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Travelling and Standing waves

Good morning friends.
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In the last  class we talked about the concept  of impedance,  which is  a  very general

concept.  And by definition this is acoustic pressure divided by acoustic velocity at a

given point. In particular, we found what is known as the characteristic impedance due to

a plane travelling wave. And this was given as the ambient acoustic density multiplied by

the sound speed. We understand that the velocity has to be they can take in the direction

of the travel of the wave itself. Therefore, we will say characteristic impedance is rho 0 c

with the understanding that the direction has to be direction of the velocity has to be in

alignment with the direction of the wave in which it is travelling.

So, today we will use this concept of impedance to do a quite a few problems. So, let us

look at the first example which is almost trivial. So, we will take a duct or a pipe if you

want, which is extended to infinity, on one side and on the other side you have rigid

oscillating pistol. So, this exercise; obviously, is sounding a little academic at this stage,



but we will see how this little academic exercise if you may leads to more important

concepts as we develop this. So, the point is the problem is follows at x equals to 0, we

have the boundary condition given, u is given by u 0. Remember from here on I take e to

the power i omega t as a time dependence implied. I am not going to explicitly write

down this time dependence it is going to be assumed that all my quantities of interest

they  are  dynamic  quantities,  and  we  are  only  going  to  look  at  a  single  frequency

characterization of this

So, e to the power i omega t is implied. So, when I say the velocity is u 0 it essentially

means  u  0  e  to  the  power  i  omega  t  the  amplitude  of  which  is  u  0  the  associated

frequency is omega. Now the point is what is p of x: that is what we need to find out. So,

we understand that the solution of 1D wave equation and this  is  1D because we are

talking about plane waves in a duct. So, we are looking for plane waves in this situation,

nothing other than plane waves can exists by this geometry. So, we are looking for the

solution for the 1D plane wave equation and that we know for sure can have this form

which is a collection of a forward wave and a backward wave.

So, there can be a forward travelling wave of magnitude A and there could be a backward

travelling wave of magnitude B or amplitude B right.  We need to determine these 2

amplitudes. So, I will write that down as this is the forward wave travelling and this is

the backward travelling,  but then we realize that there is absolutely no reason why a

backward wave can originate in this situation. That is because the backward wave is not

possible  here  because  there  is  no  chance  of  any  reflection  by  the  geometry  of  this

problem the cause of the wave is this source at x equals to 0. So, this x equals to 0 can

lead to only an incident wave, which is going to travel in the forward direction, but then

it  is  never going to come back because the boundary is  never there the boundary is

extended all the way up to infinity.

So, there is no boundary which means that the backward wave is actually not there. So,

therefore, we might as well assume due to physical reasoning, we rule out the existence

of a backward travelling wave. No reflected waves because of infinite domain. This is

exactly  what  happens  even  in  3D,  even  in  3D  when  you  are  talking  on  an  open

atmosphere I mean to say you have just there is a sound source which is lying on the

floor and on the top of this flow there is virtually no boundary. So, therefore, you do not

expect  any  reflection  to  come from the  boundary  of  this  domain  this  is  actually  an



infinite domain problem. And accordingly you need to rule out certain waves in one day

case this is all  very simple because there is only one dimensional  wave propagation,

there are only 2 waves one incoming and one outgoing.
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So there are no incoming waves, in other words possible for this geometry. So, that leads

us to believe that p x has got to be only A e to the power minus i k x. And if p x is this

then we know for sure u x is going to be A divided by rho naught c e to the power minus

k x. Because rho naught c is the ratio between the pressure and the velocity which means

the velocity is pressure divided by rho naught c. That is how you get this point. And also

we know that we have to enforce the boundary condition at x equals to 0 which says that

it at x equals to 0 since the piston is moving at a velocity of u 0. Therefore, we expect

that the neighboring fluid particles the acoustic fluid particles which are just attaching

onto the oscillating piston surface, which are just kissing the surface of this oscillating

piston will have exactly the same velocity it cannot be anything else because there has to

be kinematic continuity.

So, by kinematic continuity, structure velocity, equals to acoustic particle velocity at x

equals to 0. And this by definition is u 0, which means u at x equals to 0 has got to be A

by rho 0 c which is u 0 which implies A has got to be u 0 rho 0 c. Therefore, what is the

final solution of the acoustic pressure profile it is p x equals to u 0 rho 0 c into e to the



power minus i k x this is the pressure profile which is generated within this semi infinite

duct.
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Let us now look at a more realistic problem where we have a finite duct. So, here we

have a finite duct a tube pipe, if you may call it, and the duct walls are assumed to be

rigid. So, it is a finite duct of length L again at one in x equals to 0 we have an oscillating

piston and at the other end we have rigid termination x equals to L all the walls are

completely rigid.

So, the problem description is as follows rigid duct with an oscillating piston at one end.

So, again we are expecting only one dimensional wave solution in this case, I here we

are limiting ourselves to one dimensional wave solution because everything is in 1D. So,

excitation is such that all the wave all the fluid particles at the plane x equals to 0 will

have identical motion which means that there cannot be anything other than a plane wave

because all the planes parallel to x equals to some quantity will have identical measure

right. So, therefore, we expect the solution to be in this form p x is A e to the power

minus i k x plus B e to the power i k x.

Once you have one dimensional plane wave equation there cannot be any other solution

other than these 2, this is what we have extensively studied. So, as usual there is an A

wave and there is a B wave. Last time we exist we ruled out from physical arguments the

existence of this B wave or the incoming wave because, there is no chance that there is



such an invert  travelling  wave going to  the fact  that  there  is  no reflection  condition

within that infinite duct problem. But now since it is a finite duct problem; obviously, the

incident wave which is originated will reflect after back after sometimes and therefore,

you expect  both A and B waves should be there.  So, A and B basically  needs to be

determined. So, at this point we do not know what is A and B.

So, the objective will be to determine to determine A and B right. So, how do you go

about doing that? Please note the conditions are both the boundary conditions that we

have is at x equals to 0, we must have u to be equals to u 0. So, again this piston is

oscillating with amplitude of u 0, it is oscillating harmonically because everything that

we  study  here  on  has  harmonic  time  dependence  alone.  So,  this  is  one  boundary

condition that we need to enforce that is at x equals to 0 the fluid particles which I have

just attached to the surface of the oscillating piston, will have exactly the same velocity

as the piston. There is no other way for the fluid particles to have any other velocity.

So, at x equals to 0 u equals to u 0, and we also have at x equals to L the termination at

the termination  u has  to  be 0.  Because it  is  a  rigid termination  it  cannot  move.  So,

therefore, these 2 boundary conditions have to be satisfied. So, if p x is given in this form

we will again adopt divide and rule policy. We know for the forward travelling wave the

associated  velocity  particle  velocity  will  be  A by rho  naught  c,  but  for  a  backward

travelling wave it will have the magnitude A by rho naught c, but in opposite direction.

So,  we will  take  this  impedance  approach  to  very  quickly  write  down,  the  velocity

profile inside this duct to be in this fashion.

Please note there is a minus sin associated with the B wave. And that accounts for the

fact that the particle velocity now has to reverse in it is direction because we are talking

about an invert travelling wave. So, this is the form of the acoustic velocity that we have

supposed to get. Now at x equals to L. So, if we imply the second boundary condition at

x equals to L we want u at L to be 0 and that implies A e to the power minus i k L must

be equal to, B e to the power i k L this in other hand implies a equals to B e to the power

i 2 k Laughter, that is fine.

The next one would be at x equals to 0, we wish to have u 0 to be 0 sorry u 0 to be u at x

equals to 0 is u subscribed 0. So, that would give us I forgot an x here. So, that would

give us A by rho naught c minus B by rho naught c should be equals to u 0 which implies



a minus B has got to be u naught rho naught c fine. Therefore, if I now substitute A is

equals to B e to the power i 2 k L, I get B into e to the power i 2 k L minus 1 is equals to

u naught rho naught c. So, therefore, my answer for B looks pretty simple, which is u

naught rho naught c divided by e to the power i 2 k L minus L. This I could make it a

little simpler to look by multiplying and dividing with e to the power minus i k L.

So, that would lead us to u naught rho naught c divided by e to the power i k L minus e

to the power minus i k L into e to the power minus i k Laughter; I am just multiplying

and dividing by e to the power minus i k L. And if this is B a has to be e to the power i 2

k L times B which implies a has to be u naught rho naught c divided by e to the power i k

L minus e to the power minus i k L into e to the power plus i k L, because I need to

multiply the expression of B with e to the power i 2 k l.

So, therefore, the numerator will no longer B to the power minus i k l, but it will be e to

the power plus i k L.
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So, A and B have been found. So, therefore, we can as well right the pressure profile p x

which we remember is e to the power minus i k x plus into A plus B into e to the power

plus i k x, but then A and B both have been determined which is of that form. So, we can

take u naught rho naught c divided by e to the power i k L minus e to the power minus i k

L common. And with A we have and e to the power i  k L with a positive sign. So,

therefore, e to the power i k L minus x is what you get for the first term. And with the B



what you get is you have e to the power minus i k L and there is e to the power i k x with

the positive signs you taking care of all that you are going to get e to the power minus i k

L minus x right.

So, this p of x: so employing the use of trigonometric functions now just to make the

interpretation simpler. So, we understand the denominator will read as 2 times I times sin

k L. And the numerator would read as 2 times cause of k L minus x. Therefore, this is p

of x. In other words if I sort of non dimensionalize it p x by u naught rho naught c is

going to read cos of k L minus x divided by sin of k L in the denominator you will have

an i. I will make a few more simplifications. So, I will push pull out this k L factor and I

will put 1 minus x by L instead of 1 minus x and then there will be sin of k L and the

denominator of I could be put as e to the power minus I pi by 2.

So, this is the form of my non dimensional pressure, cos of I called this term k L as

kappa, and 1 minus x by L divided by sin of kappa e to the power minus i pi by 2. I call

kappa as k L. So, this is the final form of the response profile that I am looking. There is

a very important difference between these forms of the solution with what we did at

example 1. Let me explain this to you by a MATLAB plot. So, what I will do is I will

plot this solution in MATLAB for you and I will show you how this solution is going to

be different. So, what is the p x comma t that we need to plot out in MATLAB?
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So, we will we will define this capital P if you may. So, like x comma t as p small p x

comma x comma t divided by u naught rho naught c, which is p x into e to the power i

omega t divided by u naught rho naught c. And that is cos of kappa 1 minus x by L

divided by sin of kappa L. There is a u naught sorry there is no u naught 1 naught c

(Refer Time: 20:44) and then there is e to the power i omega t minus pi by 2.

And we will plot only the real part of it, because we know the real part of it corresponds

to the solution that we are interested in. So, real part of this capital P x comma t will be

what, give this function the trigonometric function is bound to give us only real numbers.

So, no issues with this part it just pops out, k L is basically kappa and then we will have

to take the real part of e to the power i omega t minus pi by 2 which basically means we

have to take cause of omega t minus pi by 2. And this is same as cos of pi by 2 minus

omega. So, this is sin of omega t. So, this is given as cause of kappa 1 minus x by L

divided by sin of kappa sin of omega t.

So, we will generate this plot for x at different time instance. We will generate this for

omega t equals to let us say 0 for omega t is equals to pi by 4 for omega t is equals to pi

by 2 and so on and so forth. So, for generating the plot we; obviously, need to choose

some value of kappa, which is what we will choose what will be x by L, x by L will be in

the range of 0 to 1, x cannot go outside L. So, therefore, that is how we will do it.
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So, let us define this quantity x by L as 0 in steps of let say 0.05 up to 1. So, we have

defined a 21 component vector and we can keep kappa or capital K for kappa as 2 for

illustration we can try for others also, but keep it to for now and then we have to plot this

p which is cosine of capital K into 1 minus x by capital L, divided by sin of kappa L, K L

capital K, sin of k this is what will happen at this omega t equals to pi by 2.

So, let us let us take this as p 1. We will need to multiply this with sin of omega t. So, p

or we will now take omega t as 0, this is the first situation and p will be p 1 into sin of

omega into t, or this is p at 0 fine. Omega t, now we will do p at for will generate another

p which is for omega t is equals to let say pi by 4. And this we will call as p for the next

time step p underscore 1. Then we will generate for omega t is equals to pi by 2 fine. So,

this will we will store it in p 2. Then we will come to omega t is equals to 3 pi by 4. And

we will call this as p underscore 3. And let us settle with 4 of them.

In the next time instant we will have omega t is equals to pi and then p 4 is equals to p or

this. So, we have got the pressure profile for 4 different time instance 0 1 2 3 and 4. So,

let us plot each of them one by one x comma p 0 that is anyway going to be 0 because of

the sin omega t effect x by L, I am sorry x by L. This get 0 no surprises for that we will

hold on and we will plot the next one in red.
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So, now you see this is how it looks like. Then we will hold on and plot for the next one

plot p 2 in black colour. This is how it looks right after that plot p 3 in green colour. After



that plot 4 in it is a magenta colour, all of these have been plotted. So, let me just put a

legend. So, that I do not forget what is the ordering. So, the first one is at t equals to 0

small t is equals to 0, the second is at omega t is at pi by 2. The third is at omega t is

equals to 3 pi by 4. And finally, the fourth is at omega t is equals to pi.

(Refer Slide Time: 28:33)

So, here we go. So, this is how the plot looks like what does happened is actually the red

and the black has superposed. Similarly, the green and the magenta have superposed. So,

maybe I can do it better by then I will just re plot with a different sin. So, that it is visible

that it is x by L p underscore 0. That is the first one then we will have hold on and then

we will have plot x by L, p 1 and that is in red dash line. Then we will have a plot x by L

p 2 that is in black line. And then we will have plot in p 3, p 3 and I will use a marked

this time which is plus, and then finally I will have a plot on p 4. And I will have a

marked this time which is x and then legends.
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Let see how it goes. So, here you get to see this is how things look like. So, it starts with

the blue colour, then it goes to the red colour and then it goes to the black colour which is

at omega t equals to I think the legends also need to be redefined. It starts with the blue

colour then it goes to the red colour then it goes to the black colour and then it comes

back and what you get  to  see is  the plus profile  which is  exactly  the same as what

happened in a few instance of time earlier also. And then finally, it comes back and goes

red 0, what will happen in this is how the period remember we have done only from up

to omega t is equals to p, right this is only half the period omega t equals to 2 pi will

mean a complete cycle for oscillation.

So, in half the cycle what has happened is that the pressure profile has gone up even

more up, then it has come down and down to 0 in the next cycle it will go in the other

direction right. So, if you actually animate this way profile you will see that it is going up

and down, but each of these particles will have amplitude of oscillation which is just this

much right. Each particle will have in other words different amplitude of oscillation the

particle at let say point 4, is going to oscillate at this level the particle which is at point 9

which is going to oscillate at that level right.

So, this  is  the waveform which is going to wax and wane it  is  not having the same

response at all spatial locations. This is because what you have done now is that this is

typically called a standing wave as opposed to a travelling wave right. Because 2 waves



the forward wave and the backward wave have now superposed such that you are getting

a pattern in space which is waxing and waning which is going up and down if you may.

So, please, but the amplitudes across different points are different.

In fact, if you look at this point somewhere at 0.2 neighbouring 0.2 this point actually

remains to have 0 pressure for all instance of time right. And this point will be called like

it is like a node at this frequency which is corresponding to k L is equals to 2; obviously,

this does not have much significance at other frequencies, but at this frequency this point

does not seem to be moving at all it is having a 0 pressure all at all times right at some

other frequency some other points maybe at this characteristics. So, this is an important

aspect which we should be able to appreciate that what we are getting now is this is a

standing wave as opposed to travelling wave.

So, recall travelling wave is of the form f of omega t plus or minus k x right. You have to

have the same functional dependence in both space and time and the coefficient omega

by k must be c right. To this form is defined by the expression that we have got here. So,

in the above case temporal dependence is e to the power i omega t, and this is not equals

to the spatial dependence the spatial dependence is some other function. The functional

form is exactly given by this block and this functional form is definitely not the same as

the tempo associated temporal function.

So, this leads to our first encounter with what is known as standing waves. Please realize

that  standing  waves  are  produced  in  the  case  of  a  finite  domain  problem,  whereas,

travelling waves are produced in the case of an infinite domain problem. In the case of

infinite  domains  you  do  not  have  any  reflection  and  that  is  why  there  is  only  one

propagating wave or one travelling wave.

But once you have a boundary reflection set in and because of that reflection you are

going to get a standing wave as opposed to as opposed to the case of travelling wave.

There  is  another  important  feature  which  I  would  like  to  talk  about  regarding  this

solution. If you had noted the denominator has the term sin k L or sin kappa L. So, there

is a possibility that the denominator can actually go to 0, that and that happens at k L is

equals to n pi right. So, at k L is equals to n pi, we have sin of k L going to 0 and that

implies p of x will go to a very large number.
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So, this is exactly similar to what you we call it as resonance in structures. In structures

also when we dealt with vibrations some of you may have had the prior exposure to

vibrations.  In  vibration  we  identify  this  condition  to  what  is  called  as  a  resonance

condition.  In a resonance condition if frequency meets a certain criteria then you are

going to have this condition which leads to a large response right; obviously, in reality

you  do  not  get  infinite  acoustic  pressure  just  like  in  reality  you do not  get  infinite

structure infinitely high structural vibration the reason for that is there is always some

realistic damping which keeps things into control and also non-linear effects kick in once

the responses grow large and those sort of issues actually arrest the response to a more

finite valued response, but even though it is finite valued definitely it is much larger. So,

that is why we identify this condition as resonance.

So, using that very same analogy we will refer to this condition as the acoustic resonance

condition. So, this condition is referred to as acoustic resonance, which basically means

k L has to be some integer multiple of pi. In terms of frequencies it means omega has to

be n pi c by L. So, the resonance frequency is omega n can, will be harmonics and they

will depend only on the geometry and the material property of your fluid of your acoustic

fluid. So, these are the natural frequencies that we are getting which essentially means

that you have a very large acoustic pressure will be build up even with a very small

velocity of the oscillating piston.



Again this simple problem, as I said is scalable to higher dimensional cases also. The

important take away is that if you have a finite domain acoustic problem for example, if

you are interested to know, the response in this room which is actually a finite domain

abounded domain, then you can expect that there are resonance is in this room just like

there are resonances in a structure. But if you are interested to know how let say and

engine is radiating into the open atmosphere or how a vehicle is behaving during the time

of pass by noise during the time of pass by noise measurement the vehicle is supposed to

be in open atmosphere;  obviously,  ground it.  So,  there is  one boundary which is  the

ground plane there is well understood.

But other than the ground plane the acoustic domain is not bounded. So, therefore, it is

also a semi infinite  domain.  In the case of the pass by noise application you do not

expect any resonance, but if you are looking for an in cab noise application with the

window shutters completely closed then the acoustic space within your car is going to be

converted into a finite domain space. And then you will have acoustic resonance you can

do this experiment in a car if you want to keeping it in neutral keeping your car in neutral

just keep revving up your engine.

At  some rpm you will  see  suddenly  a  very  high  noise  is  coming.  So,  that  noise  is

associated with the acoustic resonances of your cavity. I mean one possible source of that

large  noise at  that  rpm is  because of  the acoustic  resonance of  the cavity.  So,  these

cavities  these  are  all  call  cavity  resonances  or  acoustic  modes  associated  with  the

cavities.

So obviously, the 3 dimensional problems is more complicated then can then can be done

in pen and paper calculations,  we need specialized commercial  softwares to calculate

these resonances for us in case of a 3 dimensional problem, but the concept of resonance

can is more is what I am trying to explain it out to here. You should understand this the

concept of resonance which I tried to explain with this simple one dimensional case, the

same concept  of resonance applies  even for a  more complicated  problem for which;

obviously, union numerical simulations as opposed to close from analytical expressions.

So,  I  will  just  generate  another  plot  what  we  have  done  presently  is  that  we  have

generated a plot against x for this function right. What we could also do we can plot this

amplitude against kappa for a fixed value of x, and let see how it how that one looks like.
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So, we will close this figure and also we will clear all the variables we will clear the

screen for us. And this time we will keep x by L value let us say at 0.5 at the midpoint.

And we will loop around the frequency variable k or k L rather from let us say we do not

want the 0 value to come in. So, point one in steps of let us say point 0 one up to 5

maybe 10 little bit fine. So, what we want is to find the pressure at different values of the

frequency.

So, what is the expression for that cos of k 1 minus x by L divided by sin k? So, we will

do that. So, the pressure that we are looking for is cos of k into 1 minus x element wise

we have to make the division divided by sin of right. And then we can plot out k divided

with respect to p.
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This is how it looks, we can n fact only plot the magnitude of it because we are looking

at the amplitude k absolute value of p.
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You get to see a very sharp peak here this is exactly the same f r, f peaks that you would

have observed even for vibration.

You will keep getting many more such peak. So, if I extend this k up to let us say 30

would be good enough to show you multiple peaks, then again I calculate p, which is cos



of something and then again, if I make that plot, but before that I will close the existing

plot and I will plot it again.
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So, you will get to see multiple peaks that is because like vibrating system this acoustic

system is also a continuous system and all continuous system will have infinite number

of natural frequencies and they are all harmonically related. Because we saw the integer

multiples are in the natural frequencies are impulse. So, this is what I had in store for you

today we will take it up from here in the next class.

Thank you.


