2 evanescent

waves with sort of is a natures wave in which these boundary conditions can get satisfied

right.

So, in case you are interested to look at this derivation you can look at d j mead book on

passive  vibration  control  this  full  derivation  is  given  this  is  book  is  called  passive

vibration control by d j mead so, but as we said we are just going to look at the bending



waves because we need to  understand one crucial  these aspects  even in the acoustic

parlance which is what we are going to head towards. So, what we understand is that

there are 4 wave numbers which will get triggered at every frequency and this equation

by the way which relates  the wave number to  the frequency is  called  the dispersion

relation. So, the relation between the wave number k and the frequency omega is called

the dispersion relation sometimes in some books it is interpreted as a phase velocity with

respect  to  speed,  but  even  the  wave  number  and  the  display  frequency  is  also  a

dispersion relation there are many ways in which we can interpret this. So, I am not

come at as A to phase velocity concept, but will do that in the moment.
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So, the dispersion relation will present us in the form of a graph which is omega by k and

what we have just now seen for a flexural wave is that we will have k to the power 4 is

equals to m omega square divided by E I which means k is proportional to square root

omega right. So, this is just the real part real positive wave number that I am plotting

similarly the others can be plotted right. So, k verses omega plot is what we have arrived

at just to reinforce what we had for acoustic for acoustics we had k equals to omega by C

right. So, k equals to omega by C is what happens for acoustics and that dispersion line is

pretty  simple  to  draw.  So,  this  is  what  we will  get  for  acoustic.  So,  I  will  call  this

dispersion relation for acoustic 1 d plane wave this is what has already been derived.



Now, this crossover point is very interesting and this frequency is called coincidence

frequency  and  it  turns  out  and  will  do  that  derivation  in  the  next  class  that  sound

radiation actually happens only for these frequencies whereas, in these frequencies sound

radiation is almost negligible the actual sound radiation happens only for these frequency

will come to why probably in the next class, but just before we end this class a short

story to motivate you the idea that we are coming to you have all learnt about this bell jar

experiment right.
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So, in the bell jar experiment you had some sound source which was enclosed over a bell

jar and then progressively it was evacuated right by using a pump right and then it was

told to you that as the evacuation is happening the material is being withdrawn which

means that the sound is growing feeble and that is what was observable, right.

So, that is well known, but in a modification to it what we do is we withdraw the air, but

we replace the air with let us say hydrogen and this experiment was actually conduct it, I

will give you the references, I will give you the paper also. So, if you put back hydrogen

now instead of air and put this back put this hydrogen back at the same pressure same

atmospheric pressure. So, you cannot now say that the chamber is evacuated the chamber

is having the same pressure as the air should have, but just that the medium has changed

from air it has become hydrogen what actually happens is the sound grows even more



feeble  right  and  that  is  the  reason  for  all  this  to  be  happening  is  because  of  that

coincidence frequency.

So, as has been reported in the literature this is what we call the coupling between the

vibration and this sound. So, as I said without proof though at this stage that the vibration

happens only for frequencies beyond the coincidence frequency sorry the sound radiation

for a given vibration happens only for frequencies beyond the coincidence frequency. So,

once you replace this 2 medium it does happen that this coincidence frequencies guess

gets changed and only the components of waves which are supersonic which are having

wave numbers below the acoustic wave number. So, these are the acoustic wave numbers

only radiating components of the structure will be in this zone which is below the wave

numbers  associated  with  the  acoustic  wave  numbers  only  those  wave  numbers  will

radiate others will not will come to the proof of this aspect in the next class again and

again I will come back and explain this observation that why is it that hydrogen will not

be able to radiate sound into the air despite holding the atmospheric pressure at the same

value as it is with air, but for now will stop here.

Thank you.


