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So, we have looked into the concept of electric double layer yesterday. So, where in if

you immerse solid object or solid wall in a fluid, which is polar liquid for example, you

can have an aqua solution of sodium chloride or potassium chloride. So, the wall will

actually acquire a net charge could be negative or positive. So, suppose if you consider

the wall acquires in net negative charge. 

So, the positive ions in the fluid tend to migrate and attach as a first layer to the walls.

So, this layer is called the stern layer, and even if you apply an external electric field this

stern  layer  appears  static,  and it  does  not  really  move  along with  the  fluid.  So,  for

therefore, practical calculations you do not have to really consider the thickness or what

is effect of stern layer, but from the stern layer onwards there is a buildup of positive ions

which is gradual diffusion like process and therefore, you have secondary layer called the

diffuse layer, which builds on top of this stern layer and extent all the way into the bulk

of the fluid. And far away from the wall the net electrostatic potential difference from the

bulk value will be 0. 

 (Refer Slide Time: 02:04)



So, therefore, if you plot the actual potential value right at the wall you may a have a

very high value of potential  and then slowly gradually decrease and asymptotically it

reaches  the value of the bulk potential,  for large values of y. So,  if  you define over

potential which is phi minus phi bulk. So, that gives you the excess potential on top of

the bulk and that value becomes 0 for large values of y. So, therefore, from this we define

what is called the Debye height Debye thickness or you know diffuse layer thickness

lambda d, which gives you the distance approximate distance over which you know this

excess  potential  d  case  to  0,  rights  and  the  corresponding  value  of  the  potential

difference, excess potential from the stern layer value to the bulk value. So, this is called

zeta potential right.

So, the higher the zeta potential more is the electro kinetic capability of this particular

fluid  and solid  object  combination  correct.  So,  generally  one  measure  is  before  you

check whether you can actually use the phenomena of electro kinetics you first generally

people measure the value of the zeta potential with the electrostatic part of the fluid with

before  applying  the  electric  field,  and then  they  decide  whether  this  fluid  and solid

combination is good enough to drive ah the electro kinetics by an external field.

 (Refer Slide Time: 03:58)

So, I think this part is pretty much clear to you. So, we have taken the example of an

aqueous solution of say sodium chloride and then we said that suppose you assume the

bulk which is a electro statically neutral, you have equal number of n a plus ions and c l



minus ions and also the valence number which denotes the charge will be equal and

opposite in this case.

(Refer Slide Time: 04:21)

So, therefore, the next part will be calculated, what is the net local net charge density rho

e. 

(Refer Slide Time: 04:33)

So, this is required because we do not know how the potential actually varies.



We are only showing this as you know upfront, but this is a solution we have to solve

this  equation  with  appropriate  boundary  condition  then  only  we  will  know  that

distribution varies like, this all we know the only the value at the wall and the value at

large values of y right. So, in intermediate variation is not clear. So, for that we have to

solve the poissons equations.

(Refer Slide Time: 05:01)

So,  the  poissons  equation,  where  you  have  an  electrostatic  which  solves  for  the

electrostatic potential phi, so, is just the lapalashy, laplacian operator on the left hand

side that is equal to the net charge density, the local charge density on the right hand side.

So, to get the local charge density, so, we have to look at all the ions locally. So, the

concentration of each individual ion multiplied by the corresponding charge whether it is

positive or negative charge correct. So, if it is positive. So, this will be rho if positive and

negative and so, on. So, I multiplied by what is called the faraday constant. So, the value

is given there. So, the question is how do, I exactly determine the local concentration.

So, for this we make an assumption of Boltzmann distribution. So, that, we can relate the

local  concentration  of  these  ions  to  the  bulk  value  c  i  infinity,  so,  through  this

exponential function distribution function. So, this exponential distribution function is a

function of the over potential that is phi minus phi bulk. If your phi equal to phi bulk at

large values of y, so, this exponential term will become one and therefore, c i will be

equal to c i infinity.



So, therefore, this is the implicit function of y, because here over potential is actually a

function of y. So, you can say that c i is the function of y. So, therefore, once you express

this in terms Boltzmann statistics, the substitute for the expression into the expression for

the  local  charge  density.  And  which  looks  like  this  is  the  pretty  straight  forward

arrangement  now we therefore,  substitute  this  rho  e  into  the  expression  for  poisson

equation. So, then the resulting equation is called as the poisson Boltzmann equation,

because we have the classical  poisson equation into which we put in  the Boltzmann

approximation,  distribution  approximation.  So,  this  is  called  the  poisson  Boltzmann

approximation and as you can see this is the summation term and this is also a non-linear

equation, you have phi on both sides. Which cannot be directly solved for, but if you

want to solve this the boundary conditions, you have to solve this iteratively, you have to

guess these solution and then put this make sure that you balance the equation. So, if it

does  not  balance  then  you re  guess.  So,  so  like  this  is  an  iterative  travel  and  error

process. So, if you normalize this you can non-dimensionalize the potential phi as well as

the coordinates.

(Refer Slide Time: 08:01)

So, if you use the following non-dimensional notation. So, you can non-dimensionalize a

phi with multiplying by farday constant divided by universal constant times temperature,

and that is you are phi star similarly all the coordinates are non-dimensionalized with

Debye length. The Debye length whatever expression is showed here, it is a coming from

simple scaling arguments, where you combine all these parameters. So, those units are in



terms  of  meters,  and  these  are  a  non-dimensional  group  of  you  know  different

parameters. So, this will be unit of exactly meters. So, if you non-dimensionalize with

this Debye length. So, you get everything in terms of x star and y star and so on.

So, therefore, if you right it in one dimensional notations, suppose if I want to solve the

poisson Boltzmann equation,  for just the vertical  profile right the variation of excess

potential as a function of only y or a simple case a single plate. So, in this case therefore,

I have to right this laplacian operator, del square, phi star, as only function of y. So, this

becomes d square phi star by d y star square on the right hand side, I have the Boltzmann

distribution  function now this  is  a non-linear  equation.  So, if  you want to  solve this

analytically. So, we make an assumption to make this a linear equation. So, how do we

linearize this equation? So, we make an assumption that if you look at this exponential

term exponential minus z i phi star.

(Refer Slide Time: 09:56)

We can use a Taylor series approximation, we can express exponential of x is equal to 1

plus x, and if your x is much smaller than 1. So, then this becomes you know linear. So,

therefore, this is what we are going to now do it. So, what we are planning saying that

this fact the z i phi star, is actually a very small quantity compare to 1. So, z i is the

valence number it could be plus or minus 1. So, multiplied by phi star the actual value of

phi star the non dimensional phi, will is actually a very small value compare to 1 is much

smaller than unity if you calculate. So, therefore, if you relay compare the relative order



of magnitude of these two terms you can therefore, replace 1 plus x which simply them.

So, this becomes c i into z i square. So, we just right this as you know there is some

problem here.

(Refer Slide Time: 11:30)

 So, we just so, we ignore all the higher order terms, so, what we are saying is that you

have 1 plus x plus x square plus x cube and so, on. So, therefore, if this is small value all

the higher order terms will be negligible. So, were x square x cube x power 4 terms will

all be negligible. So, therefore, we needed only the term with x power 1. So, 1 plus x is

the  term that  we  used  and  then  if  you  substitute  that  this  should  come  out  to  this

particular form you have z i square phi star. So, we have c i c star, we have z i square,

where is f. I think some problem with this formulation here. So, I think there is an f

missing, and also there should be 1 plus x. I think there is some mistake so. 

So, now, from this point for the case n a plus c l minus. So, we know that c i infinity for

n a plus c l minus, they are similar, if you consider 1 milli mole solution. So, they are

each equal to unity, and similarly if you look at the value z they are equal and opposite.

So, therefore, if you substitute into this expression, I think then it should be coming out

correctly you have 1 times on plus you have 1 times minus, 1 square. Which is 2, so, 2

and 2 cancel and therefore, you only have phi star is that. So, you have basically if you

look at aqua solution of n a plus and c l minus you can you look at only n a plus and c l

minus species concentrations.



So, for that case if this reduces to phi star, but think there is still some issue with the sign

and also its not I will get back to you tomorrow on this. So, how this f is observed is not

very clear, but from this part you reach the following form and this is called the Debye

Huckel approximation. So, the Debye Huckel approximation is actually used for cases,

where you have equimolar aqua solutions for example, n a plus c l minus or k plus c l

minus. So, for equimolar for same values of molarity and also the valence numbers or

equal and opposite, so, for a such a limiting case this summation now drops out and you

have  an  explicitly  equation  in  terms  of  phi  star,  and  this  is  called  Debye  Huckle

approximation. So, we can now therefore, solve this Debye Huckle approximation which

is nothing, but the reduced form of the linear, linearized poisson Boltzmann equation. So,

we linearize it with this step where we ignore the higher powers of x. And we convert it

into this form, but still you have a summation which we reduce it for the case equimolar

aqua solutions and then you get the Debye Huckle approximation.

So, now we can go ahead and solve this particular equation this is a simple ordinary

differential equation of second, order you need two bound a conditions. So, therefore, we

can apply the condition  that  at  y, y equals  to  0.  So,  since this  is  a  non-dimensional

coordinates, we can give define everything in terms of non dimensional values. So, you

have y star equals to 0 the corresponding value at the wall the over potential will be

value of phi star not, or you can use w if you want to represent this at the value at wall.

So, what it means is that is the value of potential at the wall minus bulk. So, this excess

potential or over potential is therefore, phi star not and at large values of y. y star going

to infinity your excess potential goes to 0 right. 

So,  with  these  two  boundary  conditions  if  you  solve  this  equation  you  have  an

exponential we will get an exponential solution so; that means, you phi will turn out to

be phi not exponential minus y by d. So, I will give you a few minutes for you to actually

workout. So, you know the solution to this equation. So, you can apply these boundary

conditions and check whether you get this particular solution. So, once you get this you

substitute  into  the  expression  for  c  from  the  Boltzmann  statics.  So,  c  in  terms  of

exponential minus z i f phi. So, you substitute for phi into this, and we can write in an

expression  for  the  concentration  of  the  species  in  terms  of  in  non-dimensional  y

coordinate.



So, please do these two things, please check the solution and also get the expression for

concentration.  So,  you  have  solution  as  c  1  exponential  minus  plus  m  x  or  c  2

exponential minus m x right. So, at y going to infinity the exponential m x will also go to

infinity, but solution should be 0. So, therefore, the constant c 1 should be 0. So, the

therefore, the solution should be c 2 exponential minus m x. So, use the second boundary

condition and you will be able to find out c 2, the stern should be c not and you can write

this as y star y star is nothing, but y by lambda d.

So, therefore, if you substitute this into the Boltzmann distributions for concentration

you can elaborate get an elaborate expression for c I, is it clear till here. So, this is the

solution to the one dimensional poisson Boltzmann equation. So, now, you know exactly

the nature of the electrostatic potential, how varies with it y. So, it is an exponential d k.

So, therefore, if you plot this function phi by phi wall you can normalize.

(Refer Slide Time: 20:47)

This with the value of phi at wall, so, that it fits between 0 and 1, and you plot this is as a

function of y over lambda d y star. So, you see the exponential variation very clearly. So,

for large values of y by lambda d this value of phi goes to 0. So, this is basically your

excess potential  variation,  the other is your concentration variation.  So, from this  for

particular species for n a plus for c l minus for each of this you can plot the variation of

concentration with respective y for example, if you have a negatively charged wall. So,

the concentration of positive charged ions will be in excess close to the wall right. So,



therefore,  you  see  the  concentration  n  a  plus  is  very  high  at  the  wall  and  then  it

progressively decase, and then reaches the bulk concentration which is equal to 1 right.

Whereas  for  the  c  l  minus,  it  is  deficient  lower  than  1  at  wall  and  then  increases

progressively and becomes equal to one in the bulk. And once you know the value of phi

you can also can express the local net charge density, because this is expressed in terms

of phi from the Boltzmann solution right. So, that also can plot as function of y.

So, the thick line rho e by f variation is also plotted here. So, therefore,  from this 1

dimensional  solution you get  a lot  of information.  So, how the electrostatic  potential

varies how the local net charge density varies you know how the concentration of these

ions  can actually  vary right.  So,  now, this  is  the starting point  of looking at  electro

kinetics there is still now there is still now kinetics it is just statics.

(Refer Slide Time: 23:04)

So, when we put an external electric field, now what immediately what we can observe is

the phenomena of electro osmosis. So, you apply an electric field along the positive x

direction and these results in the Coulomb force. So, this is denoted by this notation f

coulomb, this is a coulomb force. Which is equal to the local charge density rho e times

the electric field so. So, therefore, you have the electrostatic potential like this. So, have

a variation up to the Debye length beyond which the value becomes 0 excess potential

values and it is symmetric. So, this is the case of flow between two parallel plates. So,

you will have a symmetric distribution.



About the center line for the electric static potential and now if you therefore, apply and

electric field what happens. So, you have the electric force the acting in the momentum

equation will be rho e times; that means, wherever you have the local net charge density

value positive the finite values. So, there you will experience acceleration ok. According

to this expression if you look at rho e, this is the very strong function of phi, so, wherever

you have large values of phi. 

So, that is where the local charge density also will be quite significant therefore, close to

the wall is where all the force is exhorted and if you move away from the wall were

potential becomes 0 there is no force . So, therefore, you can actually divide this problem

into two regions, one problem which is an inner problem which is close to the wall.

Where you consider only the diffuse layer, solve for the separately try to get velocity

layer in the diffuse layer and then you go to the second region which is the outer region,

which is not influence directly by electric field, but by apply the velocity as the boundary

condition ok.

So, therefore, so, the electro osmosis problem can be divided into two sub problems.



(Refer Slide Time: 25:41)

One we have an inner solution the inner solution is only for the EDL, then we have the

outer solution were we have the bulk fluid which is electro mute.

(Refer Slide Time: 23:53)



So, if you want to write down the Navier stokes equation for the inner solution, now you

might ask a question whether we are talking about you know Debye length of the

order of tens of nanometers.  Whether  we can use continue of the equations,  but

again you should remember that the mean free path is also very small for a liquids.

So, therefore, you might be still in Knudsen number range which is less then much

less  than  0.1.  So,  you do not  have  to  really  worry about  breaking the  continue

assumption,  were as for the same length skills  if  this  was gas flow defiantly  no

correct. So, the same continue Navier stokes equation is written. So, you have the

time durative you have the convert the acceleration pressure gradient viscous the

diffusion plus you have the colon force which is the driving force in this region.

So, here the electric field is applied externally, it is not what is coming internal this is an

external electric field. So, therefore, this is denoted has e external and this acting

only on the EDL. So, this we solve this EDL now when you solve this we make

some more assumptions to get analytical solution that is we want to look out fully

developed  velocity  profile  when  a  reason.  So,  that  the  convective  acceleration

becomes 0 and we are also looking at study state solution. So, the entire left hand

side the entire acceleration term on the left hand side goes to 0 therefore, also when

you are applying this for plate where there is no pressure gradient right therefore, d p

by so, this solution now not for a channel we are doing this only for 1 plate. So,

thing like flows pass the plate, so, in this case there is no pressure gradients. So,

your delta p also becomes 0. So, only 2 forces are there, one is the viscous force the

other is Coulomb force.

(Refer Slide Time: 28:15)



So, this two will perfectly balance. And you get the velocity profile out of this moment

term balance. So, therefore, the other terms are 0 assuming, you have fully develop

fully developed study state and solution for flat plate with 0 pressure gradients.

So, now we substitute  for the poissons you know the poissons equation.  So, we can

actually  write  here rho.  So,  please  correct  this,  this  is  not  look like  P E,  but  is

actually rho e. So, this is this is rho e right. So, this rho is actually we written form

the poisson equation has epsilon into del square phi. So, you just substitute for that

into the term rho e on the right hand side and therefore, if you express this, this

becomes this is your kinematic velocity times d square by d y square minus epsilon

permittivity into d square 5 by d y square this is coming from the poisson equation

into the external electric field. So, now if you integrate this as a function y, so, you

get the following solution for velocity, velocity profile has a function of phi and y.
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So, therefore, if you apply the no slip boundary condition, at the wall y is equal to 0 the

velocity 0 when you finally, end up with the solution inner region for the velocity

profile this turns out to simply at epsilon e times phi by eta, and we also apply the

condition that y equal to 0 phi becomes phi not right that is your values of phi at the

wall. So, therefore, we get this particular solution for the velocity profile. So, if you

plot this velocity profile. So, this is how it varies. So, it is kind of a linear variation

with respect to phi right and how does phi very exponential.

So, therefore, has a function y u will also the exponential variation. So, having known

the inner solution,  now we do not have to again come back to this.  So,  we can

assume that the out solution is driven by solid wall with velocity of these particular

values. So, basically the EDL is a very thin layer close to the wall right. So, few

nanometers, so, since we have the velocity profile for the EDL. So, at the edge of the

EDL we can apply this as a boundary condition, and we can see that the entire bulk

flow is driven by the motion of the EDL. So, edge of the EDL can be assumed to be

a wall which is moving with particular velocity given by these values. So, this will

be like a quite flow. So, you have the bottom wall on the edge of the EDL, which is

moving top side outside the edge of the EDL there is another wall is moving with

the velocity  and therefore,  the bulk value will  be nothing,  but the average value

between the top and bottom.

So, if both of these values are same. So, you have the values of the bulk velocity also

same the boundary values.



(Refer Slide Time: 32:36)

So, this basically what you now translate this solution into a slip boundary condition, for

the outer solution. We solve the routine Navier stokes equation that is not Coulomb

force on that because, net charge densities 0 that; however, we apply slip boundary

condition with the same velocity what we got from the inner solution right therefore,

the value of velocity that we apply will be equal to this.

(Refer Slide Time: 33:14)



 Because, if you write down the solution for u inner at y equal to lambda d right. So, that

is  the  edge  of  the  EDL.  So,  at  that  point  you  can  assume  your  phi  to  be

approximately 0, axis potential almost reaching the buck values at 0 therefore, this

turns out to be minus epsilon phi naught e by viscosity. So, this will be slip boundary

condition that you give for the outer solution. So, this boundary condition is called

Smoluchowski slip, but we since we apply it for a case of the elector.

Electro kinetics this is called Helmholtz Smoluchowski, Smoluchowski slip boundary

conditions.  We have the  same Smoluchowski  in  the  gas  flows  for  temperature  also;

temperature slip is also called Smoluchowski. So, for the case of electro kinetics we

called this is Helmholtz Smoluchowski slip boundary condition. So, therefore, for the

outer  flow if  you assume you have acceleration  you have pressure gradient  you can

include all of these and you can solve this right with the slip boundary conditions alright.

So, so you do not have to basically ignore delta p, because still this is a channel flow. So,

delta p will be there. So, you may have delta p you have the viscous diffusion you may

also have the developing region where initial terms cannot be neglected. 

So,  if  you  want  to  get  the  full  solution  you  can  go  ahead  and  still  solve  it  in  a

conventional, but with the following Smoluchowski slip boundary condition at y equal to

0 for the limiting case where your delta p equal to 0, you have a fully developed profile

you have a study state profile then what will be the value of bulk velocity same as that of

the boundary condition. So, there you will have all these terms going to 0 you have d

square u by d y square equal to 0

So, this will give you linear profile. So, since you have a same value of velocity at y

equal to 0 and the top wall. So, this will that therefore, becomes equal to the value or the

boundary itself alright. So, that will become your quite flow solution. So, this is all about

the electro osmosis. So, you have any questions or doubts on this. So, the entire electro

osmosis is now broken into two sub problem. So, one where we find solution for the

inner region use that as a boundary condition for finding solution for the outer region.

So, what is the application of such kind of electro osmotic flows? So, one is when you

design  what  are  call  electro  kinetic  pumps.  These  are  not  conventional  mechanical

pumps where you drive flow by purely pressure gradient. So, these are flows where you

can have simultaneously, both electro osmotic driven flow plus also a pressure gradient



driven flow right. So, where as if you take pure channel case you have only pressure

gradient which drives the flow there. So, it is pure mechanical pump pumping process

where as in the electro kinetic you also use the electro osmotic motion for creating flow. 

So, therefore, if you want to develop one such application of this electro osmosis it is

designing  electro  kinetic  pump.  So,  we  therefore,  apply  in  an  electric  filed  along  a

capillary is capillary means it should be of the order of few millimeters. So, that you get

a strong electro osmotic motion and you also generate flow, and there is also a pressure

gradient which is driving the flow right this is the channel case. So, if you suppose apply

an external field is equal to delta v by l potential difference, over a length l and you

assume the  rectangle  micro  channel  to  be of  depth  2 d in  a  width length  and cross

sectional area and so, on. And therefore, in this case, so, you do not have directly assume

a pressure gradient right away, but you can also have this and you also make sure that

you are d by length is much smaller than you are depth or the height of the channel and

this height should be lesser than the width.  So,  that  it  can be made a 2 dimensional

assumption and this width should be lesser than l.

So, therefore, for a 2 d system the electro osmotic and pressure driven flow. So, if you

want to calculate the flow rates. So, how do you get it? So, for the electro osmotic flow

you integrate. So, you have the velocity at the wall which is you are boundary condition,

and if you solve the bulk value also without any pressure gradient. So, what happens as I

said you get the same bulk value as the wall? So, therefore, it is nothing, but you are wall

velocity which is your uniform throughout. So, if you integrate this from minus d to d

across the entire channel height. So, you get your net volume, volumetric flow right. So,

this  is  the component  coming from the electro osmotic  process you can also have a

pressure driven component as well  suppose you assume that  there is only a pressure

gradient which is driving the flow, and there is no electro osmosis in that case you put

your e s 0, your external electric filed you compute your conventional solution for flow

in a channel with a pressure gradient. So, in that case you get your classical solution.

So, this pressure driven flow is I think all of you know this is for a channel case. So,

now,  if  you  therefore,  look  at  a  generic  capillary  you  can  have  both  of  these

combinations a portion of this coming from the first term the portion of this coming from

the  second  term,  because  the  first  term  we  got  by  neglecting  the  pressure  gradient



completely second by we got by neglecting the l complete electric filed, but the actual

case will have both of these governing the flow.

(Refer Slide Time: 40:39)

So,  therefore,  the  total  flow rate  Q if  you integrate  this  you will  be  able  to  get  an

expression of this particular form right. So, it is driven by both the slip velocity at the

wall which is nothing, but the electro osmotic solution for the EDL and the pressure

gradient. So, this is the mechanism of the electro kinetic pump. So, you have both these

contributions coming to pump the flow.

(Refer Slide Time: 41:19)



So, you can have two limiting cases as I said. So, you can have two limiting cases, one in

which the pump works where you have a full flow without any pressure gradient that is

only by the electro osmosis. And the second case where there is no flow, but only pure

delta p; that means, you close the exit you cross the maximum pressure rise to happen so;

that means, there is no outlet for the flow to go, but you have the maximum pressure rise.

So,  there are.  So,  these  are  the  2 extreme cases.  So,  therefore,  we can  find  out  the

solution for the 2 extreme cases for example, the second case where your Q outlet equal

to  0.  So,  we  have  to  put  the  conditions  Q  equal  to  0  from this  expression  second

expression we should be able to find a relation for delta p, because we know the solution

u wall.  So, u wall I am right,  to putting substituting into this  expression and getting

solution for delta p.

So, you can. So, this is one solution the other solution is where you have the maximum

pressure rise. So, the maximum pressure rise can also be obtained. So, what it says you

can  therefore,  calculate  what  is  the  thermodynamic  efficiency  for  a  particular  pump

which  has  both  these  contributions,  you  can  have  an  electro  osmotic  and  also  the

pressure  driven  contribution.  So,  how  do  you  define  the  thermodynamic  efficiency

whatever pumping power that it generates divided by what is the total input power, to the

system the total input power is the external electric flied. So, that is here delta eta and phi

and whatever pumping power it generates it is your delta p times q, Q is the volume

matrix floored delta p is a pressure draw. So, so with this you can actually check different

modification  to  this  electro  kinetic  pump,  and  see  whether  you  can  improve  your

thermodynamic efficiency usually the efficiency is for these kind of pumps are very low

less than 10 percent, but never the less these are an alternative way of pumping apart

from using a mechanical pump externally right. So, you just supply an electric field and

then you drive the flow.

So, this is not bad idea, if you want to drive very small flow rates, but the efficiency is

are  also  very  less  of  the  order  of  less  than  ten  percent.  So,  we  will  stop  here,  so,

tomorrow or in the next class on Tuesday.
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We will look at the second of the electro kinetic which is called the electrophoresis. So,

the electrophoresis this kind of an extension to the electro osmosis, because in electro

osmosis  case  your  walls  are  stationary,  and  the  fluid  is  moving  in  the  case  of

electrophoresis, we assume this particles we apply this primarily to particles. So, you can

call this as particle electrophoresis. So, these particles are actually moving due to charge

accumulation  around  these  particles.  So,  when  you  put  an  external  field.  So,  these

particles actually move. So, you can assume that the bulk ah fluid is actually not moving,

but  the charges  are  all  concentrated  around these particles  in  these particles  actually

move relative to the bulk fluid.

So, this is what we are going to study and this is quite important, when you consider

particle dispersions in fluids. So, most of the times these particles dispersion also have a

electro statistic potential, the electric double layer formation is there. We may not be able

to see it, but definitely you put an electric field you will find all of these particles and

start migrating. So, this is also a very important ah phenomena when you consider say

nano fluids right. So, just quickly same theory whatever we apply for calculating the

velocity, we will apply that here also we make an assumption that the particle and d by

layer everything moves together. So, that there is no slip between the particle and d by

layer. So, whatever solution we got for the d by layer velocity will also be directly apply

to the particle here. So, we will quickly rap up this case.
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And then,  I  will  briefly  introduce  the  equation  for  solving  for  the  concentration  the

advection diffusion equation for concentration of this species. Because the earlier case

the Boltzmann distribution function can be used, but the actual distribution will be more

complicated if you have a flow right. If you have a flow it is not a simple the Boltzmann

distribution is there for these static fluids, but the actual concentration will also change

you have a motion.

So, in that case we cannot use only that. So, we have to solve for the advection diffusion

for the concentration and get the actual value of concentration. So, this is given by what

is called the Nernst Planck equation of course, So, they are detailed topics, I do not want

to spend a lot of time because our emphasis is to look at heat transfer I am just giving

you some overview of this. 

So, if you take a course on micro fluidics for example, so, these are usually covered in a

greater  detail,  there  are  also  other  phenomena  like  dielectrophoresis,  dielectro  track

phoresis. So, they are all phenomena which are emerging areas of research so, but I also

do not want to talk about them in this basic course, because the most commonly used

electro kinetics mechanisms are these 2, osmosis and electro phoresis, in heat transfer

you  have  equal  into  this,  this  is  called  thermophoresis.  So,  you have  a  temperature

gradient  which is  driving the motion.  So, you have thermophoretic  pumps similar  to



electro osmotic pumps so, but; however, those kinds of phenomena with thermophoresis

can appear at even a large scale it depends on the temperature gradient.

Thank you.


	
	One we have an inner solution the inner solution is only for the EDL, then we have the outer solution were we have the bulk fluid which is electro mute.
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	So, if you want to write down the Navier stokes equation for the inner solution, now you might ask a question whether we are talking about you know Debye length of the order of tens of nanometers. Whether we can use continue of the equations, but again you should remember that the mean free path is also very small for a liquids. So, therefore, you might be still in Knudsen number range which is less then much less than 0.1. So, you do not have to really worry about breaking the continue assumption, were as for the same length skills if this was gas flow defiantly no correct. So, the same continue Navier stokes equation is written. So, you have the time durative you have the convert the acceleration pressure gradient viscous the diffusion plus you have the colon force which is the driving force in this region.
	So, here the electric field is applied externally, it is not what is coming internal this is an external electric field. So, therefore, this is denoted has e external and this acting only on the EDL. So, this we solve this EDL now when you solve this we make some more assumptions to get analytical solution that is we want to look out fully developed velocity profile when a reason. So, that the convective acceleration becomes 0 and we are also looking at study state solution. So, the entire left hand side the entire acceleration term on the left hand side goes to 0 therefore, also when you are applying this for plate where there is no pressure gradient right therefore, d p by so, this solution now not for a channel we are doing this only for 1 plate. So, thing like flows pass the plate, so, in this case there is no pressure gradients. So, your delta p also becomes 0. So, only 2 forces are there, one is the viscous force the other is Coulomb force.
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	So, this two will perfectly balance. And you get the velocity profile out of this moment term balance. So, therefore, the other terms are 0 assuming, you have fully develop fully developed study state and solution for flat plate with 0 pressure gradients.
	So, now we substitute for the poissons you know the poissons equation. So, we can actually write here rho. So, please correct this, this is not look like P E, but is actually rho e. So, this is this is rho e right. So, this rho is actually we written form the poisson equation has epsilon into del square phi. So, you just substitute for that into the term rho e on the right hand side and therefore, if you express this, this becomes this is your kinematic velocity times d square by d y square minus epsilon permittivity into d square 5 by d y square this is coming from the poisson equation into the external electric field. So, now if you integrate this as a function y, so, you get the following solution for velocity, velocity profile has a function of phi and y.
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	So, therefore, if you apply the no slip boundary condition, at the wall y is equal to 0 the velocity 0 when you finally, end up with the solution inner region for the velocity profile this turns out to simply at epsilon e times phi by eta, and we also apply the condition that y equal to 0 phi becomes phi not right that is your values of phi at the wall. So, therefore, we get this particular solution for the velocity profile. So, if you plot this velocity profile. So, this is how it varies. So, it is kind of a linear variation with respect to phi right and how does phi very exponential.
	So, therefore, has a function y u will also the exponential variation. So, having known the inner solution, now we do not have to again come back to this. So, we can assume that the out solution is driven by solid wall with velocity of these particular values. So, basically the EDL is a very thin layer close to the wall right. So, few nanometers, so, since we have the velocity profile for the EDL. So, at the edge of the EDL we can apply this as a boundary condition, and we can see that the entire bulk flow is driven by the motion of the EDL. So, edge of the EDL can be assumed to be a wall which is moving with particular velocity given by these values. So, this will be like a quite flow. So, you have the bottom wall on the edge of the EDL, which is moving top side outside the edge of the EDL there is another wall is moving with the velocity and therefore, the bulk value will be nothing, but the average value between the top and bottom.
	So, if both of these values are same. So, you have the values of the bulk velocity also same the boundary values.
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	So, this basically what you now translate this solution into a slip boundary condition, for the outer solution. We solve the routine Navier stokes equation that is not Coulomb force on that because, net charge densities 0 that; however, we apply slip boundary condition with the same velocity what we got from the inner solution right therefore, the value of velocity that we apply will be equal to this.
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	Because, if you write down the solution for u inner at y equal to lambda d right. So, that is the edge of the EDL. So, at that point you can assume your phi to be approximately 0, axis potential almost reaching the buck values at 0 therefore, this turns out to be minus epsilon phi naught e by viscosity. So, this will be slip boundary condition that you give for the outer solution. So, this boundary condition is called Smoluchowski slip, but we since we apply it for a case of the elector.

