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Good Morning. Today we will continue our discussion with respect to the Schrodinger’s

equation.

(Refer Slide Time: 00:21)

So, the Schrodinger’s as equation mathematically has 3 terms, the first term on the left

hand side is  nothing but  the Laplacian  term in space,  this  is  spatial  derivative.  This

particular equation describes the wave function, and this wave function can be anything,

that could be for electromagnetic wave or pressure wave. 

The second term which is the potential energy constraint, and the term on the right hand

side is the temporal derivative, describing the evaluation of this wave function in time.

So, the operator that is shown here represented here is called the Energy operator or the

Hamiltonian operator. So we will see that today class that expected value or the probable

value  of  this  Hamiltonians  the  energy,  poses  by  the  electron  or  whichever

electromagnetic wave.



So, the Schrodinger’s wave equation originally conceived by Schrodinger, and however

he did not physically understand the relevance of this wave function. So, it was born who

gave a physical interpretation to the wave function, he says that the wave function itself

by itself does not carry much meaning.

(Refer Slide Time: 01:56)

But, if you take the product of the basically psi star, which is the conjugate of this wave

function and multiplied with the wave function, this will give the probability of locating

a particles somewhere. Therefore, according to the normalization condition, to find the

particle somewhere in the infinite space, from minus infinity to plus plus infinity the

product of this psi star, psi should be equal to one and not only that, So, in order to find

out the expected or the probable values of other quantities, such as the actual coordinate.



(Refer Slide Time: 02:45)

For example; the actual coordinate is a represented by r it could be x y and zee. x comma

y comma zee. So, this is obtained by again, minus infinity integrating, minus infinity to

infinity, psi star into r psi. 

So, this if you are talking about this is your physical space, this is d x. So, if you same

thing should be with respect to the integral psi star, psi, d x should be equal to one. So,

the same thing can be extended to other derived quantities,  we will look at the most

important once today. For example, you can also have very common representation some

capital omega, which is some quantity that you need to know the expected value. So, this

is always obtained as, minus infinity to infinity, psi star, omega psi d x. So, where omega

could be the coordinate r vector, it could be the time it could also be the momentum, and

it could also be energy. 

So, you need from the Schrodinger’s equation finally, what you are interested is all these

quantities could be, where the particle is exactly located within the infinite domain, and

what is the exact time of location of this particle, what is the momentum processed by

this particle and what is the energy. So, seen quantum mechanics nothing is 100 percent

sure. So, there is always an uncertainty given by the Heisenberg uncertainty principle.

So, we only call these as expected value or probable value. So, we know that in the real

wild that also we are governed by several probabilities, but always we go through them

and know for sure that the probability has become a possibility.



For example; when you take a train or a bus there is only a probability that you will

which the place B so; anything can happen between places A and place B. So, according

to quantum mechanics, this is only a probability that you will reach of certain place B

could be 80 or 90 percent, but finally, you reach that place and you know for sure that,

that is become a possible 100 percent.

Therefore, in quantum mechanics all though we know that these things are really are

there, I mean there is always some uncertainty associated in estimating these quantities,

so,  these  are  therefore  called  as  “Expected  Quantities”  Especially  these  expected

quantities  become  more  probabilistic  at  very  very  small  scales.  Because  the  values

themselves are very small,  so the values of energy or momentum they themselves so

small that, the you cannot estimate them with you know great accuracy of the way that

your estimating macro scale variables.

For  example;  if  you  take  temperature  at  room  and  you  have  2  or  3  different

thermocouples. So, each thermocouple will be having a 0.1 or 0.2 degrees error by itself.

So, one thermocouple will read for example, 25.5 with other will be 25.6, but still both

are suppose to be fairly agreeing with each other, because there individual uncertainties

are plus are minus 0.1 degree Celsius.

Now, in  the  small  scales,  the  actual  value  that  you  are  measuring  is  less  than  the

uncertainty itself. When you are talking about resolution, if your resolving something

less than 0.1 degrees, then there is a lot of uncertainty in that measurement and that is

why the entire quantum mechanics deals with this kind of uncertainties.



(Refer Slide Time: 07:18)

Now, what is the momentum operator that we have to u sed, if you are capital omega is

your momentum operator, now these momentum operators are very specific.  So, you

have to exactly know how they look. So, this is given by this particular derivative here,

that is nothing, but in the Cartesian coordinate system, this is d by dx, let me use unit

vector as x because I all ready used the complex variable I and do not want to confuse

that, d by dy this is the unit normal d by dz. 

This is basically the momentum operator. So, we just put this momentum operator into

this; that means you take the derivative of the wave function and you calculate this and

then you multiplied with the complex conjugate and then you integrated and that should

give you the expected value of the momentum. So, this is the operator, but in order to

calculate the expected value of momentum. This operator has to be substituted into this

particular expression here, to get the expected value. We will see that we will do some

examples slowly.

Similarly, you have to understand the energy operator. The energy operator is represented

by this  Hamiltonians  symbol H and how do you calculate  the energy if  you look at

particle picture, it is basically the momentum square by 2 m, plus your potential energy.

So, this is your kinetic energy, this is your potential energy. Now if you look at p square

by two m, you can also write this from the momentum operator here, you can substitute

for  p  into  this  particular  expression.  So,  what  does  that  give  you;  so,  therefore,  the



Hamiltonian H will be, so you have minus i h delta are the whole square. So, what do

you have, minus i into minus i minus 1. Minus of modified plans constant square into, so

this becomes Laplacian divided by 2 m the whole square.

Student: (Refer Time: 10:07) No. So, minus i into minus i, i square is minus 1 and then

you have another minus. So, it is minus, i square is minus 1, minus of minus plus again

you have another minus, you have to be careful. It is not minus i into i, it is minus i into

minus a. So, you have therefore, minus h modified plans constraints square del square by

2 m, plus you have u.

So, you remember now if you go back to the Schrodinger’s equation, the structure of the

Schrodinger’s equation on the left hand side, so if you just multiply this by the wave

function.  So,  this  is  basically  the  operator  that  is  on the  left  hand side  of  the wave

equation.  So, that  is  why we called  that  operator  as  the “Hamiltonian  or  the energy

operator” because the energy operator itself is nothing but, minus x square, Del square by

2m plus u, so the Schrodinger equation.

(Refer Slide Time: 11:23)

Now will be therefore, h psi will be equal to, minus i h bar, d psi by d t. So, this h is

nothing but, this Hamiltonian h and now will see what is this Hamiltonian and how is it

actually related to the energy. So, if you now take the expected value of this Hamiltonian

operator. So, now this is just the operator, now we you need they expected value of this



energy or the Hamiltonian, it turns out to be the actual energy. We will see this we will

see this now in a short way, but you just understand that this is what you get.

And, now the one more caution with the respect to the use of this particular order, we

have psi star omega psi d x to calculate the expected value of any quantity, we should be

careful that, we cannot simply switch between psi and psi star, especially when you have

these gradients and Laplacian operators. So, they will be different if you operate your psi

with Del and then you multiplied with psi star that will be different from operating on psi

and multiplying with psi star. 

So, if for example, you cannot flip this and say this is psi omega psi star d x, especially if

you  are  operator  omega  will  involve  gradient  or  del  square.  So,  that  is  with  the

momentum and energy operators. The position operator it does not matter, you can flip

between psi and psi star, but you have to be very careful, but this order is always what

you have to follow.

 So, the order of taking the derivative and then multiplying is very important. So, the

other thing that, is also of interest in quantum mechanics is the uncertainties, right now

we have found out the probability or the expected value, but what is the uncertainty in

the  determination  of  each  of  these  quantities,  because  in  quantum  mechanics  is

uncertainty is are very high. So therefore,  we need to also use an expression,  so the

operator for uncertainty. Again in uncertainty also you have what is called as expected

value  of uncertainty. So,  the uncertainty  itself  cannot  be certainly  stated,  there  is  an

expectation of uncertainty there.



(Refer Slide Time: 14:20)

So, for example if you look at definition of standard deviation,  in the real world the

standard deviation  is  the indicator  of  uncertainty, how do we define it.  For  example

standard deviation in some quantity x, how do we define? We take one our square root, if

you have say n points you have n minus 1, i is equal to 1 to n, we take the difference

between the actual value minus the mean value.

 So, the mean value is your, use this operator here to state that this is the mean value n

square of this. So, this gives you the uncertainty in the real world. Similarly in quantum

mechanics, there is an analogy, but we cannot exactly translate this to that, in quantum

mechanics we calculate the uncertainty in some quantity let us say Q. 

So, the expected value of the uncertainty, turns out to be square root of again integral psi

star and then Q minus the expected value of Q because the particular quantity, minus the

expected value of that.  And we take square of this,  multiplied it  again with psi  d x,

because you see this any quantity if you want to calculate the expected value you have

to, always multiply psi star with that and psi d x integrated. So, that will be a common

theme.

Now, if you want to calculate expected value of uncertainty, now this uncertainty itself is

the value would minus the expected value the whole square, and then the square root

that. So this is the quantum mechanical way, to determine the uncertainty of it could be

energy,  it  could  be  momentum,  it  could  be  position,  it  could  be  time,  Q  could  be



anything. So, the expected value of uncertainties always estimated using this particular

equation here.  So, from this  we can actually  show, we can do some examples  today

tomorrow and the next  week. We can actually  prove that  the Heisenberg uncertainty

principle  is  always  satisfied,  if  you  calculate  your  uncertainty  from  this  particular

expression so that means, Heisenberg uncertainty principles states that, if you consider

for example, the location of a particle in space. So, you cannot say for sure, that is the

exactly located at a particular position. 

So, there is uncertainty associated with this location or if you say that this is located

exactly here that means, there is a problem with the momentum. So, therefore, in general

it says that, the expected value of uncertainty in momentum multiplied with the expected

value of uncertainty in position should always be greater than or equal to modified plans

constant by 2. 

So, this is one of the uncertainty theorems, the other is with the respect to energy and

time. Instead of momentum and space you can also transform this into a space of energy,

the expected value of uncertainty in energy and time, should also satisfy your uncertainty

condition.

(Refer Slide Time: 18:02)

So, you have to basically know these things as facts you know. So, you do not have to

worry about how they came, whether they will be satisfied. They will be satisfied if your



work out simple problem and you will be able to calculate the uncertainties, multiply

them and you will find out that this will always be satisfied.

Now what we will do next is to go ahead, and try to solve this Schrodinger equation. So,

now our stated I have given you the Schrodinger are equation, also how do we calculate

the expected values of many derived quantities such as momentum, energy and so on.

So, then we have to now go ahead and solve for the wave function. Only if you know the

wave function can be substitute and calculate all these expected values. 

Therefore, how do we solve the Schrodinger wave equation? What we will do. So now, if

you see the nature of this;  this is the wave equation and not only that it  is  a partial

differential equation and if you look at the entire equation like this, you have a special

derivative on the left hand side, you have a temporal derivative on the right hand side.

And we can start with the simpler case maybe where we can ignore the potential energy

constraint, but if you retain the potential energy constraint, then the solution becomes

little bit complex. Especially, because you should know what is the value of this potential

energy constraint and usually it could be constant and certain cases, but more often it

turns out to be a function of some other variable like x. 

So,  in  that  case  then  again  partial  differential  equation  will  have  non-constant

coefficients, which becomes again difficult to find the direct solution, but still what we

will do is, will approach the solution by separation of variables. So, this is the normal

direct method of solving simple partial differential equations. So, how many of you have

actually taken course there, separation variables is been covered you. So, only 2 or 3 and

how about the rest, you do not know to basically solved. 

So, in this particular course I cannot spend one lecture on teaching a how to, but I will

just give you procedure and it is going to be similar for other equations. So, with the

respect to the starting as equation, now that you have a wave function, now which is the

function of 2 variables; one is the position the other is time. So, will assume that we can

actually  find solution,  which is  the  product  solution  of  2  independent  solutions,  one

which is the function of position, the other which is the function of only time. So, please

remember that this quantity on the left hand side is the function of both r and t.

So,  we are assuming that  the partial  differential  equation is  linear  and the boundary

conditions are also supporting the linearity such that we can use this assumption, where



we can say that they are product of independent solutions, one only a function of r, the

other only a function of t. 

So, not only the partial differential equations (Refer Time: 22:25) there are non-linear

PDS which cannot be solved like this. The other important condition for separation of

variables  is,  you  should  have  at  least  two  homogeneous  boundary  conditions,  in  a

particular direction. So, two homogeneous means, if you have a 2 dimensional system

like  this  in  one  direction,  either  in  this  direction  or  this  direction,  you should  have

homogeneous boundary conditions. 

So, if we have one homogeneous boundary condition here and one this side and the other

2  non  homogeneous  again  this  is  not  possible  because  we  need  to  create  ordinary

differential  equation  called  the  “Eigen  function  problem”  and  this  Eigen  function

problem  can  have  Eigen  values  only  in  the  direction  where  we  have  homogeneous

boundary conditions. 

So, therefore, these are some of the conditions unfortunately the Schrodinger equation,

for most of the basic cases, you can find solutions using separation of variables.  So,

assuming this and if you substitute into the actual Schrodinger equation. Can you convert

the  partial  differential  equation  into  non  ordinary  differential  equation?  Using  this

assumption here, what we are now trying to do is, where trying to transform psi which is

the function of r t. Psi which is the function only r, and we use another variable y here,

capital  y which is the function of t.  That means we are trying to break this p d into

ordinary differential equations one in space, one in time and then individually solve, that

is the only way of solving a p d. 

So, can you attempt that, I will give you some 5 minutes time all of you. So, when you

differentiate with the respect to space, the term y will be constant and vice versa. Student

(Refer Time: 25:10) for simple cases that we will be dealing now, to understand the basic

energy states of free electrons, most of the basic cases, text book cases are all solvable

using  separation  variables,  we  will  see  all  those  cases,  particle  in  a  box,  we  have

hydrogen  atom,  we  have  a  rotational  system all  these  can  be  still  solved,  but  only

problem comes when your potential energy constraint is becoming not a constant, but a

function of sum x. So, still separation variables will work, but finally, the ODE that is



left out is having non constant coefficient and that cannot be simply solved. So, that has

to be numerically solved. So, that will be a problem.

So, you substitute this into the p d and you also divide throughout by psi of r, y of t. So,

what do you get on the left hand side.

(Refer Slide Time: 28:50)

So, let me write the equation down and you please verify it, 1 by psi, minus h bar square

by 2 m, Del square psi plus u psi, this is what the ODE that you get on one side. The

other ODE with respect to time will be i h bar, one by y, d y by d t. So you converted

such that, this is now a ODE with respect to space and this is an ODE with respect to

time. Now where the ODE, now still this is is this is a single equation.

So, you have to see that to satisfy this particular equation, we have derivatives, ordinary

differential equation with respect to space on the left hand side, with the respect to time

on the right hand side. Therefore, these 2 terms can be equal only when there equal to

some constant. Let this constant be termed as E. Now I am giving this name E here not

by coincidence, because we will show that the expected value of the Hamiltonian is also

nothing but the zee, what is the expected value of Hamiltonian? That is the energy and

that is why I am giving this E here, I could give this lambda and then later showed that

this is nothing but expected value of Hamiltonian and then therefore, that is the energy.

So, not at avoid all that I am directly saying that this is nothing but E, which is the



energy.  So,  therefore,  now  we  have  split  this  into  2  ODE.  The  first  ODE will  be,

basically this is equal to E, and the second ODE will be this is equal to E. 

So therefore, if you solve the ODE with respect to time, so that you now separated the

partial differential equation into 2 ODE, the first ODE with the respect to time is this,

and second ODE with the respect to space is this. So, therefore, you have 2 ODE. PDA

separated into 2 ODE.

(Refer Slide Time: 31:53)

So, what is the solution to the ODE 1 that is a simple first order ODE? So, the solution

should  be  y  of  t,  should  be  some  constants  C1  let  us  say.  Now  this  will  be  what

exponential function. So, you can say d y by y is equal to e d t and if you integrated you

have loan of y is equal to ET plus m constant. Therefore, Y will be C exponential of

what. So, this entire term will go inside. So, you have therefore, minus if you take i on

the other side, it becomes minus i. Minus i and you have E we have by h bar times t. So,

this is your solution to the ODE in time. Let us call this is 3.

So, just keep this as it is now, because a final solution is the product of the 2 independent

solutions. So, this will directly multiplied to the solution for 2. So, we will just leave it

now this is a simplest solution. So, what it says the wave function is now, varying or

decaying with time, in this particular manner exponential.



So,  now  what  we  had  earlier  discussed  about  showing  that  the  expected  value  of

Hamiltonian is nothing, but energy E, can be now prove on from using this equation 2.

So, this is what we will show. So, I will just start this and I want you people to continue.

So, what is the expected value of H, how do we calculated, minus infinite to infinite psi

star H.

(Refer Slide Time: 34:11)

So, now let us write this operator. So, what is your operator H? So, this we will expend.

So, what will do is let us not touch the H, we will only expend for psi and psi star. So, psi

star is the function of r and t. So, we will use the separation of variables method; will

separate into the product solution of. 

So, we have psi of r and y of t and this whole star, this is the complex conjugate of that

solution. Times we have H into we have psi of r, y of t, d x this is fine. So, we have just

use the separation of variables for the complex conjugate and for the wave function. So

now, we use the ODE 2. So, this H of psi of r this Hamiltonian is what? The Hamiltonian

will be operated only because it is a function of space. So, therefore, H will operate only

on psi of r. So, therefore, this can be written as H into H psi of r. So, this can be actually

one more step you can write it psi of r, y of t whole star H into psi of r, into y of t, d x.

So, this is the actual operation that is done. The Hamiltonian will be operating on the psi;

this is the function of only position.



Therefore, now we go back to 2 and what do we see from 2. So, this is entire term here

is, one by psi, H of psi is equal to E. So therefore, H psi can be replaced by E psi. So this

entire term is now, E psi and since E is a constant; so we can actually take this term E out

and therefore, this will be E of minus infinite to infinite.

So, we once again convert back to our regular wave function psi, which is the function of

r and t. Psi star, psi, and d x. So, psi star which is the function of r and t, this is psi which

is the function of r and t is a constant pulled out. So what is this one? So, therefore, this

becomes  equal  to  E.  So,  we  have  shown  that,  therefore  the  expected  value  of

Hamiltonian is nothing, but this E which is also the energy. 

So therefore, we can rewrite the equation 2, the ODE 2 in space can be rewritten has

minus H square by 2 m Del square psi.

(Refer Slide Time: 38:04)

We can bring the E to the left hand side and we can write this as U minus E psi is equal

to zero.  So, this  is becomes the second ODE to be solved, will  call  this as equation

number four. So, and just rewriting this equation here by bringing, E side to the left hand

side. 

So,  now depending on to solve this,  what do we need to know the potential  energy

constraint U.? So, once we know that this ODE also can be solved for psi and also we



need to boundary conditions, the how many boundary conditions do we need? Since it is

a second order ODE we need to boundary conditions this specify. 

Now we will go into the solution part, so the first case, simple case that we will be taking

is free particle in one dimensional space; that means, you just have some particle like this

just in space and you want to solve the wave nature of this particular particle. So in this

case what is the potential energy constraint? Zero; because a particle is free, that is free

to go anywhere in one dimensional space.

There is no constraint on the particle. Therefore, potential energy constraint is a zero; this

is the simplest case that we can solve the Schrödinger equation. So, therefore, we all

ready know the  time solution,  exponential  function of time.  Now the ODE becomes

much simpler, we have Del square psi equal to, we have this is equal to use. So, U is

equal to 0. So, this will be equal to E psi. So, since is one dimensional space we can

expand the Laplacian here.

(Refer Slide Time: 40:58)

So, this is minus H square by 2m, we have d square psi by d x square minus E psi is

equal to 0. So, this is the second order linear ordinary differential equation with constant

coefficients,  you see this  coefficient  is  a  constant,  this  is  also a  constant  and this  is

homogeneous because the right hand side term we have equal to 0. So, second order

linear homogeneous ODE with constant coefficients. 



So,  what  is  the  kind  of  solution  for  this?  So,  we  can  either  write  this  in  terms  of

exponential functions or trigonometric functions. So, what we will like to do is, use the

exponential functions here. So, therefore, we can write the solution for psi of x as A e

power minus i k x plus B e power i k x or we can also write this purely in terms of A

cause k x plus B sign k x. 

So  either  in  term of  trigonometric  functions  or  exponential  functions;  So,  this  they

solution for this particular ODE, what is k here? So where k is related to square root of

2m t and h bar comes out side this square root. So, we absorbed all these constants into

another constant k directly. So now therefore, you can relate your energy directly to this

constant k here and what is the final solution psi of x comma t.

(Refer Slide Time: 43:26)

So, we multiply the time solution to the space solution and therefore, what do you get, A

e power minus I, with respect to time what do you have, minus i E by h bar t. So will

take minus i out, so E by h bar t plus k x; similarly we have Be minus I E by h bar t

minus k x. So, this is your final solution. So, in this case we do not have any boundary

conditions because the particle is not within any system, it is just free in space moving

from minus infinity to plus infinity.

So,  this  is  your  final  solution.  So,  what  do  you  have  here?  So,  you  remember  our

representation of wave. So, we have used e power minus i omega t plus k x. So, this we



generally use if you have waves earning on one direction and then we omega t minus k x

to represent the waves running on the opposite direction. 

Therefore, what this tells you is that you have waves which can run either on the right

hand side or the left hand side and they have combination of waves running on right and

left  which  are  present  as  the  solution  to  the  wave  function  and  there  is  also  equal

probability that you have both the waves running on the right and left because this is the

free particle in space you cannot say that there are more waves running on the left, then

on the rights. So, you have equal probability to find waves running on both the right and

the left.

So therefore, the first term here will be corresponding to what left running wave this is

your left  running wave, and the second term here corresponds to your right  running

wave. So, final solution is super position of left running waves and right running waves a

linear super position.

So, that is all it is. So, what we are now seeing is the wave nature of one particle which is

free  in  space.  So,  what  the  Schrodinger’s equation  tells  you is  quantum mechanical

picture,  this  particular  particle  is  nothing, but consisting of waves which are running

either on the right side towards the positive x direction, or towards the left side towards

the negative x direction and therefore, the solution is super position of just these waves

that  is  it.  How do we relate  this  wave number to energy, is  given by this  particular

relation here. So, this is the very very simple picture of free particle, so to start with.

So  also  you  can  observe  one  thing  with  the  respect  to  the  Heisenberg  uncertainty

principle. So, in this case the position cannot be exactly determined, because it is a free

particle,  it  could  be  anywhere  from  minus  infinity  to  infinity.  And  what  about  the

momentum; the momentum of the particle can be exactly determine here because you

have the wave vector k, which is related to constant e. So, all these are constants. 

Therefore, your momentum p is equal to h bar k, is now exactly determined from this

particular  expression,  but  still  Heisenberg  uncertainty  principle  has  to  be  satisfied,

because now you have the uncertainties infinite in determining the position. So, finally,

your delta x uncertainty and delta p uncertainty multiplied together should be greater

than or equal to h bar by 2, these should be satisfied. Although now it is say that, this is

approaching 0, but this approaching infinity, and therefore this product of this will be



satisfying Heisenberg uncertainty principle.  See for a free standing wave, you cannot

exactly say the position, it is anywhere from minus infinity to infinity. So, uncertainty is

infinity approaching infinity whereas, a momentum is approaching a very certain value.

So, next we will stop here today, the next case that we will take is the particle, in a 1 D

confinement. So, when we started the introduction to wave, I just solve the simple wave

equation, for a particle subjected to a confinement, a thin film or whatever it is, and then

we got the solution in terms of sins of cosines, we found out the solution for the energy

and so on.

And now we are going to do the same example in a more regress way, by solving the

Schrodinger’s equation. So, this we will take up tomorrow, we will first complete the one

dimensional case, then we go to a 2d confinement.

So, so for in the free standing particle  there is  no quantization,  here just  continuous

waves. Now we will see that, once you may put a confinement, the quantization will start

appearing  will  start  getting  discreet  energy  levels  and  so  on.  So  the  real  quantum

mechanics will start with the confinement.

Thank you.


