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Welcome you all to this course on diffraction and imaging. In the last few classes I had

covered  the different  modes of  diffraction  like,  parallel  beam diffraction,  convergent

beam diffraction,  and  divergent  beam diffraction  and some of  the  applications.  In  a

microscope apart from getting diffraction from different regions of the sample we can get

information about the, how the image itself looks like right in addition to diffraction. So,

how the contrast arises in the microscope? That is what we will discuss about it. Earlier

itself I mentioned that in crystalline material the contrast comes from or we call it as a

diffraction contrast; that means, that the whatever the diffraction phenomenon which is

occurring is responsible for the main contrast mechanism ok.

So,  essentially  we have  to  use  the  formulas  which  we have  derived  for  finding out

contrast from different regions of the sample, that what has to be done. And this is one

with respect to a perfect sample and mainly the contrast arises in a perfect sample if it is

a  polycrystalline  material,  from  one  region  to  another  region  orientations  could  be

different. The extent of scattering could be different that will give rise to a contrast. And

if it is within a grain various types of defects which are present. They would also bring

about displacement of atoms from their normal position which will give rise to contrast.



(Refer Slide Time: 02:15)

So, these are all the various types of defects this which I had mentioned long time back.

So, I am not going into it. So, essentially when we have a sample like this and all the

planes are arranged like this. If you consider a beam which is entering like this and when

it comes out as the beam passes through the sample, this may be consisting of many unit

cells arranged one on top of the other.

So, if there is variate so, even if it is a perfect crystal, if there is a some scattering which

is going to take place from every depth into the diffracted direction, the amplitude of the

wave which comes out is going to be different right. So, depending upon the composition

suppose this region contains ordered alloy another region contains a disordered alloy. So,

they extent of contribution to the scattered wave will be different in these region and may

be from this region. So, there will be a variation in the intensity of the transmitted beam

itself.  So,  if  we look at  the back of  the sample in  a  what  essentially  we get  it  is  a

variation  in  amplitude  of  the  transmitted  beam.  Beam  which  is  transmitted  in  this

particular direction the same as the direction in which the beam has entered.

Similar to this, in the scattered direction also there will be variation is going to be there.

So, this variation if we see it in the transmitted beam alone and try to magnify it by using

lenses then we are able to get some variation in contrast that is what we call as that

image right, that is what we normally do.
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So, this we can understand it in a way that when the beam an incident beam enters this is

the direct beam and there is a waves which are scattered in different direction. And the

we have derived earlier expressions for finding out the intensity of each of that amplitude

of each of the diffracted beam and also it is intensity right, that is under a kinematical

condition ok.
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What  we will  do  it  is  now we will  go  back and we extent  it  further.  So,  the  total

amplitude in a particular scattered direction essentially depends upon the intensity which

is scattered in that particular direction from the full volume in which, full volume of the

sample which is illuminated by the electron beam. Correct? That is if an electron beam is

falling onto the sample like this ok.

(Refer Slide Time: 05:30)

This is essentially the transmitted beam and you see that from this region diffracted beam

is going to be there. If we put a lens what the lens does it is at the back focal plane, all

these rays are focused together ok.

So, we get the diffraction spots, but since the diffraction spot is a concentrated one. We

are not able to see the variation in intensity there right, but if that same area which is

there is magnified and we see it in the image plane. So, the image plane we are able to

see the contrast which arises, but essentially what we see it is nothing but the variation

which  has  taken  place  because  of  the  diffraction  which  is  occurring  in  a  specific

direction. So, many directions it will be taking place, normally when we do microscopy

we use a technique which is called as a 2 beam condition. That is a transmitted beam and

a diffracted beam; that means, that the sample is tilted in such a way that only one space

particular planes are stronger, oriented for strong diffraction ok.



So, if we consider that, then we know that that every atom position which is there that

volume can be taken as one corresponding to a unit.  primitive unit cell  plus the one

which corresponds to primitive or a non primitive unit cell, that is as one cell plus one

which corresponds to  that  atoms positions  in the unit  cell  plus this  corresponds to  a

position which is the if a defects is there in the defect there is a slight displacement of the

atoms from that position, this is what it tells about the atom positions in the. And this

finally,  the expression which we have derived earlier,  is one which it  corresponds to

within the unit cell which we call it as a structure factor. And the whole volume which

we consider is essentially the shape factor. This together gives the amplitude of the each

of the scattered diffraction spot which will be coming, correct? Ok.
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Then we have derived this expression that is the structure factor we know that for every

unit cell it is going to be the same, but the shape factor turns out to be this sort of a value

will come sin pi. And if you look at it how this shape looks like, this is how the shape is

and here we can make out that away from the exact brag condition also there is some

intensity which we can see it. So, that condition we normally write it as delta k equals is

that as g plus S the right essentially this is equivalent to suppose diffraction spots are

here like this if the ewalds sphere passes through 2 spots together then we say that the

there no deviation exact Bragg condition is  satisfied.  If  the ewalds sphere is slightly



tilted, then we can do it is from here to here this is g, this is the delta k from here to here

this will be g plus s. And that sin depends upon how we have fix the coordinate ok.

(Refer Slide Time: 09:19)

So, instead of this delta k if we substitute this is an expression which is a general one, but

x y z is a direction this will have components. So, this is what the expression for the

shape factor turns out to be. The total intensity if we look at it this multiplied by the

structure factor will give the structure factor square will give the total intensity. And the

when we put g plus S, then what is going to happen is that g dot a because a is a lattice

translation vector a x. So, if g x plus this one if you take it that is a integer. So, because

of that what is going to happen is that all these terms that only the S will come into the

picture, the factors will not be there. Here what we have considered as S equal to the

vector is written as i into S x plus j into S y plus k into S z. But normally in microscopy

one assumption which is being made. The assumption is that the deviation in the Bragg

condition  is  only  is  only  in  the  exact  direction,  other  directions  the  directions  the

deviations are 0 ok.

If we make that assumption then when S y and S z becomes 0 then what this term will

turn out to be? Will turn to be that N y square and N z square, right? Because from the,

the hospital rule this will. So, only this term which is going to be there, correct? So, this

will be the amplitude which will give, this term which is because when a scattering takes



place from a particular point and the intensity we are measuring it to the point which is

far away are then this will give e to the power of 2 pi k dot r by r will come. And this is

the divided by the volume of the area if you take it per unit volume we will be getting

this amplitude. So, amplitudes square give the intensity correct, and intensity of the if it

is a 2 beam condition, intensity of the transmitted beam will be i minus i g. This is all

along a particular value of is a that is for a specific value on x and y that is we are doing

it. Right because this intensity if you look at it, this a z into n will turn out to be t. So,

this is the expression which we will get it ok.

This is along the sample along a particular column which we are doing this calculation.

So, with respect to a coordinate system which we are chosen. This may have some value

of x and y and z. So, like that we can say another x and y value we can have. And along

this column is that we can find out what the intensity Is, this is how an intensity has to be

calculated  to  find  out  how  the  contrast  is  going  to  come.  Is  it  not?  If  we  do  that

essentially we get a mapping of that intensity at the back of the sample, with respect to a

transmitted beam we can find out. Similarly with respect to that diffracted beam also. Is

that clear? So, that way we can find out the intensity distribution.
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There is an another way which it  can be done,  that is  because when we look at  the

scattered intensity with respect this is sigma into r g over the various unit cells which are



there F g into exponential 2 pi S dot r g it will comes. R is that position of that x y and

they  said  position.  Essentially  in  we  are  adding  the  various  waves,  Right?  This  is

mathematical way in which we can do it. There is a graphical way in which we can also

do it. In a graphical representation what we do it is since it is a complex one, the real part

and you know, in a complex plane this can be represented as an amplitude and an angle

theta we can represent it. Correct? That way also we can represent if we represent it that

way, then from here when it comes something has been scattered, amplitude. Then if you

see from here the position of r is changing right, as we go along this column; that means,

that here r 0 x y it is a x y z 0 it is consider origin, e z equals 0. Then the e z value is

going on changing it; that means, that this phase time is continuously changing this phase

time changes in the change in phase time is equivalent to change of this angle theta, e to

the power of i theta. So, now, we can plot this as an amplitude phase or phasor diagram

right.
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That means that this is a first wave at the top the next one. So, like that it comes and now

if you see the resultant amplitude, this gives the amplitude of the wave, right? This is one

this is an another way in which we can look at it. Is this clear? Because one we have

calculated  using  the  mathematical  expression  which  is  there  directly  found  out  that

intensity.



Another is along that column using this ah, phasor diagram also we can find what is

going to be the amplitude, and what is going to be the angle theta which we can find out.

And then this is suppose we assume that this is the net amplitude of the scattered wave

ok.

(Refer Slide Time: 15:21)

Then if we have to find out the intensity the psi psi star has to be taken. That will always

be, if you take it is going to be the intensity is going to be in the real always. That is it is

going to be in the plane which is going to be in the real plane or the x axis plane, right?

The y axis plane is the imaginary plane when we consider it. So, this is what it gives that

intensity. So, irrespective of what the orientation of the amplitude orientation of the wave

in the complex plane,  if  you look at  what the intensity  is going to be, that does not

depend on that, correct?
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This has some consequence. The consequence essentially is that that expression which

we have derived, ok? 

It contains e to the power of 2 pi i S into S z or S into t for a thickness of the sample into

F g the pi g will be equal to, into S into over a (Refer Time: 16:49) that full region if you

see it will be an integral which will come into z d z it will come. Otherwise it can be

written as over the full column we have added that also that term, correct? Both the ways

we can represent it. The other expression which we have to, I think I will come back to

that later.

Suppose the value of S is very large or the value deviation is very small. What will be it

is effect on the phase? The phase factor if you consider if S is for a S into r, if you it r S

into z is a if we take it if S is small, this term is going to be a small value, right? So, the

angle theta is going to be rather small, correct? So, if we take that way, that is what we

are  trying  to  do  is  that,  the  beam  is  falling  on  that  sample,  but  it  is  not  at  exact

orientation, but there is a small deviation S is there. But it is very close to the Bragg

orientation.  In  such  a  case  what  is  going  to  happen  is  that,  if  you  look  at  the  net

amplitude which is going to be there, is going to be rather very large, correct? And there

is a problem which comes in that. Because kinematical theory is based on the assumption

that only a very small intensities getting scattered amplitude turns out to be large then,



when we try to calculate intensities they can be 0 the lot of problems are going to be it

does not explain the results also correctly. Instead suppose the value of S turns out to be

very large, ok.

Then what is essentially it is going to happen is that, that is if it is g that is we let us

consider  2 values  of  S,  S 1 and S 2.  S 1 is  close to  So,  the intensity  of the or the

amplitude of the scattered wave it is going to be very large here. Whereas, here compared

to the intensity which you should have at exact Bragg orientation, the intensity is going

to be very small for this value; that means, that this corresponds to a condition where the

amplitude of the scattered wave is much smaller, much small compared to that of the ah,

incident wave, right? So, the kinematical theory is valid in this case. Here how it happens

is that, when that is very large since the angle theta what will be the effect of this large

S? Because for the same is that S into z is going to turn to be the phase angle is going to

be large.  So, when the phase angle is large,  even for the same it will be one will be

coming like this, another will be coming like this, for a few vectors this can go like this

can move around in a circle, but overall the amplitude is straining out to be very small

compared to the original amplitude of the incident wave.

So,  in  this  condition we will  have the kinematical  theory is  valid.  What  will  be the

consequence of it? Which we can we will see it in 2 cases ok.

In this expression also what we are writing is 2 pi i because that intensity when we write

it is sin square pi S into t intensity of a transmission is proportional to here, correct? This

is a sort of an expression which we have. For a particular value of S you can have a value

of t so that this term turns out to be an in small integer, correct? Then what will happen is

that the intensity will become 0, depending upon that value the intensity can fluctuate,

correct? So, it is for the same value that for a particular value of S we have multiple

values of t for which the intensity can go to maximum and come down to minimum, ok.
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That is what essentially is being shown here. Suppose we have wedge shaped sample.

The same parallel beam is falling onto it. Intensity of the diffracted beam if we try to

look at it, for this particular thickness, this is using the phasor diagram it has been shown,

but essentially what is what we will see it as we go such that either intensity becomes 0.

It reaches a maximum value, then it becomes 0, it fluctuates like this. Opposite effect we

will be seeing it in the case of a intensity of the diffracted beam or in the bright field or in

the dark field,  we will  getting complimentary contrast,  correct?  And as per this  if  S

becomes  small,  what  it  will  happen?  The  thickness  has  to  be  at  a  larger  value  the

separation at  which this  from bright  to dark and bright dark this  fringe contrast  will

change. So that means, that this is how it will go. Suppose S becomes 0 what happens?

There should be uniform intensity that is what a kinematical theory says. What is it seen

in practice? That is not the case, there is a variation. 
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Here this is with the large S been we see that, it is a bright field micrograph closer to the

end  of  it  you  can  see  some  fringes.  And  this  is  in  the  dark  field  you  can  see

complimentary fringes could be seen it is taken from the literature. The same sample

when it has been taken to S equals 0, you see that the fringes have still seen if the large

width bright field bright phenomenon. They are much better contrast. This is what the

observation is; that means, that though the kinematical theory is able to explain some of

the features under some conditions it is not able to explain completely all the features

which we observe in the microscope, especially when a strong diffraction is occurring.

Because when, we say that S equals 0 means that it is satisfying the strong diffraction

condition ok.

Student: sir why you are saying positive .

No not positive that I am telling yes when it becomes 0. This x this is the expression

which is derived know when S becomes 0, what it says that? That is it has to be only

uniform  intensity,  but  that  is  not  what  is  being  seen  so;  that  means,  that  there  is

something is wrong with the theory which has been developed. This is valid only for

when we have a, this theory can be applied only because when S is small or the or the S

is large, the deviation from the Bragg condition is large the intensity of the diffracted ray

is much smaller compared to that of the transmit. When the intensity of the transmitter



and the diffracted  beam become very close  to  each other  that  takes  place  under  the

condition when S becomes equal to 0, under that condition this theory is not able to

explain the observed contrast.

So, we have to develop a theory which, that theory is called as the dynamical theory of

contrast.

Student: sir this theory does explain the.

At when S is large it is able to explain us, but when S is equal to 0 it is not able to

explain; that means, that under all conditions it is not to explain the contrast so.

Student: S 0 we are getting the a large contrast.

The S equals  0  is  what  we are  getting  it,  by theory  there  should  not  be  any fringe

contrast, but now we have a fringe contrast.

(Refer Slide Time: 25:35)

Essentially what happens is that the dynamical theory also gives an expression which is

equal to sin square pi it will be written as S effective into t divided by pi S into a the

whole square this all will be turning out to be the same. Only thing is that the S now

which written  as  S effective  equals  root  of,  this  S square  the  deviation  from Bragg

condition by 1 by 1 by psi g square it will turn out to be. This we will come to it, how



this expression is being derived. I will not go into a full detail of it because it requires

great hill of understanding of condensed matter physics we have to go through it which

will not do it, but what happens is in this when S becomes 0 still, the S effective is going

to be one by psi g, correct? So, this term nowhere becomes 0, you understand that that is

why it is able to explain, is it clear?

So, far what we have considered all the amplitude derivation which we have looked into,

we are not taken the absorption of the beam as it passes through. That is as if that only

the phase is changing there is no other change. But if there is an absorption is, what do

you mean by absorption? It is essentially is that if any inelastic scattering is occurring,

the  primary  beam is  lost.  So,  all  these  things  contribute  to  the  reduction  in  intense

reduction in amplitude of the wave, ok.
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 that we call it as an absorption. If that happens then in the same phasor diagram, every

time an as the beam enters into the sample, gradually the absorption is also going to

increase as it passes through the sample that as it is that increases. That affect will be that

amplitude will be reducing, but the phase remains that same the deviation.

So, now if we look at the phasor diagram it will not back not a circle. It will be a helix it

will be just going on spiraling inward, but still the same thing could be used to explain

how the variation in contrast, this is what it is being done, with the number of unit cells



the intensity how it is going to change. But now if we look at it when the thickness is

small whatever is the variation in intensity which we see as the sample becomes thick

the, intensity variation is going get smeared out gradually, is this clear?

Now So, far we have considered the case, which is for a perfect crystal. Because we

assumed that there is no defect which is present. When a defect is present in the sample

then in this term delta k dot r m n p that g plus S will come into r l corresponding to the

lattice ok.

(Refer Slide Time: 28:33)

Then r u corresponding to the each of the unit cell, plus r d which is corresponding to

that defect which is present at some location. Now if we just expand this expression, g

dot R l is the term which is essentially going to be a integer, correct? G is the perfect

translation vector, R l is corresponding to a latti different lattice points which represent

each different point which represents each unit  cell.  S is a deviation from the Bragg

condition. Because of it what we can see that this dot R u, R u with respect to unit cell,

unit cell is a specific cell which we are considering it. There the r u vector is cannot

exceed the lattice parameter of the unit cell. So, this if it is small this S dot R u can turn

out to be small. Similarly R d is the deviation from the correct position of the atom closer

to the defect. So, that deviation is also very small. So, S dot R d will also be small then.

So, this can be neglected, because the effect of this close this becoming equal to 0. G dot



R l is going to be an integer. So, now, we will be left with only 3 terms which are going

to be there. S dot r l plus g dot R u plus g dot, so.

Student: what is r a r u ideally.

Ah.

Student: sir what is r a r u.

R l.

Student:. So, r l.

R l corresponds to the each unit cell is represented by a form in a lattice point.

Student: r u is.

R u is that with respect to each unit cell, the positions of atoms in the unit cell. R d is

corresponding to the defect. That defect which is present at that point the it is deviated

from it is not r u that is a small deviation is going to be there.
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Now, that intensity for, this we have to write it in a expression exponential. This if you

try to write it you can see that 2 pi i these 2 terms come together.  This term is with



respect to a unit cell. If you take summation over R u what does this term turn out to be?

Structure factor structure factor and this is summation over the different full volume, but

the  way this  summation  we can  do it  is  2  different  ways  we can  do it.  One is  the

summation over the volume is you take any x y point on that sample and take along

insert, like that you go on intra do that summation ok.
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And this summation we can write it as also can be written on integral form. Because

since we are taking it with respect to different depths like this in that sample as that is

that  varies  d  z.  The  different  unit  cell  if  they  are  there.  We  are  essentially  it  is  a

summation we are taking that can be written as the integral over the full thickness of that

sample. If we write it this will become F g into integral 2 pi i, these are all the terms

which are going to be there. This term if you look at it, what it corresponds to? With

respect to a perfect lattice.

But  there  is  a  deviation  from  the  Bragg  condition,  is  it  not?  What  has  this  term

corresponds to is g is the with respect to a reciprocal lattice vector. R d is the deviation

from the defect vector, is it not? At some particular position, suppose in this sample we

assumed that  at  this  particular  region we have the defect  is  there,  so that  the lattice

parameters  there is  a  expansion or contraction  or that  could be a rotation.  There are

different ways in which the replacement can manifest itself. If that is what it happens,



and  this  some integration  as  some mathematical  convenience  it  is  being  taken  from

middle of the sample to minus t 2 by 2. Do not bother about all those. Finally, when we

get the integration over z for various values of x and y, we can find out at the back of the

sample, how the intensity is going to vary from region to region. So, where the perfect

crystal is going to be there in those region intensity will going to be uniform. Where the

defect is going to be there will be a variation in intensity or the variation in amplitude

will come.

 this is that suppose, for some particular value of g because the g is the reciprocal lattice

vector. We are using one particular g reciprocal lattice vector for which the displacement

vector r d is such that the g dot R becomes 0. Then what will happen? The defect will not

be visible, correct? So, as if then the intensity variation is going to be only with respect

to whatever is the deviation from the Bragg condition. That, that is what essentially this

terms tells  is that exact Bragg condition you get some intensity.  If the beam is tilted

slightly away from the Bragg condition also you get the intensity due to the defect, but

the intensity contrast varies. That is what this expression allows you to calculate, but you

should remember that all these expression which we are talking is all for kinematical

condition, correct? The expression which we are using is a kinematical condition, but if

this g dot R d becomes much less than one third, effectively the contrast is going to be

very small for all practical purposes we cannot see it. So, this is what it happens. So, with

this sort of expression we can do a calculation and that is being done also. I will come to

some defects I will take it later and show you how the defect ah, that I will not do it in

this class in an another class we will do that ok.

Now So, far we have considered for a perfect crystal when S varies how the intensity is

varying, how to calculate the ah, intensity at different points on the sample surface. Then

when a defect  is present,  how the intensity will be changing? That formula we have

looked at it using this we can calculate the defect, but specific cases we will consider, but

we have seen also  that  this  has  the problem.  The problem essentially  is  that  all  the

experimental observations of the contrast this theory is not able to explain completely.

Qualitatively it  explains  quantitatively there is a serious issue, for which we have to

develop the dynamical theory ok.



What is dynamical theory? Let us try to have some basic understanding of it, is that if

since the electron  interacts  strongly with matter  as the electron  beam enters into the

material,  if  it  is  satisfies the Bragg condition as we were discussing before the class

started, what are the Bragg condition? Electron will be strongly scattered ok.
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When it is satisfies Bragg condition, and from this plane it will again be scattered back

into the transmitted beam. Similarly this beam when it is from the next plane when it

scattered will be scattered into. So, like that back and forth there will be a scattering of

the  intensity  is  going,  but  what  we should remember  that  when the wave is  getting

scattered from one to the other always, there is a factor i  comes into the amplitude,

correct? That is if we take any beam, a plane wave which is entering the scattered wave

if we look at it that intensity will be some proportional to i into psi it will be.
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So; that means, 90 degree phase degree always it introduces. So, because of that in the

scattered direction g the Bragg diffraction first diffraction which has taken place, this i

into psi 0. Then from this g when it scatters back into the original direction, then again i

into psi g will come. So, these id you multiply this turns out to be minus into psi zero;

that means, that the beam which has been doubly scattered it is out phase with respect to

amplitude. So, because of that the amplitude in the scattered direction.

If we try to look at it or amplitude in the transmitted beam if we look at it, it gets reduced

faster. The same thing So, there is a particular distance at which the amplitude of the

transmitted beam becomes 0. That distance we call it as the extinction distance. That

distance depends upon the periodicity in that particular direction. And what all factors

this and this called psi g, what all factors it depends on? One it depends upon the volume

of the unit cell, that is if the volume of the unit cell is large the scattering is going to be

small. So, this psi g becomes large because number of atoms are going to be less. And

what is F g? That there is F g is the structure factor, structure fact means that structure

factor  for  a  particular  scattering.  If  the  structure  factor  is  going to  be  strong or  the

structure factor is high, then over a short distance the intensity of the transmitted beam

will get reduced; that means, the psi g becomes smaller. So, psi g and structure factor are

inversely related.



Similarly, you take the case of the wavelength. If we go on increasing the energy of the

electron beam, what will be it is effect on the material? It penetrates, but what happens?

It is in a it is the scattering power gets reduced know, as it enters through it is effects will

be that psi g will be. So, this will be also in inverse relationship. So, essentially this psi

can be written in this sort of a form with pi, but all this things could be derived, this is a

qualitative way in which we are looking at it, but this expression is an exact expression,

which is derived from the dynamical theory ok.

Now, we will go into a dynamical theory just get some brief idea about it. Because this

requires an understanding of quantum mechanics ok.
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Before going to it what I will try to me tell you is that, that psi of the scattered wave

depends upon this term f of theta is the structure factor, correct? And the sigma n this is

over the full unit cell which we have to consider. This how phi g for each wave is going

to be right.



(Refer Slide Time: 40:35)

And when an image when we look at it, at every point on the image plane the intensity at

the point depends upon how has been scattered in each of the direction, correct? So that

means, that the total intensity of the scattered beam, if we look at it.

(Refer Slide Time: 41:05)

Depends upon the transmitted beam with some phase and then, psi g is with respect to

amplitude of the diffracted beam and the direction in which it  is  coming.  Then with



respect various beams all of them together determine the total wave amplitude at every

point in the image ok.

(Refer Slide Time: 41:38)

Now, let us come back to the sample again. In a dynamical theory what we assume is

that, essentially it is solving schrodinger equation. Electron beam with a high energy and

with a value of kinetic energy equal to particular value, which is beyond the accelerating

voltage it is entering into the sample. So, for that when it is in vacuum h bar square k

square by 2 m will be kinetic. From which we can find out what the value of k is going to

be. When the beam enters into the sample ok.



(Refer Slide Time: 42:29)

The sample consists of ions which are arranged in a specific position, this gives raise to

the periodicity of the potential, right. This periodicity has got 2 aspects which we have to

consider it, that is potential may be like is if you assume it is varying; that means, there is

an average potential  is  there over which this  fluctuation  is  going to  take place.  This

average potential, what is going to do? This is a positive phenomenon when the electron

enters into it is attracted towards it. So, the energy of the electron as if it is increases a

little bit. So, when the electrons enters into the sample, it is k vector is going to different

inside the sample compared to when it is outside the sample ok.

Then there is an interaction which is going to take place with respect to the potential.

And generally the potential of the material if you look at it most of them are may be 20

to 25. From may be few electron volts to 25 to 30 electron volts whereas, the kinetic

energy of the electron which is coming. If you look at the voltage which we are given is

100 or 200 keV. So, it is orders of magnitude difference is going to be there. Still what is

essentially it is going to happen is that, there is going to be a variation.



(Refer Slide Time: 43:42)

So, in this expression this is the, I had just taken a potential like this. This potential how

we can because if we look at it, this is periodically varying potential correct, but it is not

sin function right. So, this can be written as, this periodic potential can be written as

sigma.  We  can  separate  into  a  Fourier  series  we  can  do  it.  With  some  period

corresponding to g, that is it will this distance if we know that one by inverse of it will

be. So, with respect to that 2 g, 3 g like that we can find out then we can write that sigma

of this  one that  sigma of this  one,  this  u g and all  for each of that  wave which we

consider with a particular g frequency.

What  is  going  to  be  there  coefficient  corresponding  to  that  Fourier  coefficient

corresponding to that. This is the way the potential could be represented is it not in the

sample,  is  it  clear?  Because  since  atoms  are  arranged  in  a  periodic  fashion,  as  the

electron beam enters into it depending upon where it enters it going to see a different

type of a potential. It is kinetic energy is going to change this potential is going to be

different. That psi r is that amplitude at every point is also a function of it is written as

phi g, which is essentially nothing but the amplitude of the scattered beam it primary

beam or the different scattered beam, into e to the power of I k h psi. This is the direction

k in which the beam is entered ok.



If this is the next position which corresponds to a reciprocal lattice position, or the atom

position is corner there is reciprocal lattice also will be with a inverse in this direction.

You assume that this is a reciprocal lattice, then from here to here what it represents? G.

So, this vector will represent the beam which the direction in which the diffracted beam

is coming. This will represent the diffracted beam coming in a another direction, this will

represent the diffracted beam in. So, this terms are going to be essentially that is what in

k plus g over all g values. So, in each of the direction you have a wave function which

we can write it for that, it is all that is each corresponds to that phase factor plus this is

the one which gives which is related to the amplitude of each of the scattered wave. That

is how the total intensity, if we substitute in this and try to solve it this is d square psi by

d x square. One of the things which we have to keep in mind is that this g can have k can

have component k x, k y, k z.

 (Refer Slide Time: 46:47)

Similarly, g can also have component g x, g y, g z correct? But what normally happens is

that, since the energy of the electron beam is very high and compare to the separation

between the atoms is going to be small, and we are assuming that the beam is falling in

the z direction then the g is almost perpendicular to r right. So, because of that what is

going to happen? The g z will turn out to be a 0 term. Only g x and g, then if we just this

is just an mathematical you just substitute, The this one simplify it algebra.



(Refer Slide Time: 47:25)

That is essentially what is being done. When it is being done we get some expression like

that d phi g by d z into i into some terms will come. This is k x, k g x, k y g y, k z ok

This phi g is another there is this is the amplitude of the scattered wave plus one more

term which comes, i 2 m by h bar square 2 k z. This by I am not going into it you can do

all  these algebra, then this will turn out to be this phi dash, phi g dash into this u g

comes;  that  means,  that  in  this  term  it  is  for  different  values  of  g  which  we  are

considering it. It is between the Fourier coefficients of the amplitude of the wave at every

point  is  coupling  with  is  multiplied  by  the  Fourier  coefficient  of  the  potential

corresponding  to  each  of  this,  correct?  This  is  this  Fourier  coefficient  of  potential

because how we have written this expression V r, U g right ok.

This comes from some orthogonality relationship, but you can because this like dummy

suffix because, when g dash equal to not equal to g only summation is taken when g dash

is equals g this becomes 0. There are some conditions are there, that is why I am just not

going into any of the mathematics. But what is essentially important is that, this term is

going to be there know each one of this is equals one by psi g. So, what it essentially

means that that extinction distance depends upon in a particular direction g that is g to g

dash means that from one particular value of g vector to another value of g. That tells the

periodicity  in  that  direction.  For  that  periodicity  what  is  going  to  be  the  Fourier



component  of  the  potential  which  is  going to  be  there.  That  is  going to  decide  the

extinction distance, you understand that. So, extinction distance directly depend upon the

potential within the sample. The potential is very weak, then what is essentially is going

to happen is that the psi g is going to be large. And when the potential is very small that

psi g is equal that is going to be small. This is what it happens in the case of suppose you

take aluminum along 1, 1, 1 direction if you take psi g. You will get a value which will

be very high. We take for the same 1, 1, 1, or you normalize it by the lattice parameter

because otherwise lattice parameter.

Take the case of a tungsten, tungsten the value of psi g is going to be extremely small

because that the potential is going to be high, you understand that. So, it is a related to

potential, but the potential itself is not a simple sin wave or a cos wave, it is a complex

wave. When it is a complex wave that potential can be represented in terms of a Fourier

series with respect to the Fourier series, but the Fourier coefficients are there, and what is

the frequency which we consider? It is with respect to the reciprocal lattice vector g 2, g

3, g like that it will go. Various gs which we have to take it.

Student: one diffraction.

This  is  with  respect  to  this  g  dash  can  have  any  value.  This  is  with  respect  each

diffraction vector this values will change. Suppose instead of, suppose instead of 1, 1, 1

direction suppose I take 2, 0, 0 direction. So, the value of psi g will be different, because

the potential Fourier coefficient is going to be different, you understand that? And then

this term is essentially is nothing but S g, S g is the deviation from the Bragg condition.

This comes only from the quantum mechanical expression when you write it and try to

solve it, you understand that?



(Refer Slide Time: 51:47)

Now, what I will do it is that, this if we substitute this S g and this psi g which we put it

and if we do some substitution, we will be getting explain, what is this term which it

tells. What we have written is that the rate at which the amplitude of the diffracted beam

varies in the z direction depends upon the intensity which is scattered in that direction.

The amplitude of the wave scattered in the direction plus this corresponds to the defect

means amplitude of the waves which are scattered in the other direction with psi they

both have an effect, correct? That what we qualitatively talked about also earlier. Finally,

under a 2 beam condition we will be getting an expression like this. That is the rate at

which the amplitude of the wave that incident wave you look at it enters phi 0, as it

passes through the sample rate at which it decreases is given by this expression. It can be

derived from here. And the rate at which it amplitude of the scattered wave changes and

here we have taken only one diffracted wave and the transmitted wave. This is what

essentially this expression. 

This expression We can substitute for phi g into this one, this we try to do it we will be

able to write a differential equation like this. This I am not going to any of the derivation

I, but want, but generally if this sort of an equation which is there what is the general

solution? This all of you have studied in mathematics. No this will be into e to the power

of 2 pi i some alpha into So, that sort of an expression you write it.



(Refer Slide Time: 53:51)

Now, you substitute and try to solve it. This is all just the mathematical, I am just only

showing some of the important results, when you do it this will turn out to be a term like

this,  with respect  to gamma.  The solution of this  term because gamma is  essentially

contributing to a phase factor. It is something similar to S. This will have 2 solutions,

gamma 1 and gamma 2. And if you take gamma 1 plus gamma 2 that turns out to be S

the deviation. And if you take the product of gamma 1 and gamma 2 that turns out to be

that 1 by psi g square just that is why this 2 terms are very important. These are all

coming out of this mathematical operations when you do it. And then there are some

expressions  by  which  it  can  be  written  as  or  (Refer  Time:  54:25)  These  are  all

mathematical manipulations and using which we can find out because in this what we

require is gamma we know, but see what is the ratio of c 0 to this one that amplitudes

also we should know, no. So, that everything is being derived in this way finally, what

happens is that, when those sort of amplitudes are derived.



(Refer Slide Time: 54:42)

This is the term which we will have know we said that 2 beams only are there know; that

means, that psi t will be equal phi 0 into e to the power of 2 pi i k dot r plus phi g into k

plus g into dot r, correct? This how the expressions will be. This phi g when it is being

derived this is sort of an expression which comes. You forget know finally, it turns out to

be an expression that phi g squared will turn out to be pi t by psi g the whole squared sin

squared pi t S effective by this factor.

This  expression  if  you  see  it,  is  very  similar  to  this  expression,  correct?  For  the

kinematical  theory,  but the meaning of the terms are quiet  different.  This S effective

turns out to be root of square plus, now all the derivations I had left out because it is a lot

of mathematical which is there which is unnecessary, but what you should remember is

that this is how the intensity of the diffracted wave is going to be. And when S becomes

0  also  this  will  become one by psi  g  square,  correct?  So,  you  can  substitute  for  S

effective into it then you will find that there will be a fluctuation which will be taking

place. Is this clear? And what will be the intensity of the intensity of the transmitted

wave? This will be one minus i g ok.



(Refer Slide Time: 56:23)

This is the way a calculation can be done. Then the whole issue comes is that practically

when you have to do the calculation. What is the size which you take of that sample

dimension? Ok.

Suppose I wanted to find out at the back of the sample at this particular point, what is

going to be, what all, what is, what all beams which will contribute to the intensity here?

Suppose a beam is entering here and the beam should come out through this. As the

beam enters the beam gets scattered and it is getting diffracted back into this one. So,

essentially the diffracted beam makes some angle theta, is it not? And with respect to the

lattice parameter, that tells us that this angle is 2 theta b all the beams which are falling

here in this direction, they will contribute to some intensity or other to it so; that means,

that at this point intensity depends upon not from only just from this, because the theory

we derived it on that basis, but practically it is going to be from this region as well. So,

that has to taken into account ok.

Why I am telling is that these assumptions are already softwares are there where this

calculations  are  being  done,  they  take  this  into  account.  This  is  called  as  column

approximation.  Then what  is  normally  done is  that  generally  you assume that  some

thickness of the sample you take it. So, along this column within this, whatever is the

beam which is going to entering that will contribute to intensity at a particular point. If



we know this, if we know this what value of theta been normally in the case of a sample,

in t e m sample, especially it is about less than half a degree. If it is half a degree if I

assume that the sampled size is about hundred nanometer, this diameter will turn out to

be about something like 2 nanometers.

So, in most of the sample the column size is taken to be 2 nanometers for the calculation.

This is how the calculation is being done. 

(Refer Slide Time: 58:56)

Now let us come back to it this derivation which we have done is that is, what we have

started with is assume that,  what is the potential  of the sample we know? The wave

function, what is the wave function when we write it as the expression? That tells us

nothing, but what is the path which the electron is going to take as it moves within that

sample. In the physics term we will call it as a wave function. Chemistry we will call it is

an orbital function, right? What is the orbit which is going to take, correct? So, that is

what we have done it. So, that depends upon, that wave function the sample depends

upon what I psi g it is essentially with respect to the beam directions, right? With respect

to  a  beam  which  is  there  in  the  transmitted  direction,  what  is  it  going  to  be  the

amplitude? of the wave phi 0, phi g is the amplitude of the diffracted wave. So, the path

of the electron within that sample is being controlled by amplitude of the transmitted

beam as well as the diffracted beam. And that is related to the potential which is being,



potential of the potential of the electron comes in terms of that i g, correct? And this the

ex equation when we solved. We arrived at for phi g and expression like this and this is

how we have got that final expression, ok.

(Refer Slide Time: 60:32)

Now, when S becomes 0, what this will turn out to be? Phi this will become pi into t by

psi g, correct? Then phi 0 square will be here now what is going to happen is that, as the

thickness of the sample t by psi g becomes 1 half, 3 by 2, 2 like the intensity is going to

fluctuate. It that is what is being seen when S equals 0.



(Refer Slide Time: 61:11)

So, this expression the dynamical theory of expression is now able to explain all the

experimental  observation.  Not  only  that,  S  effective  is  there  then  like  the  way  we

explained it for the kinematical theory S effective and t we can take it, is it not? The way

explained in the kinematical theory,  when the S is going to very large.  Then what is

going to be? This one by psi g is going to be the psi g will increase. That this term will

become 0 S effective will become S then the kinematical theory is valid. So, this theory

has  it  is  a  theory  which  explains  under  all  conditions  how  the  contrast  will  vary.

Whereas, the kinematical theory can explain when the deviation from the Bragg angle is

large, but not when under not under exact Bragg condition, is it clear? Ok.



(Refer Slide Time: 62:13)

So, this is where a table which I am showing it for different diffraction,  this one for

hundred k v electrons. What is going to be the psi g value which has been calculated for

S equals 0? What is going to be the effect of this? The effect of this will be that suppose

you have a multilayer sample, in which each layer has got at different element which is

being present there. Or the composition from layer to layer changes, then the psi g will

also change. The effect of the psi g that even under the condition when S equals 0 if the

closer to the sam thin foil, closer to the hole of the sample, generally any of you are

prepared samples for t e m, what is the shape it looks like?



(Refer Slide Time: 63:15)

Student: circular

It is the whole. Sample looks like circular, but the thin foil thin region, it is the hole from

here it go. So, essentially it will be something like this is how it is. It is essentially a

wedge shaped which is going to be there, correct? Even under the Bragg condition. So, if

the there is it is like multilayer it is going to be there psi will vary locally, that will have

that effect on this periodicity of this bright and dark fringes.

(Refer Slide Time: 63:48)



That is what you can see it here, you see this. This gallium arsenate, this is aluminum

gallium  arsenate.  Now  you  can  see  that  how  the  fringes  are  changing.  So,  gallium

arsenate has got a higher this one so fringes spacing. So, here you see that when the

aluminum is introduced the fringe spacing has changed, correct?

So, all the features which you observed could be, there are many situations where you

will not be directly able to interpret it, the image can. Then under those conditions, that

we  will  take  it  up  in  the  next  class,  I  will  explain  some case  where  we  are  done.

Computer simulation of the image which you have done it to verify it ok.

(Refer Slide Time: 64:38)

In such conditions you have to simulation to find for which you should understand all

these theory.  Software will  be there,  but you should know how to use it  no,  how to

optimize it and use it for that unless you understand the theory it is going to be difficult.

If somebody wants to do a serious microscopy anything which we do otherwise we are

not sure what we interpret is correct or not. So, this equation which we have written it for

the variation  of incident,  amplitude  of the incident  beam and diffracted beam this is

called as the howie whelan equation, or howie whelan darwin equation ok.

This equation is for a perfect crystal. When it is going to be a crystal with the defect, like

the way we have seen it wherever that S z is going to be there. There will be a term

which will be attached h z plus g dot R where r is going to be the defect vector. Exactly



this term will come like in that case if the g which we choose is such that, g dot R

becomes 0 then it becomes the case of the perfect crystal. So In fact, that is used to find

out the by just vector of the dislocations. And then about strain contrasted on precipitate

all this things will be determined by this g dot R. Some examples, now I had just given

the formalism, the mathematical derivation without going into it I said that what is the

need for a dynamical  theory,  from the kinematical  theory,  how the dynamical  theory

differs? Just had the written the initial expression and in between this expression which

comes, and what is the relationship of psi g with respect to the periodic potential all these

things some expressions which comes out of it  only just  the expression which I  had

flashed. In the next class we will take it up because when we do the calculation all these

things how do we put into a place and we have to do it. That is why I had introduced this.

In the next class we will take some few examples of defects which both with kinematical

and dynamical how we try to interpret it that part we will take it up we will stop here

now.

Thank you. 


