
Micro and Nanoscale Energy Transport
Dr. Arvind Pattamatta

Department of Mechanical Engineering
Indian Institute of Technology, Madras

Lecture – 4
Continuum Heat Transfer and its limitations

Good morning. And welcome back to the second week of this introductory lecture on

Micro Nanoscale Energy Transport.

We will try to quickly conclude the generic introduction that have you been making so

far. I would like conclude by once again emphasizing where the macroscopic lows we

have seen that the different regimes interpreted in different ways using main free path,

characteristic length, nodes and number. So now, I want to again recap because this is

very very important when you are looking a transport processes where you can use a

macroscopic or continuum laws.

(Refer Slide Time: 01:13)

So, you can say that generally the macroscopic laws breakdown under two conditions.

One is  you compare your characteristics  length scale  with the mean free path of the

energy carrier. So, that is the first criteria to decide whether you can use the continuum

equations or not. Typically, if you are looking at the illustration here the figure shows

your  classical  continuums  approximation  where  the  mean  free  path  is  much,  much

smaller than your characteristic length scale between say two plates. And here you find



that these energy carriers are so many numbers that densely part and they have sufficient

collisions with each other and also collisions with the boundary of the system.

So, in this case you have sufficient statistical unsample of particles two define macro

scale property, such as internal energy temperature, density and so on. Whereas, if you

look  at  case  b;  so  this  is  where  you  are  mean  free  path  is  much  larger  than  your

separation between the plates. And therefore, the chances of the inter carrier collision

will  be  much  lesser  compare  to  the  collision  between  the  energy  carrier  on  the

boundaries of the system. In this case you will find new phenomena happening because

of the more predominant collision of the energy carriers with the boundaries compare to

the system a.

So, this is what we attribute a sub continuum phenomena; the kind of phenomena that

you observed when you are much below the regular continuum approximation length

scales. The other is your time scale. So the time scale, in this case also you have to be

careful if you take your physical system and then you have a time scale of this physical

system, and then you have the time scale of the collision of these energy carriers, this is

call  the  relaxation  time  scale.  So,  it  is  call  relaxation  time  scale  because  this  is  the

average time require for energy carriers to colloid and come back to an equilibrium state

to relax basically to an equilibrium state. So, this is called a relaxation time scale.

So, you have basically a physical time scale number; one for example, this could be like

laser pulse which you are me radiating on a particular material, so that is your physical

time  scale.  So,  this  is  pulse  width  could  be  say  nano  seconds,  picosecond  and

femtoseconds.  The other  is  your time for the energy carriers to colloid and come to

equilibrium state, and that is your relaxation time scale. That is typically if you take the

example of say electrons in a metal it could of the order of picoseconds 10 power minus

12 seconds.

Therefore,  if  you are now eradiating with the femtosecond laser 10 power minus 15

seconds pulse width. So, this is much smaller than your relaxation time. And therefore,

again there is a chance that you are basically leading to a local non equilibrium and

therefore  your  continuum  laws  cannot  be  used.  So,  not  only  the  length  scales  are

important, but also the times scales are also equally important. There are cases where you



have perfectly large dimensions, but you are talking about using very very small time

scales and this can also lead to sub continuum phenomena.

Therefore, you should also understand that anything dealing with sub continuum whether

it is in the time scale or length scale they are very difficult to observe with our sensors

the way we do it with our conventional measurement. And even the sensors that we are

using you cannot use them in the conventional way. For example, temperature can be

defined only in the continuum sense. So, we cannot put a thermocouple when you are

talking  about  a  hotspot  that  I  was  explaining  in  the  previous  lecture,  in  silicon  on

insulated device.

So, measure the temperature of the hotspot the level of nano meters you cannot use you

know a thermo couple, because that the definition of temperature itself is not valid at

such small scales. And therefore, I mean the thermocouple will not sense the right non

equilibrium phenomenon  that  is  happing.  The temperature  can  be  some kind of  and

average energy density, that is indicator of an overage energy density but it is not your

equilibrium thermo dynamic equilibrium definition of temperature.

Such kind of measurements will be very very difficult, therefore to do what such nano

scales. And therefore usually measurements are very hard and very difficult and also very

very sophisticated involving electron microscopy. You need to combines several things

together it is not just putting a thermo couple and you know just observing it.

Therefore, we are also relying on increasingly on the theoretical and numerical modals

by solving this sub continuum transport equations based on Boltzmann equation and so

on doing molecular dynamics, Monte Carlo. These are the different were sub continuum

levels of numerical transport that can be used and they can actually give a lot of physical

understanding before we can you know do this experiment.
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So, this is another very interesting picture that I got from a revue paper some time back

and this revue paper is from Professor Ganchands group of MIT. This is very very clear

the way they have classified the different levels or regimes of transport on two scales.

So, on the x axis what you have is basically the inverse of your nodes and number, so we

define nodes and number as a ratio of your mean free path to the length scale and what is

plotted here is just the inverse of this. And therefore, the one that is going towards the

right hand of the x axis will be the continuum.

So, the node and number 10 to go to very small values, so this particular quantity will be

very large and therefore the one portion that is towards the right hand of the horizontal

axis will be the continuum transport regime. And that is why it is called diffusion regime.

Diffusion meaning that you have plenty of energy carriers which colloid with each other

and therefore the majority of the transport is by the diffusion or collision of the energy

carriers.

And on the vertical axis you have another non dimensional ratio. This is basically the

ratio of characteristic length to the wave length. This is something also really interesting.

If you are looking at sub continuum, how do you decide whether you are in a continuum

or sub continuum range? So, you look at the x axis you define the nodes and number and

accordingly you say for large nodes and numbers you are looking at sub continuum and

so on.



Now with in this sub continuum regime it is not just one whole sub continuum regime

there.  Again there is a regime where you have to be careful what is the length scale

compare to the wave length of the energy carriers. So, if you are talking about length

scale of the order of a strum, now you find there is another regime coming out within the

sub continuum range where the wave effect becomes very important. As I already told

you that you know we have a wave particle duality and you can always solve either of

them. You can use either the wave approach or the particle approach, but the particle

approach has a limitation that as long as your device dimension is much larger than your

wave length then the particle approach can predict, you know very well.

But  once  the  dimension  falls  below  the  wave  length  then  what  happens  the  wave

phenomena  will  become  more  important  and  particle  phenomena,  particle  methods

cannot predict the wave nature. You have to therefore go in to quantum mechanics which

describes  all  these energy carriers  in the form of waves.  The wave nature has to be

explicitly  understood  and  therefore  solved  in  order  to  describe  basically  the  sub

continuum transport when your length scales fall below the wave length of your energy

carriers.

Therefore,  we  have  the  two  excess  here  the  primary  excess  horizontal  excess  your

Nusselt  number, the secondary excess is your the ratio of characteristic length to the

wave length. And when your characteristic length falls below the wave length, so this is

where your wave regime becomes important you solve your Suring this wave equations

which  we will  do  in  a  classes,  introduce  that  and see  how the  wave  nature  can  be

explicitly understood, and how it becomes important in sub continuum scales. Whereas,

if you are talking about the order of several hundreds of nano meter, and comparable to

the wave length wave length could be you know 1 nano meter 2 nano meter, whereas the

device dimension is they order of 100 nano meters.

In  that  case  now you  are  above  the  thermal  wave  length  regime  and therefore  you

describe by what is called as a classical sub continuum regime or also particle based

regime. So, these are very very interesting regimes. You have to be aware that not only

just using a simple sub continuum modal, but also depends on the ratio of the device

dimension to thermal wave length you may also have to use some time Schrodinger’s

equations. So, you cannot explain all the phenomena using the particle based method



itself. That means, Boltzmann transport equation itself is not enough for describing all

the phenomena. So, most fundamental would be going to the shooting as wave equations.

(Refer Slide Time: 12:20)

Well, now again with this let us look at one example where we have a semi conducted

device.  So,  this  was  one  of  the  simulations  headed  few  years  back  by  solving  the

Boltzmann transport equation.  So, we have a system where you have silicon phylum

which is deposited, on top of this you have the silicon dioxide which is a dielectric. So,

usually this is a substrate. Typical semi conducted device what I call as SOI, silicon on

insulator. So, the S I O 2 here is the insulating sub striate over which you have silicon

which has a very good thermal conductivity, whereas S I O 2 has a very poor thermal

conductivity here.

And we just try to solve a simple heat diffusion problem in this system. The order of

magnitude of silicon thickness will be the range of few tends of nano meters, and silicon

oxide substrate might be may be 5 times the size of the thickness of the silicon phylum

here.  And you have homogenous temperature defined at  three boundaries,  and at  the

bottom boundary you have a higher temperature.

With this if you look at your solution of heat diffusion equation where you apply your

Fourier’s approximation and then you solve it, you will be seeing a set of temperature

contours and also at the same time you will not be seeing any kind of discontinuity in

temperature between silicon and S I O 2. That is no interface thermal resistance that we



are  modeling  here.  According  to  the  macroscopic  laws  your  temperature  has  to  be

continuous at the interface, and your heat flux also has to be. But now when your solving

this using a sub continuum modal you feel see that now you the major differences that

you see in the silicon dioxide layer where it is a slightly tending towards the continuum

level  you see your  classical  Fourier  kind of  equation pattern  you get  these elliptical

contours.

So,  the  nature  of  the  contours  that  you observe  here  typically  are  the  once  that  are

predicted  by solving  the  Fourier’s equations.  If  you remember  your  solution  of  heat

conduction equation, so if you have a high temperature and then low temperature on the

other three sides this is how your temperature contours look. But you see with in the

silicon layer where it is a sub continuum phenomena it completely non-linear. So, we

have a linear pattern of temperature outside the silicon layer and within the silicon layer

you  have  high  non-linear  temperature  contours.  And  there  is  also  a  temperature

discontinuity which is happening at the interface, there is also sloop discontinue.

So, you see that this high non equilibrium process, if you use the Fourier’s equation;

obviously, they will completely failing to predict the values of temperature magnitude

and also the qualitative variation of temperature with in this particular silicon phylum.

So, this is why we have to go to the modals based on for example, Boltzmann transport

equation to understand this particular non-linearity and sub continuum scales.
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Therefore, just too finally conclude the wave that we will be looking at this course on

just the nano scale energy transport. I mean this consists only the nano scale part the

micro scale part I will come back to that later on. But first when you focus on the nano

scale  part  we start  with  the  defining  the  energy states  of  carriers.  That  is  the  most

fundamental level so were we apply the quantum mechanics and then we define these

energy states of carriers.

And from there we have to go to the macro scale level were we define properties and

therefore we have to  also understand how do we apply these quantum mechanics  to

certain system. So, we will be applying it to systems which are semi conductor, crystals,

nano structures,  and so on.  We will  see  how this  energy states  get  modified  in  this

particular systems. You have fundamental energy states which are for a single particle in

a box or free electron or whatever. 

These are the theoretical ones, but when you apply it to a system where it is confined by

certain dimensions and certain structure of the system so you have the energies levels or

the fundamental energy states get modified. So, we will see how that gets modify this is

called dispersion of energy states. So, we look at the dispersion and then we will go to

the macro scale by using statistical thermo dynamics, we have to now collectively take

an average of all the energy occupied by the carriers at different states. So, that will be

done by using this statistical thermo dynamics.

And  then,  this  will  be  still  an  equilibrium  value,  equilibrium  distribution  from this

statistical  thermo  for  different  energy  carriers.  They  have  different  equilibrium

distribution function. Then how do we look at non equilibrium that is the transport of

heat  for  example.  For  that  we  will  look  at  energy  transport  trough non equilibrium

phenomena by solving the particle  nature of energy carriers say Boltzmann transport

equation.  And parallelly  we will  also look at  some hand waving approach by using

kinetic  theory.  And  also  we  will  show that  using  the  particle  based  sub  continuum

Boltzmann  transport  equation  we  can  take  moments  and  therefore  we  can  derive

basically the macro scale equations.

Essentially, what I mean is that if you will look at this particular picture I still solve the

Boltzmann transport equation here and here. But you see that the Boltzmann transport

equation  tends  to  the  continuum equation.  Therefore,  it  is  automatically  becoming a



Fourier kind of approximation in the macro scale limit. So, this is how you can show that

you can derive all the macro scale equation from this fundamental equation. And we will

also have a parallel treatment of energy carriers.

That means, when I say energy carriers this could be for example metals  it  could be

electrons;  electrons  are  the predominant  energy carriers  so of  heat  or charge electric

current, and if you are looking at semi conductor, dielectrics, the predominant way of

energy transport is by the vibration of the lattes structure,  so that we will assign our

virtual particle called phonons. And then if you look at liquids and gases this molecules,

as I said the nano scale phenomena generally not observed in liquids its primarily gases

the ratify gases, therefore these molecules we will mostly focus only on the gas flows,

and that is why the kinetic theory is also apply.

With this I will like to stop the power point and then what we will do now is start making

some derivations. Before we directly going to the nano scale energy transport we will

start with the macro scale, because that is already known to you. We will derive the heat

conduction  or  heat  conduction  convection  equation  first  the  macro  scale.  Then  you

understand what are the properties that are already should be known to you in order to

solve this particular equation. And that is the starting point for your continuum solution.

So, you assume that  you already know certain properties  and how do this  properties

come from. They come from the micro scale.
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In order to make you little bit more aware about this we will first take the case of closed

system. So, I hope all of you are able to see the projection, is that ok? So, we take a

closed system some arbitrary system which is a not a control volume, because it is close

to mass transport and then you take a particular differential control element or a control

volume. And let the surface area of this differential control volume be d A s, and the

differential volume is dv.

Now the normal vector of this particular element is always pointed outward normally

from the surface. This is your normal vector. And, in order to look at only heat transport,

let us if you say energy transfer in general you can have both heat and work transfer. So,

you can say that there is a particular quantity of heat which is flowing in to the system.

So, this is positive and it is going in to the system. And certain quantity of work which is

done by the system, so work done by the system is positive here.

But when you are looking at only pure heat transfer, let us ignore the work interaction.

So, we will simply ignore work transfer that means there that is always; of course, you

derive the energy equation very rigorously the influence of work on heat is definitely

there. It could be in the form of viscous dissipate or pressure work. All these are coming

from the work which basically increases the internal energy of the system. But in this

case we now ignore those terms and derive only a pure heat equation without the effect

of work.

Therefore, what will be the first law? First law of thermo dynamics, all this is now you

know macro scale you can say this is your macroscopic or macro scale, continuum heat

transfer. So, can you write down the first law for this system and then; so all of you

should be able to write down the first law. Write down the unsteady first law not the

study state form.
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First law; that means, you have a time derivative walls. For example, ignore the macro

scale kinetic and potential energy of the system, so then what do you have? Change in

internal energy will call du by d t u is the total internal energy of the system, so we are

ignoring the macro scale, kinetic and potential energies. So, this should be equal to q dot.

So, this is for the entire control volume that we have represented, but the representation

that  we have q dot here we can say this  is  d q dot for example,  for this  deferential

element.

Therefore, we can integrate this for the entire control volume from the small deferential

amount of volume that to that we can integrate to the entire control volume. And we can

also use the Fourier’s law to describe the relation between q and temperature. In generic

case  how  do  you  write  this?  Without  fixed  coordinate  system,  coordinates  free

representation.  Del  q  dot  should  be  minus  k  into  del  t,  so  gradient  of  temperature.

Obviously, you know why the minus sign comes here. So, this temperature gradient heat

flows  from higher  temperature  to  lower  temperature  it  will  be  negative.  Since  have

convention is heat should flow from high to low, so we put a minus sign to make this

quantity of positive quantity.

Therefore, now for the entire system or control volume all we have to do is integrate this

over the surface area. This gives you the total heat transfer, and not only that it is a little

bit you have to be careful with the normal that you are using so we doted it with the



normal times d A s. So therefore, as you can see that the direction of your heat flow on

the normal or opposite to each other, therefore in order to make this heat transfer positive

in to the system we have to put another minus sign out. Because the normal is pointing

opposite direction to the heat transfer, so we have to put a minus sign so that this quantity

is positive because now minus k delta t will be positive, but dotted with normal will be

negative so put in a negative sign in outside. So that that the heat flows in to the system

is positive. So, this is on the right hand side. Now, therefore on the left hand side we will

introduce internal energy per unit volume.

Therefore, how do you write this in terms of specific internal energy? So, let us call this

u as your specific internal energy. This is internal energy per unit mass, therefore for the

entire volume how do you write this capital U or let us say d capital U by d t. Therefore,

for the entire volume can be written as d by d t of integral u d v, so here I am going to

define slightly again I call this as internal energy per unit volume. Therefore, this can be

written as d by d t of; in terms of temperature we can use the relation between d u will be

rho c p or rho c in to d t which we can use here to write in terms of temperature. I will

just use rho c and write this in terms of rho c d t by d t, and this is over the; so I am

assuming rho c is any way constant properties, so I can take it out said the integral and

this is now integrated over the entire control volume.

(Refer Slide Time: 29:37)



Now if I put them together I have rho c integral d t by d t in to d v is equal to I have

integral k delta t dot d s, so I will just write this as d A s. So, I can now use the Gauss

divergence theorem to convert this surface integral to a volume integral. And therefore,

this will be divergence of have k delta t over the entire volume using Gauss divergence

theorem.  I  am converting  the  surface  integral  to  volume integral  by  introducing  the

divergence operator. Therefore, now this can be written as integral rho c d t by d t d v is

equal to this is also a volume integral, now this is also a volume integral del dot k del t d

v.

(Refer Slide Time: 31:03)

Therefore, if you take this integral volume integral common you have rho c d t by d t

minus del dot k del t d v is equal to 0. And therefore, in this case in order to satisfy this

particular  condition  your  d  v  is  not  0.  You  have  finite  differential  volume  here,  so

therefore the integrant has to be 0.

Therefore,  this  will  go  lead  us  from  the  integral  formulation  to  the  differential

formulation. The differential representation that for now is rho c in to d t by d t will be

equal to del dot divergence of k delta t. This is your the generic heat transfer or heat

conduction equation for a closed system. This is a coordinate free representation, and

you can use whatever coordinate  system that you are working with, you can use the

corresponding a gradient operator and divergence operator and that should be view the



particular the corresponding set of equations for that coordinate  system. So, this is a

generic coordinate free representation derives for an arbitrary control volume.

So now, this is a conduction equation because we have not considered any mass transfer

here. Same thing can be extended to an open system there you also have a mass flux, in

that case you are also write the continuity equation to balance what is the incoming mass

and what is the outgoing mass. And there is also what we call as enthalpy p, which is

advection by this mass. In the case of open system if you want to do the same apart from

the; so we will just extend this in the case of an open system, because if you want to

derive the convection equation so you have to do this for the case of open system and

also you have to consider the mass transport and the corresponding transport of enthalpy

due to  mass.  So,  let  us say you are the corresponding velocity  entering  of the fluid

entering this particular control element boundary, this u vector and they corresponding

enthalpy  that  is  entering  this  particular  control  volume  is  h  i  and  you  have  a

corresponding enthalpy of the fluid which is leaving this control volume let us say that is

u vector h e.

Therefore,  we  can  introduce  net  efflux  of  enthalpy  which  is  basically  leaving  this

particular differential control volume will be u vector times h e minus h i, we will call

this as u vector times h. So this is h net, this is your net efflux of enthalpy which is

basically  leaving  this  particular  differential  control  volume.  Therefore,  for  the  entire

control volume what is the net efflux of enthalpy, it is the integral of this over the entire

control surface. Because this is a flux is a surface related phenomenon.
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So therefore, we will just extend this two the entire differential control surface so for the

entire control surface. So, the net efflux of enthalpy will be; you have integral, you have

u h and integrated over the differential surface area and over integrate it over the entire

area, so that will give you the net efflux of enthalpy or with entire surface.

Now the first law will now get modify. The first law for the open system; if you want to

write it  down should now also include apart  from the terms. So we had d by d t of

integral u d v, and you also have heat transfer the conduction. So, we had integral over

the entire surface area k delta t differential surface area d A s. Apart from this now you

also have the heat transport by the enthalpy transfer of enthalpy, so net efflux of enthalpy

is also resulting in change in internal energy.

So that  should come,  because now the net  efflux is  actually  leaving the system that

should come on the right hand side with a minus sign. So, you have this integral a u h in

to d A s, is that ok. So, this particular term here is your net efflux which is leaving the

entire control surface. Therefore, we have negative sign. This is purely the heat transport

due to conduction. This is your conduction heat transfer and this is your advection heat

transport.
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Once again  if  you apply  with  Gauss  divergence  theorem to  the  right  hand side  and

convert the surface integral to the volume integrals and then write this in terms of rho c d

t d v. So, everything is in terms of volume integrals, so what do you have on the first

term on the right hand side will become a volume integral and then becomes divergence

of k delta t d v; minus you have again volume integral of divergence of u h d v, is that.

Now I can again club this together equate this to 0 and therefore the integrand has to be

0. So this will give me the differential equation to be rho c d t by d t is equal to del dot k

delta t minus del dot u h. This is my conservation of energy in the presence of flow that

is  for an open system. Now I can also introduce the relationship  between h and the

enthalpy and also temperature.
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So, for incompressible substance now we make an approximation that the substance is

incompressible.  So it  could be for  example,  a  liquid  or  you can  use a  compressible

substance like gas but under the incompressible flow approximation, that is your mark

numbers are extremely small in that case the substance can behave as an; although its

compressible fluid practically the regime that your observing makes it an incompressible

fluid.

In that case you can say that your specific it capacity due at constant pressure in constant

volume will be same. And therefore, your d h which can be written as c p d t can also be

written as just c d t. So, you use your relation this as c in to d t. So therefore, you can

rewrite above equation purely in terms of temperature you get equation for temperature

which will be of the form. So, we will take this just a moment, we take the enthalpy

towards the left hand side, so makes this is an advection term. Therefore, plus you have

del dot u into rho c t. On this side you have del dot k delta t.  If your properties are

constant that is your rho c is constant you can divide throughout by rho c and you get

your energy equation del dot u t equal to; so you can write this as alpha which is your

thermal diffusivity which is k by rho c in to del square t.

This is your heat conduction or this is your heat transfer equation. This is your advection

term, and the right hand is your diffusion term. Once again this is in a coordinate free

representation, so you can use it in any coordinate system that you want. So, the reason



that  we have derived these equations  which are already familiar  which to  make you

understand  that  we have  made  certain  assumptions  here,  for  example;  we made  the

assumption that your enthalpy p is related to temperature through the heat capacity, and

also we have heat capacities coming here the internal energy formulation.

And therefore, you should understand that how do we basically fundamentally compute

this property called heat capacity. How do we know this value? Where does it come

from? Now in our equilibrium thermo dynamics we assume that this measured a known

for most of the macroscopic substances, but then these are actually having a micro scale

basis. So, you derive the equations to estimate the heat capacities from statistical thermo

dynamics, and that that is what we will do slowly. But you should understand that even

in the continuum equations the parameters or properties that you use have a micro scale

basis and they come from, therefore understanding the micro scale heat transfer.

So, this is why we are starting with what we already know. All  although you should

understand  that  fundamentally  we  should  start  with  micro  scale  heat  transfer,  know

things like heat capacity before we derive the continuum equations.
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Now  the  next  step  that  we  will  be  doing  this  to  quickly  write  down  some  of  the

continuum classical  constitute  of  relations.  So,  we  call  this  as  Classical  constitutive

relation. So, why do we call this as constitute of laws, because in the above equations

that we have written and we derived the conservation of heat. For example, originally



had the equation in terms of the heat transfer rate or the heat flux, so now we wanted to

close the relationship between heat transfer and the temperature through this particular

relationship here, and therefore we could express your q dot like this.

In fact, they should be at delta q double prime this is your heat flux, and this is your heat

transfer  rate  we  multiplied  by  the  differential  amount  of  surface  area.  So,  this

relationship  to  close  is  required  otherwise  we  will  not  be  able  to  solve  the  energy

equation. So, we need to express q in terms of temperature, now therefore the resulting

equation becomes scalar transport equation in terms of temperature. So, this is called a

constitutional of relationship. And although this has been known without very it has been

originally proposed by Fourier, without any rigorous background we can also show from

the micro scale laws these classical constitutive laws can be derived.

So, these are not some something which is been simply proposed without very strong

fundamental  understanding.  Although,  these  were  intuitively  proposed  Fourier

understood that your heat flux has to be related to your temperature gradient definitely,

and he introduce this constant call thermal conductivity. But, this is entire relationship

can also be shown from the kinetic theory or also from the Boltzmann transport equation.

We will  do  that  you  know  several  classes  down  the  line,  but  these  are  called  as

constitutive laws and they are specifically used only in the continuum regime.

So  we  will  see  that  number  one  this  is  your,  if  you  look  at  conduction,  the  most

commonly  referred  one  is  the  Fourier’s  law.  You  have  also,  you  should  remember

modifications to the Fourier’s law, and we have what we called as hyperbolic variance.

But the most commonly used one which makes the, what is the nature of the heat transfer

equation in conduction; the unsteady conduction heat transfer it is parabolic kind of an

equation.  So,  now  there  are  variations  to  the  Fourier  equation  which  makes  the  c

conduction equation hyperbolic. They call this is telegraphic equation. So, hyperbolic is

typically a wave equation, so that is why they call this as a telegraphy equation. But let

us not bother about that right now.

We have already used the relationship between your heat flux and temperature gradient

which is stated in this particular way. And this is your heat flux in watt per meter square.

And what is the unit of thermal conductivity here watt per meter Kelvin.



(Refer Slide Time: 46:56)

Now, this  is  in  conduction.  What  about  in  convection?  Do  you  know  if  any  other

constitutive law that can be used in convection to relate the convective heat transfer to

temperature? So, you have Newton’s law of cooling. Which again states that you are q

convective are equal to h A; this is in terms of heat flux we just say h into t surface minus

t infinity. So, you can imagine case of a flat plate flow over a flat plate, and you have

velocity boundary layer and you also have the temperature boundary layer like this. In

wall temperature this is your free stream temperature. You can either you t s or t wall

whichever. And when you go to radiation, so what is unite of h?

Student: (Refer Time: 48:06).

Watt per meter square Kelvin. On finally when you go to radiation, what is that you want

to use to Stefan Boltzmann’s law. That means, your q radiative is equal to how do we

write it down; sigma into?

Student: (Refer Time: 48:46).

If you take a black body, let  us first define it for a black body. It is just the surface

temperature from the black body rights to the power 4. If you are talking about transport

of heat between a black body and the ambient, then we can say sigma T S power 4 minus

T infinity to the power 4. This is the net radiative heat transport between a black surface

and the  corresponded surrounding ambient.  If  this  is  not  a  black  surface  but  a  gray



surface  you  introduce  your  infinity.  And  for  the  black  body  you  have  basically  a

distribution of the energy spectrum b as a function of wave length.

(Refer Slide Time: 49:33)

So,  in  variation  you  have  spectral  quantity,  that  means  the  energy  or  intensity  is  a

function of wave length and it is also a directional quantity. It is a different direction of

this sphere or a hemisphere, the variation and gradation intensity is different, so it is a

directional spectral quantity. Usually we average it over the directional hemispherical

space, so we call this as total quantity. But still total spectral quantity, so if we look at the

black  body  distribution  function  as  a  function  of  wave  length  we  have  the  planks

distribution  function.  You know when radiation  is  start  we just  state this  distribution

function but we should understand this is actually originally derived from the micro scale

using statistical thermo dynamics.

So, this is related to your wave length and also what else, the temperature of a particular

surface. You can plot this for different temperature as the function of wave length that is

your planks distribution for black body. And, in fact if you go to nano scales, in the very

recent years you can see that the intensity of the spectrum, the intensity of the radiation

ammeter by the surfaces which are proximity of nana metes can exceed the blackbody

energy density.

As I said these are the new phenomena that emerge at small scale. So, classical theory

states that none of the body can exceed the black body distribution intensity, but at nano



scales it is found to exceed. So, there are several phenomena attributed to that call that

they attribute this to photon tunnalic for example, and even at smaller scale attributed to

phonon tunneling  and all  that.  The gaps become too small  that  tunneling effect  start

appearing, like in quantum mechanics. So, you should not thing that these are all the time

valid, so and they fail at very very small scale. These are valid only for the normal macro

scale distribution.

So we will stop here, and then tomorrow we will also see look at some other constitutive

relations in fluid mechanics mass transfer in electrical  engineering.  And then we will

slowly get in to some physics behind the nano scale transport.

Thank you very much.


