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Good evening.  So,  today’s class  we will  start  applying the  Heisenberg’s Uncertainty

Principle. Whatever we have discussed yesterday we will see how the uncertainty in the

momentum and displacement becomes more evident, if you look at a confinement. So,

we took the example of a free particle in space solve the Schrodinger’s equation and

found that still in this case; you have uncertainty which is spanning or tending to infinity

or  locating  the  particle  position  in  space.  But  the  momentum  is  nearly  precisely

described and therefore, there is a satisfaction of the Heisenberg’s and certainty principle.

Now, let us extend this to the case where we confine this electron wave to a small width.

So, sometimes they also refer this kind of a confinement to quantum well just like you

have a physical well.  Where you dig deep and put something inside and you cannot

expect this object an or a person, who is inside the well to climb out unless you have a

sufficient  energy to overcome this  potential  head of this  well  the similarly a particle

which  you put  in  a  potential  well  or  a  quantum well  should have enough sufficient

energy to overcome the potential energy constraint on this particular particle. So, in this



case let us say that we have a well something like this it looks rectangular and you have

particle inside this well.

So,  inside this  well  the particle  is  free to  move around in one dimensional  space of

course; that means it can move this way or this way. So, there is no constraint on this part

particle inside the well. So, the potential  energy constraint within the well is 0. Now

outside the well we will put a constraint that the particle cannot is keep this well. So, this

is particle is always trapped. So, this is what we want we want to make a confinement

such that the part particle is only within the well and cannot move out. 

So,  therefore,  the potential  energy outside the  well  the potential  energy constraint  is

infinity; that means, the particle should have infinite amount of energy to overcome this

barrier and climbed across this and then go out which is not possible. So, in terms of the

wave function therefore, you cannot have any wave function outside this potential well;

that  means,  a  probability  of  finding  the  particle  outside  the  potential  well  is  0.  So,

therefore, this becomes the kind of boundary condition for us. So, just at the point let us

say the coordinate system.

Let us start from this is a 1 dimensional system. So, our x starts from the left end of the

potential well and the total width of this potential well is described by capital d. So, it

could be nanometers. It could be microns it could be millimeters we have already see in

that  if,  your  confinement  is  of  the  order  of  millimeters  the  energy  jump  between

successive levels is actually very less and cannot be resolved right much lower than, your

value of KBT, where as if the confinement becomes the order of nanometers this energy

jump or the discretization of energy or the quantization of energy becomes more evident

and magnitude wise it is comparable to the energy at room temperature.
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So,  it  could be any value d,  but let  us make a  general  derivation  and therefore,  the

boundary conditions that can be written are at x equal to 0 and at x equal to capital d.

So,  since  the  potential  energy  constraint  is  infinity  outside  the  well.  So,  the  wave

function will be 0; that means, you cannot find or there is no probability of finding a

particle outside this potential well it is confined well within the well. So, therefore, we

will be solving this Schrodingers equation only within the well right. So, outside the well

there is no wave function existing.  So, we will solve this within the well,  with these

boundary conditions and therefore, when we do the separation of variables we have a

function of time o D is a function time which is an exponential function the other being a

function of space that is the Eigen function problem and what is this  Eigen function

problem for this case.

So, you have minus h bar square by two m D square psi the Laplacian operator in one

dimensional space and your potential energy constraint inside the well is 0. So, therefore,

that term drops out and you have E psi. So, this becomes your Eigen function problem.

So, the Eigen value for this is this is your Eigen value this is your n h. So, once you

apply the boundary condition you will be therefore, able to find out an expression for the

Eigen value which is the energy which is also the expected value of the Hamiltonian

right.



So, let us do this. So, I will give you some time, in the similar lines that we did the

solution for  a  free standing particle.  Now you try to  solve this  with these boundary

conditions the earlier case freestanding particle did not have any boundary conditions.

Now, the same solution you apply the boundary condition try to find out the constants

and  the  Eigen  value  capital  E  might  be  easier,  if  you  work  with  the  trigonometric

functions in this case.

(Refer Slide Time: 07:35)

So, you can assume that your psi which is the function of x is a cos K x plus B sin K x

and what is K here square root of 2 h bar h bar square upon h bar so.

Student: (Refer Time: 08:01).

Yea,  it  should  be  2  m capital  E  by h bar  square.  Now, you assume rather  than  the

exponential functions in this case take this to be trigonometric functions the boundary

conditions may be easier if you apply to the trigonometric functions the first boundary

condition gives you what.

Student: a is 0.

A is  0.  So,  therefore,  your  psi  now becomes  sinusoidal  function  in  space  right  and

application of the second condition at x is equal to capital d. So, you are in this case.
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Student: (Refer Time: 09:39).

So, you have K D is equal to n phi and n going from one to infinity, 0 again gives a

trivial solution. Therefore, K becomes n phi by d. So, now, with this can actually express

the solution for capital e. So, you can substitute for K from let us say call this is equation

number 1 here. So, into, let us say this is 1 and the second one is 2 substituting 2 into 1.

So, what do you get for E?

Student: (Refer Time: 10:44).

So I am just going to rewrite it like this you have phi h bar n by capital D the whole

square that. So, this is your energy and now, you see the difference compare to now if

you go back the way we have derived it before for a standing wave right.
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Before we started the Schrodingers equation this was the derivation that we have. So, we

have h square;  now you convert  this  to h bar  I  think you will  get  the same similar

expression. So, the earlier case what we have derived was just a standing wave from

wave assuming a wave nature and we just started from there we showed the energy of

this standing wave will be function of n, for each value of n.

So, you have different modes of waves and then corresponding values of energy now the

same thing through the Schrodinger’s wave equation. We can also arrive at the same

conclusion that. So, the given wave whichever is trapped inside the electron wave or

whatever which is trapped inside this quantum well is now quantized.
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And you have therefore, different values of. So, wave functions corresponding to this

quantization. So, psi of x will therefore, be equal to what B sin K x. So, where K is

nothing, but now n phi by; so, this I just use the subscript n to indicate that, now the

wave function is also quantized for different values of n from 1 2 infinity.

So, these are the discrete wave functions or quantized wave functions corresponding to

the value n and we have also plotted these. How these waves looks n equal to 1 how it

looks n equal to 2 in the standing wave problem we have plotted this. So, exactly this is

how they are quantized inside the well now, the corresponding energy levels are also

functions of these discrete levels. So, n equal to 1 will have a particular value of E n

equal to 2 and so on.

So, now the energy levels are also quantized. So, therefore, now the remaining problem

is how do we find out this constant B? So, how are we going to find this out? So, we will

now use the normalization criteria right. So, we have seen that as per the interpretation of

bond you have psi star psi from minus infinity to infinity, this gives you the probability

of locating the particle  somewhere in free space. So, in this case now the particle  is

confined within the quantum well. So, it has to be somewhere from x equal to 0 to capital

D and you having to locate it somewhere from x equals to 0 to D. So, this should be

equal to 1. So, therefore, if you substitute maybe you can try this.



Let me see how have worked out. So, the value of B should turn out to be imaginary

number i by into square root of 1 by 2 times D. So, this is how turns out. So, you can just

do this as homework use the properties of trigonometric functions and check whether

you get this value of B.

So, the next step is to find out what is the exact location of this electron wave. Now what

is the likelihood of finding this particles and what location can we find it where we can

find it.

(Refer Slide Time: 17:18)

So, therefore, now we start looking at the expected value of position which will be 0 to D

psi star into x into psi into D x and if you evaluate this the solution should come out to be

D by 2. So this tells you that in this particular case your likelihood of finding the particle

of is most likely in the center which makes sense, if you just have a quantum well of

width D more likely will be at the center there is no reason. Why it should go to towards

x is equal to 0 or x equal to D you have electron waves propagating has left running

waves and right running waves. But mostly with the known the particle located at the

center of this particular quantum well. So, this is with respect to finding the likelihood or

expected value of the position.

So, similarly we can also do other things, but in this case we will just stop with this

exercise. So, this is just to give you in one dimensional confinement, how you can use

the solution of Schrodinger’s wave equation get the wave function energy and also the



positions. So, you could also do the Hamiltonian operation. But finally, that will give you

the expected value of the Hamiltonian is  the nothing, but energy E which is already

determine as the Eigen value.  So, you can also apply the same thing for getting the

momentum Expected value of momentum as well.

Now, the next thing what we will do is go from 1 D to 2 D. So, we will talk about

particle in a 2 D box or quantum well this is a 2 dimensional quantum well.  So, the

previous case was a 1 dimensional well, where the particle can only move in the plus x

or minus x. Now this can move along the y as well. So, to just show you looks like our

conduction problem where we consider a slab a rectangular or square slab. So, let us

consider a square well now. So, this is your x coordinate and this is your y and the width

in the respective x and y are equal the coordinates origin starts from here, and inside the

well your potential energy constraint is 0 and at just at the boundaries of the well you

start infinite potential energy constraints. So, in this case the particle cannot escape from

this two dimensional well.

So,  just it  is similar  to what we have done in the 1 d. Now we have to extend this

problem to two dimensions. So, the same equation that we have written here has to be

written in two dimensional space and the same separation of variables this is the starting

point then we have a Laplacian or Laplacian operator becomes two dimensional and we

have to therefore, we will have another partial differential  equation. Here we have D

square psi by D x square plus D square psi by D y square.  So, again that has to be

separated into 2 o d’s 1 as a function of x 1 as a y. 

So, we will introduce another separation of variables there and separate the Laplacian

into 2 o d’s 1 as a  function  of  x  and y and then,  we will  find the solution  in  each

direction. So, so this is the procedure for first can you write down the equation into two

dimensions and then approach this with the separation of variables in x and y space.



(Refer Slide Time: 23:52)

So, what do you get for the Schrödinger’s equation in space by 2 m into some connection

is gone? How does it happen, I did not do anything? So, d square psi by d x square plus d

square this is a partial differential equation and you also have minus E psi equal to 0.

Now, the assumption is we have to again separate. So, we assume that we can separate

your psi which is a function of x and y as sum capital x which is a function only x and

capital y function of y and now you can substitute this into let us say equation number

one and divide throughout by capital x and capital y we have 1 by x d square x by d x

square plus 1 by y d square y by d y square plus you have two m E by h bar square equal

to 0. So, everybody could get this.

So, now if you again look at this particular let us call this as equation number 2. So, you

see this  first term is a function of x second term is a function of y and what is this

constant.



(Refer Slide Time: 26:33)

So, therefore, each term has to be equal to a constant right. So, therefore, we can say 1 by

x d square x by d x square has to be equal to another constant, we will say this is K x

square. Now, we should also put a minus sign here we will see that y in a brief time. So,

you have also similarly 1 by y d square y by d y square should be another constant, I am

just distinguishing this constant from this constant by using subscript x and y. So, you

have a different constant in the x direction from the y direction you can you can also use

l and m as to separate constants here, and why we put a minus sign here because the

energy value should always be magnitude should be positive.

So, if therefore, take. So, if you equate this to the energy. So, you have 2 m E by h bar

square will turn out to be K x square plus K y square. If you do not have this negative

sign here, they can become negative and this tells you nonphysical values of energies.

So,  which  is  not  possible  and  therefore,  these  constants  have  to  be  here  explicitly

negative and that is why we say minus K x square K x turns out to be negative again, this

will become possible.  So, in order to make this explicitly negative,  we depict this as

minus K x square and minus K y square. So, now, these are like 2 od’s for which you can

find out the solution individually 4.

So, please solve 3 and 4, I think trigonometric functions is better.

Student: (Refer Time: 28:54) 



Yeah. So, what do you have it is similar to the earlier case in the one dimensional case.

(Refer Slide Time: 29:04)

So, x of x will be again yeah let us say a cos K x of x plus B sin K x of x similarly y of y

let us say something like c cos K y of y plus d sin K y of y. So, I think you can use the

boundary conditions which we have proposed earlier for 1 d, we can do the same thing

now in 2 d space. So, your psi value for example, at x is equal to 0 for example, and for

any given value of y right. So, that is at the left boundary. So, this should be equal to 0

because the potential energy constraint is infinity. 

So, then what will happen to a corresponding value of x at x equal to 0. So, this is equal

to x at x equal to 0 times y of y right. So, this should be equal to 0. So, y of y if it is 0 the

entire solution is trivial. So, therefore, we have to explicitly say that x of x equal to 0 is

equal to 0 and that becomes the condition to 1 of the boundary condition to solve this.

So, you have for this particular solution boundary condition is x at x equal to 0 is equal

to 0 and similarly you have x at x equal to d also should be 0 and similarly for y. So, all

these  boundary  conditions  are  linear  and  hence;  I  mean  whenever  we  separation  of

variables the respective directions also we will get the same boundary conditions.
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So,  therefore,  if  you solve apply the boundary conditions.  So,  what  do you see that

directly this term gets out this term also goes out we have only sin functions in x and y

and what about the corresponding Eigen values. So, we will have the condition that K x

d is equal to let us say n phi n is equal to one to infinity similarly we will have K y d will

be let us use m l here l phi along the y direction. So, where l is also from 1 to infinity,

therefore, finally, how do we determine E? So, 2 m E by h bar square is equal to K x

square plus K y square. So, you can now substitute for K x as n phi by d and K one as l

phi by d and therefore, what do we have for E is that.

(Refer Slide Time: 33:40)



So, similarly what about the wave function psi? So, we will have the product of the x and

y which gives you the wave function in space right because we assume for separation of

variables that psi is equal to x of x equal to y of y. So, the resulting solution therefore,

now since we knocked of the cause term, we have only the sin terms B times of d is

another constant. So, therefore, we can just write this as on global constants we will call

this a c which is the function of l n and we have sin what do we have?

So, we can have n phi x by d and the other sin which is a function of l phi y by d this is

the  corresponding  expression  for  the  wave  function  and  this  is  the  corresponding

expression for the energy of possessed by the waves. Now we know that in all cases your

l will go from one two to infinity similarly n also will go from 1 2 to infinity. So, now, if

you look at for example, compare this to the 1 d case. So, what do you have? So, you

have an additional quantization due to the second dimension.

So, earlier  1 d case you had only quantization  in the x direction  which gave to one

particular a mode. So, l square phi square h square by 2 m d square, Now on top of that

you also have a secondary confinement or quantization in the y direction which gives

rise to this in the phi direction as well which is n square. So, now, if you substitute these

values say l equal to 1 and n equal to 1. So, the values of energy irrespective of whether l

equal to 1 or n equal to 1 or l equal to 2 n equal to 1 or n equal to 2 l equal to 1 whether

you flip the values of l and n the values of the energy is going to be the same whereas,

the values of wave functions are going to be different right.

So, in one case you have function of x the other case you have function of y. So, when

you say for example, l equal to one and n equal to 2 in 1 case and the other case you have

n equal  to 1 and l  equal to 2.  So, in terms of energy this  is not going to make any

difference right where as in terms of wave function this will make a different because

your n is also associated with x and l is associated with y. So, this is called degeneracy.

So, this term will bring in now or people refer this to as degenerate energy states energy

states or energy levels this is a very common term in quantum mechanics peoples talk

about degeneracy.

So, what is degeneracy degeneracy is nothing, but you have different modes of waves,

but the same value of energy. So, they will have different wave functions, but the same

possessing the same value of energy. So, if you look at the energy state they will be



occupying the same energy level, but they are 2 different wave functions. So, in terms of

just only looking at the energy levels it looks like they are degenerate; that means, they

occupy the same energy level whereas, while from the wave function point of view they

are 2 distinct wave functions. So, this is a very common thing that happens especially in

two dimensional confinements.

In one dimensional confinements you have no degeneracy each particular wave function

occupies a given energy level where as in 2 dimensions you can have more than one

wave function which is occupying a given energy in 3 dimensions you can have more

you have more degenerate states in 3 dimensions. So, therefore, this is very. So, you see

a how we have progressed starting from 1 d. We have free standing wave where there is

no  confinement  there  is  no  discrete  waves  it  is  all  continuous.  Now then  we put  a

confinement then we see that there is a principle called quantization happening you have

discrete energy levels you have wave functions and again the 1 d confinement is different

from 2 od’s in case of 2 d. Now you have secondary confinement happening in the y

direction and because of this we have introduced this concept called degeneracy.

So, this is a very important concept we do not have to now go to 3 d because in 3 d you

will just expand this to third dimension you will have a another K square and similarly

you will  have another  sin function there,  but never the less you will  have additional

degenerate states.

(Refer Slide Time: 39:14)



So, now how this degeneracy for example,  applies to electrons are somewhat special

because they have to obey what is called as Pauli’s exclusion principle.

So,  what  happens  is,  if  you  apply  only  the  Schrodinger’s  equation  for  the  one

dimensional quantum well it tells you that each electron with the given wave function

will occupy a particular energy level. But; however, that is not the complete picture. So,

you have to also apply the Pauli’s exclusion principle which states that you have electron

which is  spin which is  plus half  and spin of minus half  and these 2,  are  2 different

electrons. 

So,  therefore,  there is  a  degeneracy already coming in because of  the  application  of

policy exclusion principle  they make occupy the same energy level,  but they are too

distinct not wave function because a Schrodinger’s equation cannot predicted unless you

apply the Pauli’s exclusion principle and you have to put this as an additional constraints.

So, this is something that you have to remember, I am not going to go into lot of details

why the policy exclusion principle came about and all that, but you should just apply this

as an additional constraint then you deal with the electrons.

So far, whatever energies that we have dealt with they were all your transitional kinetic

energies right. So, they were all dealing with particle motion either in one dimensional

space or two dimensional spaces. So, when we started this we looked at the contribution

of different energies to the microscopic energies. So, just to give a review we will go

back to that. So, that is the same order that we are following here as well yeah. So, we

talked about the different energy contributions in micro scale and then; of course, we had

classified this  into classical  picture the other  is  a wave picture for particle  picture is

classical nutronian mechanics which already what are the contributions to transitional

energy rotational and vibrational.

Now, we are trying to do the same with using the Schrodinger’s equation in the quantum

level. So, we have now already are that time I stated that the transitional energy is given

by h bar K square by 2 m and now we have derived this particular expression and stated

what is K x K y case if you have 3 dimensions, you have confinement in all the 3. So,

therefore, the transitional energy is already been derived.

Now, the next step is to look at the other one; energies 2 is a vibrational energy and the

other is the rotational energy. So, with the purview of Schrodinger’s wave equation how



we consider these 2 now, I will give you overview of first looking at vibrationl energy

and then will go to the rotational energy little bit more complex.
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So,  we  will  look  at  the  derivation  of  quantum  vibrational  energy  I  will  give  an

introduction and stop, we do not have enough time. So in the case of quantum vibrational

energy how does we what kinds of a model do we apply in the case of macro scale? We

applied a spring mass system and then, we said that a overall  energy is equal to the

vibrational energy the vibrational energy is nothing, but both the kinetic and potential

energy is together we are going to do something similar, but using the Schrodinger’s

equation. So, we will use the harmonic potential model and this was also described the

very beginning under the introduction.

So, I talked about inter atomic potential this is a molecular dynamic calls it is Lennard

Jones potential. So, when the 2 atoms are sufficiently close you have repulsion force too

far away then they have attraction force. Therefore, if you flout this kind of a potential

diagram. So, you have the energies interaction energy plotted on the y axis you have plus

and minus and you have the distance, if they are too close to have repulsion force. So,

this is your repulsion potential here and then they are separated then, you have attraction

potential and then this goes exponentially. So, this is your attraction potential and if you

are just taking it away and away the attraction potential goes to 0 asymptotically.



So, how do we take into account? So, this is your actual potential constraints that you

have to put in the Schrodingers equation, but how are you see this is a very complex

potential right. So, you have power law dependence and that is different for the repulsion

different for the attraction. So, in order to make it simple we use the harmonic potential

model  which  makes  an  approximation  that,  you  have  a  parabolic  variation  of  this

potential with x so; that means, you can say about some position x naught this is your

equilibrium separation between the atoms. 

So,  less than that  there  is  going to be repulsion more than this  it  is  going to  be an

attraction a very simple model which describes this in a parabolic fashion and if you plot

this harmonic potential and top of the actual potential this will how it will look. So, this

is your harmonic just a parabola about the mean or equilibrium position x naught. So,

this is your harmonic potential.

So,  since  we  are  not  looking  at  know  numerical  stimulation,  but  simple  analytical

solution  we  always  represent  this  inter  atomic  potential  by  means  of  this  harmonic

model.  Therefore,  in  the  case  of  harmonic  model  what  will  be  the  potential  energy

constraint half of K times x square. So, this is just like in your macro scale spring mass

system this is your potential energy associated with the spring mass system.

Similarly, we assume that. So, here you can replace this as if you want x minus x naught

the whole stuff the whole square. So, about the equilibrium if you are x, x is less than x

naught. So, you have a potential like this and if your x is greater than x naught, you have

potential symmetric about x naught. So, now, we make a harmonic model assumption we

also  assume  this  kind  of  potential  will  work  well  parabolic  potential  we  will  just

substitute this into the Schrodinger’s equation. 

But now the Schrodinger’s equation will become difficult to solve because, now we will

have an additional term which will be function of x and therefore, the coefficients will

become non constant, but a function of x. So, then this has to be the resulting we can still

use the separation of variables, but the resulting o d has to be numerically solved in the

next class I will give the procedure and I will give you the solution also all right and

then, we will see how the energy levels look for this problem and then we will go to the

rotation problem all right.

Thank you.


