
Micro and Nanoscale Energy Transport
Dr. Arvind Pattamatta

Department of Mechanical Engineering
Indian Institute of Technology, Madras

Lecture – 32
Single Phase Liquid Flow and Heat 
Transport in Micro channels Part 1

So, that is 4 by 3 pi a b c divided by 2 pi by l the whole q. And what are; a, b and c many

of you are taken a b and c as k x, k y, k z. How can that be because, k x, k y, k z is the

respective coordinate in the x y and z axis, where as a b c refers to the maximum lengths,

in  the corresponding you know, coordinates?  So, for  that  you have to put  the given

equation  right  the  given  dispersion  relation  in  terms  of  that  ellipse  equation  you

understand. So, x square by a square plus y square by b square plus z square by c Square

equal to 1 of that form then you will get what is a b and c. 

And once you write your number of states is a function of this. So, directly you will have

this in terms of energy. So, all you have to do is differentiate this with respective energy.

So, that will give you d n by d e. So, it becomes very easy to work out once you get n as

a function of e, directly you find d n by d e divided by l cube and you will get your

density of states. So, always density of states we as expressed in terms of energy not in

terms of k. So, that I think was slightly tricky problem you are I gave you hint also, I

think you should have heard about it. So, apart from that most of you could solve the

other 3problems, related to the Boltzmann transport equation and quantum, quantum dot

those where all fine.

And many of you used in the third problem the atomic weight of the oxygen. So, I have

asked you to calculate everything for a molecule. So, many have you took atomic weight

as 16 and you have calculate it mean free path and other thing. So, there you got one I

think the second problem was the little bit more trickier one. So, the approach is quite

different from what we have attempted in class, I wanted to see how many of you can do

that this is slightly out of the box thinking, because the other once are more or less you

know been talked especially  the forth problem right,  and you already know the first

problem how it should come out the answer should come out. So, many of you have not

really attempted to apply the boundary condition. I am sure that mean these are how the



quantum numbers turn out to be, but you have any way reduced that this should be the

right answer.

So, therefore, you got it n pi by l and l m and n, but where you went wrong you thinking

were required was to calculate the degeneracy of the first four energy levels. So, many of

you have just used l equal to 0, 0, 1, 1 you know 01, 01, 01 like that. So, how can

quantum numbers be 0 in the case, of quantum dot in the case of the confinement? If

your quantum number is 0 there is no wave function; that means, there is no particle

inside the box, which does not make sense. So, there is definitely a particle we do not

know only where it is inside the box, what is the exact location. That also if you calculate

based on the wave it turns out to be middle of the box most likely probability, but the

degeneracy part was a tricky one, also you are supposed to know what are the values of

energy first. So, if you substitute 1, 1, 1, you know that that is the lowest value of energy

and then now the next question comes. So, you have 1 to 1, 1, 1, 2, 2, 1, and 1, for this

you have the next higher value of energy. So, after this what is the third level 1, 2, 2? I

think many of you have gone to 3, by that time by the third or fourth energy level you

have already gone to 3 even before going to 3. So, you will get different values of energy

which is higher than the previous one.

So, that is what you have to say first 4 energy levels is, first 4 consecutive values of

progressive values of increasing energy and the corresponding degeneracy. So, these are

the things which require little bit different thinking from, what you have done also in the

assignment. So, in the open notes examination, so, generally you are tested for problem

which is slightly different from the approach we take in the class, because you do not

have to memorize anything for sure. So, therefore,  the emphasis on thinking little bit

different and make sure that we test your understanding thoroughly.

Anyway, so, now, in the remaining we have about ten classes are. So, we have another

three to four weeks right and. So, what we will do is look at the different forms of the

micro scale energy transport. So, we have in the last at couple of classes we talked about

the nano scale or micro scale gas flows, a gas flows in mini and micro channel. So, in

that case we talked about these slip boundary conditions, and then solved few examples

for which analytical solution can be determine to get the velocity profiles and similarly

temperature profiles so. So, therefore, that in that case you are thinking whether a proper

continuum can be used if continuum equations can be used in the bulk transports. So,



what about near wall, so, in the near wall we talked about the velocity and temperature

jump conditions. 

So,  this  was  given  by  the  Maxwell  velocity  profile,  as  well  as  the  Smoluchowski

temperature jump condition. And where as if you talking about Knudsen numbers higher

than 0.1, so, in that case, even the continuum equations were question and then we saw

how  the  Burnett  equations  can  be  used.  Which  are  obtained  as  the  higher  order

approximations of the Boltzmann’s transport equation? So, you have Knudsen number

power 0, Knudsen number power 1, and Knudsen number square and so on. So, Knudsen

number 0 terms will give you the oiler equation, Knudsen number to the power 1. First 2

terms now will give you the Navier stokes, and if you include the third term it will give

you the Burnett equation and so on.

So, therefore, in all this cases the viscous stress tensor and heat flux vector. So, all these

become increasingly more and more complicated correct. So, the computational effort

also becomes difficult.  So,  therefore,  higher  Knudsen numbers for gas flows involve

solving therefore, different from the Navier stokes equation Burnett equations and again

for the more practical cases we try to retain continuum equations with the modifications

in the slip. So, the basic slips are the Maxwell’s and Smoluchowski slip, but you can also

extend that to second order slip to in order to retain the continuum equation.

So, most of the practical studies have been using this kind of an approach. The next thing

now we will do is go on to the liquid phase the liquid flows; by liquid flows you have

now different kinds of problems. So, you can talk about single phase. So, this is the first

introductory part of the liquid flows so; that means, you are talking about only one phase

which is pure liquid and again when you talk about liquid flows the equations are not

now that interesting or that difficult compare to the gas flows. So, you will be still talking

about  the  continuum equations  and the  boundary  conditions  also  are  not  a  problem

because most of the time your nodes and numbers are much lesser than 0.01.

So, therefore, there is no problem with applying the no slip boundary condition.  And

only the interesting issue will be the different kinds of the flow physics that come out at

mini and micro scales. Which are different from the macro scale problem? So, what we

will do is we will,  any way know the conventional macro scale liquid flow transport



equation we will  try to apply this to micro scale and identify what are the important

physics that come out in the micro scale and give emphasis only on that.

(Refer Slide Time: 10:13)

So, you know that,  you know most of the momentum and energy equations,  that are

generally applicable to the macro; macro scale that is a Navier stock can be apply to the

micro  channels  with  liquid  flow. So,  that  is  probably  the  easier  thing,  but  what  are

probably more interesting is two things, one is the effect of relative roughness.

So, when you have talked about micro channel, which is of the size of few 100 microns.

So, there now the effect of the roughness of the walls which can be few tens of microns

can become significant. So, this can lead to different issues. So, one is the transition from

laminar to turbulent. So, the relative roughness effect not only affects the basic friction

factor and heat transfer coefficient, but also the transition is quite different in the micro

scale, micro channels, because of the relative the effect of the relative roughness at the

walls. So, therefore, what is more challenging is, and what is interesting is also that you

have  certain  empirical  correlations  for  friction,  factor  nusselt  number  for  the  macro

channels, you want to verify whether this can be applied at the micro scale directly. So, if

not, what is the addition modification that has to be brought in?

So, if everything is similar from macro scale there is nothing challenging at micro scale.

So,  the  same  correlation  can  be  applied.  So,  the  same  physics  so,  there  is  nothing

interesting so, but definitely there are things which are distinct that micro scale.
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And we have  to  investigate  therefore,  whether  this  correlation  can  be  modified  and

applied suitably for the liquid flow in micron mille channels. So, most of the cases you

know 99 percent of the cases, you do not have any problem with facing higher Knudsen

numbers. So, you have a perfect assumption of continuum and Newtonian flow and also

no problem with jumps for velocity and temperature at the walls.

So, therefore, you can assume if you for example, take the case of flow through smooth

circular tube without any roughness effects. Whether, it is macro scale or micro scale

now it is not going to make any difference. A perfectly smooth wall will have the same

value of friction factor and nusselt number irrespective of whether this is channel of few

centimeters diameter or few microns diameter. So, already you know that for the case of

single phase flows in macro channels. So, you will talk about the fully developed flows

in either tubes or channels. So, you simply apply the balance of forces. So, one is the

pressure gradient along the x direction, if you take x as the axial direction. 

The other is the walls shear stress right. So, even if you write down the Navier stokes

equation and simplify that you end up with only the viscous diffusion in the vertical

direction; the other is your pressure gradient along the axial direction right. So, these two

will be balancing each other and from that you can integrate and calculate what are the

velocity profiles, right and from which you can calculate the relation between the center



line velocity profile the mean velocity profile, and you can calculate additional quantities

integral quantities like friction factor.

(Refer Slide Time: 14:20)

So, all these are known you know. So, these are coming from simply macro scale fluid

mechanics is nothing different here, except you should know that we have two different

friction factors right. So, one is defined based on the wall shear stress and that is call, the

fanning friction factor. So, that is tau wall divided by half rho u square right. So, that is

you are fanning friction factor, the other is your Darcy friction factor. So, we defined

Darcy friction factor in terms of pressure gradient if you say d p by d x. So, d p by d x

times the diameter divided by half rho u m square. So, that is your Darcy friction factor.

So, and your fanning and Darcy friction factor are related such a way that your Darcy

friction factor is four times the fanning friction factor. So, generally if you therefore,

derive a relation for the fanning friction factor for a circular cross section what is the

relation you get 16 by r e therefore, the Darcy friction factor will be 64 by r e.

So, this is a something that is already known to you, but I want to again highlight the

difference, because most of the time in these correlations that I will be talking about we

will be mostly using the fanning friction factor. So, apart from that you also know that if

you have a non circular cross section, then instead of using the regular diameter of the

channel you replace this with the hydraulic diameter which is defined as four times cross

sectional area by perimeter.
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These are the things which you already know, and then you go ahead and you calculate

your expression for friction factor now depending on again, whether it is a fanning or

Darcy this Poiseuille number will be difference. So, this Poiseuille number is nothing,

but product of the friction factor times Reynolds number. So, which is are constant for

most of the fully developed duct flows, and depending on the duct cross sectional area,

you have different values of Poiseuille number. And this Poiseuille number also depends

on the aspect ratio if it is a rectangular duct.

So,  therefore,  you  know. So,  you  can  simply  write  down  expression  for  Poiseuille

number and depending on whether you use fanning or Darcy friction factor again this

can be different for example, since we are talking about fanning friction factor here, for

the circular pipe the Poiseuille number will be 16.
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So,  now if  have  a  rectangular  channel  with sides  a,  and b.  So,  if  you for  example,

consider  rectangular  channel  as  shown in  this  particular  figure,  where  you have  the

shorter side as a, and the longer side as b. So, you can define the ratio of a by b. So, your

aspect ratio is b by a, but you can define parameter alpha c, which is the ratio of a by b,

the shorter side length divided by the longer side length. So, if you calculate a by b there

is one popular correlation given by shah and London. So, from which we can determine

the Poiseuille number for any expectation. So, for any rectangular cross sectional area,

for different values of a by b we can calculate the corresponding Poiseuille  number.

So, as you can see that for different cross sectional shapes duct shapes. So, you have

different values of Poiseuille number, for the rectangular case you can use this particular

shah and Londons correlation, to get this value and they have been tabulated here. So,

out of this you can see by varying the aspect ratio you know. So, if you increase the

aspect ratio you see that a Poiseuille number increases and at the same time your heat

transfer coefficient also increases. So, the nusselt number h and t, so, that mean; that

means, that nusselt number for constant heat flux boundary condition nusselt number for

constant wall temperature boundary condition. So, the nusselt number for the constant

heat  flux  boundary  condition  is  usually  higher  than  the  constant  wall  temperature

condition, and with for a case of a rectangular channel with increasing aspect ratio you

see that the values of nusselt  number increases and. So, does the value of Poiseuille



number and again for the other shapes such as the hexagon triangle ellipse also they have

been calculated although they are not very common shapes.

So,  especially  shapes  like  hexagon  or  triangle  is  not.  So,  commonly  used  in  heat

exchanges right. So, all this is the knowledge coming from macro channel.

(Refer Slide Time: 19:58)

And the same thing can be apply, if you have a smooth micro channel also. The other

thing  that  is  important  is  what  is  calling  the  developing  length,  hydro  dynamic

developing  length.  And  this  hydro  dynamic  developing  length  can  be  estimated  for

macro  channels  as  0.05  times  Reynolds  number.  So,  for  example,  if  your  Reynolds

number is equal to 100, so, this value will be 5. So, this is a non dimensional length at

which the boundary layers will merge and then after which you do not have any change

in the elastic profile.

So, therefore, you said d u by d x is 0 beyond this particular length. So, less than this you

have all  the  gradients  in  the  axial  direction  also they  are  very important  we cannot

neglect them, and that becomes a very complex region you have to solve the Navier

stokes equation, considering the inertial terms also you cannot neglect the initial terms in

the developing region. So, now, what is now different about the micro channel case for

example, So, usually as you see that one of the effects of keeping the channel diameters

small, for the same value of Poiseuille number so; that means, you have a friction factor

which is constant say if you are operating at Reynolds number of 100, and you reduce



your channel diameter from say 1 m m 2, 1 microns. So, three orders of magnitude, so,

what happens to the pressure drop it increases by three orders of magnitude?

So, keeping your friction factor the same you see that your pressure drop increases in a

several orders of magnitude when you go from macro to macro channel. So, therefore,

since your d p by therefore, pressure drop is large you do not want to have long channels,

when you have micro channel, because when you have to put lot of pumping power to

overcome  this  pressure  drop.  So,  therefore,  typically  all  the  micro  channels  have

relatively much smaller lengths compare to the macro channels. And therefore, most of

the times you will have construable length of this channel to be developing. So, in the

case, of large long channels you can always neglect this developing length to be very

small  for example,  if  your Reynolds number is  100 if  your l  by d is  5,  and if  your

diameter  is  of  the  order  of  100 microns,  and your  length  is  of  the  order  of  several

centimeters, then you can safely ignore the developing length, but if your length is of the

order of few mille meters then this becomes very important a contribution.

So, therefore,  you can say that what is different now in the micro channel case,  one

possible thing is that the effect of the developing region will become more important, in

the micro channel compare to the macro channel. And again when you are therefore,

talking about the pressure drop it could be micro or macro, but where the developing

effects are significant. We have to now modify the earlier formulation what we use as f

with what is the called as f apparent. So, why apparent means we are now not just talking

about fully developed region, but also region which is developing and therefore, the total

pressure drops will accounts for both these regions apart of which it is developing and

part  which  is  developed.  For  the  developed  case,  we  know  what  is  the  Poiseuille

number? Its constant value for a given cross sectional area where as for the developing

region. So, you have to write down some empirical correlations to determine this and

therefore, in general for case where you consider developing and the developed region

you  replace  this  f  with  what  is  called  as  f  apparent  this  has  two  components,  one

accounts for pressure drop which is for a fully developed flow the other is a developing

effects.
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So, therefore, how do we calculate this f apparent is a next question? So, one of the ways

to do the common way is to define what is called as an incremental pressure. So, this

incremental pressure is denoted by notation k, and you know this is the function of x,

because  if  you  are  probably  within  the  developing  regime  itself.  This  incremental

pressure will be a function of x, if you are outside the developing region this incremental

pressure become a constant value. So, therefore, k is a function of x is defined as the

difference between the apparent friction factor, and the fully developed friction factor.

So, this gives you the local variation of the friction factor in the developmental regime

you understand. So, difference between the apparent and the fully developed one should

give you what is the friction factor in the developed region and this is varying locally.

So, that is why your incremental pressure is a function of x.

Now, for  x  greater  than the  developing length;  So,  then this  value would become a

constant, because beyond this there is no variation in the friction factor with respect to

position it is a constant value. So, for this entire region of x is equal to l h your value of k

reaches a constant value which is denoted by k infinity, and this is call the Heisenberg

factor. So, the Heisenberg factor is a limiting value of the incremental pressure when

your x reaches the developing length. So, beyond with this becomes a constant value

right. So, most of the cases you know, so, ones you talk about position where which is

greater than the developing length you do not have to worry about k of x, but directly k



infinity you can substitute and then you can calculate your apparent friction factor. So,

therefore, the overall pressure drop which is now defined in terms f apparent.

So, you can re write the previous expression, which is in terms of rho u m square x by d

in terms of Reynolds number. So, you can multiply and divide by for example, d and

then you can write this in terms of Reynolds number. So, this turns out to be 2 times f

app  r  e  into  nu  u  m  x  by  b  h  square  and  this  f  app,  now  from this  definition  of

incremental pressure you can split it into 2 terms, one which corresponds to the fully

developed region the other is your developing region. So, therefore, you write it in terms

of 2 terms, and if you are considering length of x which is greater than l h this is k of h

will become k infinity which is your Heisenberg factor.

(Refer Slide Time: 28:04)

So, to in order to calculate this particular Heisenberg factor, these common expression

which is use to this by Steinke and Kandlikar. So, they have for rectangular channel for

example, they have obtain an empirical correlation to calculate k infinity as a function of

a by b ratios. So, this is the most commonly used expressions for rectangular channels.

So, you can based on this you can calculate k infinity and then you can substitute into

this,  you already know your expression for friction factor  coming from the previous

section, because the Poiseuille number is also a function of the a ratio of a by b so, you

know. Now, therefore, what is your fully developed friction factor know you Heisenberg



factor. So, corresponding to some x which is greater than l h you can therefore, calculate

what is your delta p?

So, for the entire pipe, so, you can therefore, replace your x with the length of the pipe.

So, this is what is now going to be different in micro channel case, in a macro channel

case many a time you will be ignoring the Heisenberg factor you just knock out the

second term and only calculate the delta p form the first term, but for micro channels you

should also include this second term, this becomes quite important there are also some

other  standard  correlations  to  get  the  overall  pressure drop as  a  function  of  only  x,

without bothering this  separate  contributions  of fully  developed flow and Heisenberg

factor. So, one such correlation looks like this it is a function of x non dimensional x

which is your x by d by r e. So, if you simply substitute your non dimensional x, you get

your  value  of  non  dimensional  pressure  drop.  So,  here  already  the  effect  of  the

Heisenberg  factor  is  implicitly  there.  So,  these  are  all  empirical  correlations  from

different  experiments  right.  So,  and these  are  applicable  equally  for  both macro  and

micro  channels,  does not  matter  only that  the effect  of  developing length since they

become more significant at for micro channels.

(Refer Slide Time: 30:38)

So,  this  has  to  be  rigorously  followed.  So,  if  you  plat  this  apparent  that  you  are

calculating here based on your f and Heisenberg factor and you plat it as a function of the

local x plus, may be something of this particular form. So, you find that for values of. So,



the  x goes  from the  right  to  left  here the smallest  value  is  on the right  and then it

increases  towards  the left.  So,  in the  developing region,  so,  that  is  in  this  particular

region this is where you find there is a lot of difference between the different aspect

ratios. So, for different aspect ratios your value of k will become quite different and in

the developing region is where this parameter will become important compare to this

particular factor.

So,  therefore,  effect  of  the  aspect  ratios  becomes  more significant  in  the  developing

region, but after you go deeper. So, for values of x is greater than larger than your l d

developing length. So, the effect of the Heisenberg factor becomes smaller and smaller

and your fully developed friction factor becomes the most important contributor, and all

this different aspect ratios will collapse in to a single line. So, this is how the plots look.

(Refer Slide Time: 32:03)

So, similarly, all these discussion we had for laminar flows. So, what happens, when

flow becomes turbulent, and in that case how these correlations become different? So,

for the generic case for turbulent flows, one of these often used correlation is developed

given by Blasius which is given like this, f is equal to 0.0791 Re power minus 0.25. So,

this is the simplest correlation for estimating the friction factor.

Now, there has been modification  for  the case where you have both developing and

developed regions. So, there is one person Phillips who developed an expression for the

turbulent  flows  where  you  have  both  the  developing  and  developed  region  to  be



accounted. So, in that case, he has modified the correlation. So, that the f apparent can be

directly calculated as a function of r e, so, this r e is any where fixed, but the parameters

which has changing on the values a and b. So, these, a and b parameters or functions of

the non dimensional position. So, based on the non dimensional position x by d you can

substitute into this expression, this is again another empirical correlation developed by

Phillips you can get the value directly for the f apparent. So, here you do not have to

worry about adding separately the Heisenberg factor.

So, again for a case of rectangle geometrics, you know you can use slightly modified

definition of Reynolds number. So, you can just plug it directly into this expression a get

the  apparent  friction  factor.  So,  over  all  you  know  the  discussion  is  that  whatever

correlations have been developed for macro channels. So, far is now used as it is for

micro channel only thing that we give more importance to the developing region right.

(Refer Slide Time: 34:30)

So,  whether  it  is  laminar  or  turbulent  does  not  matter.  So,  now, what  are  the  other

additional effects which become significant for liquid flows in micro channel? So, now,

that we know that within the channel itself you have to account for the developing region

and we have therefore, use the appropriate correlations depending on whether they are

laminar or a turbulent and not only that most of this micro channels are fade by means of

manifold. So, you do not usually have just to single micro channel, but several time s you

have a parallel system of micro channels, these are small diameter channel.



So, therefore, in order to cover a particular surface you want to use many numbers of this

channel.  It  could be 5, 10, 20, and 100. So, could be several  of these channels start

parallelly, and in that case you have to have a feeder mechanism, which supplies the

liquid to all these channels and at the end of the channels they collect the liquid and then

take them out. So, these are this can be refer to as the manifolds inlet and outlet manifold

are  inlet  and  outlet  plenum.  So,  this  is  similar  to  any  heat  exchanger  in  any  heat

exchanger you supply the liquid through a manifold distributed to. So, any tubs of the

heat exchanger and then collect it in an outlet manifold and take them out.

So, in this particular case, as it is illustrated you can see that if you measure the pressure

drop between the inlet and outlet manifold. Now this is how your pressure tapings are

and you connect  it  to  a  differential  pressure  transmitter,  and you try to  measure the

pressure drop. So, this gives you the overall pressure drop of the micro channel. So, you

do not exactly put a pressure trapping here, and here you want to measure the overall

pressure drop from the  inlet  of  the manifold  to  the  exit  manifold,  plus  the pumping

power required is to overcome this over all pressure drops. So, in this case apart from the

developing region and frictional losses you also have two other losses which are coming

into picture one is the entrance losses the other is your exit losses. So, in the entrance you

also see that the flow has to turn 90 degrees.

So, you also have additionally bend losses. So, therefore, three other factors contribute to

the overall pressure drop if you take from here to here. So, the other the other two apart

from the developing and frictional losses are entrance exit losses and you also have the

bend losses, and if you want to see a complete value of pressure drop that is from the

inlet of the plenum to the exit of the outlet manifold. So, then you also have to include

the pressure drop right across the inlet plenum and also the outlet plenum. So, those also

are not very small values, because usually the length of this plenums are also usually

large correct because you are supplying flow it to. So, many of these micro channels, so,

depending on the number of micro channels the length of the inlet and outlet plenum also

can be significantly large and therefore, these pressure losses within the plenum also will

become important.

So, therefore, in the case of micro channel all the. So, called negligible pressure losses

which  you  consider  for  a  macro  channel  will  become  more  significant  such  as  the

entrance losses, exit losses, bend losses.
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And the pressure losses through the manifolds all of this will become important, and

therefore, when you calculate your pressure drop we have to account for every small

value  which  you might  other  vise  neglect.  So,  therefore,  apart  from your  4  times  f

apparent l by d, this is within the channel you also have bend losses which is given by

this particular parameter call the loss coefficient due to bend. So, this case, your loss

coefficient and similarly you have loss coefficient due to constriction and expansion. So,

that is at the inlet you have a constriction. So, there is a small vena contractor which is

forming.  So, there are  constriction  losses  there and are again when it  is  exiting  you

having a sudden expansion. So, there is also expansion loss, so, apart from therefore, this

particular  term you also  have  to  account  for  the  loss  coefficient  due  to  constriction

expansion and the bend losses.
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So, therefore, the expression for pressure drop becomes more complicated now with all

these effects and you can also substitute for f apparent in terms of the Heisenberg factor,

and you will therefore, get at least 1 2 3 4 5 terms totally right.

So, this is the expression that is generally used to estimate the pressure drop between the

inlet and the outlet of a micro channel. So, this till does not account for the pressure loss

in the manifold. So, this is as the figure shows only the pressure tapping here and here, if

you are putting one pressure taping here and one, one here and one here then that should

account for the pressure losses in the manifold.
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So, therefore,  now if you look at  the other important effect at micro scale. As I said

roughness becomes a very significant parameter. So, therefore, if you take a microscope

put the surface of this particular duct and then you see how the roughness looks. So, you

will be looking at these are the micro structures of the roughness. So, therefore, just for

the sake of investigation you know Satish Kandlikar, has classified several parameters

for including this roughness effect. So, one is that he has defined as called as a floor that

is like a base from which all these roughness element seem to be procuring. So, that is

like a, you know foundation for the roughness. So, this is called the floor profile and then



he estimates  the average height  of  this  roughness  and he draws another  set  of these

dashed lines here. So, this is called the mean roughness height right. So, therefore, one of

the important parameter that he characterizes is what is called the average maximum

profile peak height. So, that is you measure from this mean profile what is the distance

from the maximum point of each roughness element to that mean and then you take the

average of all these values.

So, for example, you have for the first roughness element R p 1, second one R p 2, R p 3

and. So, on and you take a simple arithmetic  average that will  give you what is  the

average  maximum  profile  peak  height  R  pm.  So,  this  is  the  maximum  value  of

roughness, and you have to again since there is a variation between different roughness

elements you have to average them and that give you an average value. So, this is one

important parameter, the other important parameter is the pitch between the roughness.

So,  again  if  you  take  two  roughness  element  the  first  to  roughness  elements  the

separation distances S m 1, similarly you have an S m 2, S m 3 and so on, you can take

again an average arithmetic average and you have a mean spacing of profile irregularity.

So, this is called as an RS m this is again an arithmetic average of the individual pitches.
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So, therefore, the equivalent roughness will be what if you are measuring right from the

floor. So, this distance of the mean profile from the floor is given by the distance f p, and

you have a average maximum profile peak height R pm and therefore, you can calculated



what is the equivalent roughness as the summation of F p and R pm. Therefore, for any

surface you can defined what is f p, what is R pm, you can calculate and therefore, from

which you can estimate what is the equivalent roughness because you cannot be choosy

about going into the roughness equivalent roughness for each and every element you

have to only define it for the average, that is why we calculate the average for r p. And

we know that F p is anyway more or less a constant, because we take a base line for the

floor right and we just  take the summation of R pm and F p and that gives you the

equivalent roughness, and this equivalent roughness is what is used in many correlations

where the friction factor or nusselt number gets modified.
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So, now one of the simples models that Kandlikar proposed. So, any real channel, the

previous discussion is all for completely smooth channels, where you do not have any

difference in adopting the a friction factor nusselt number from macro to micro channel,

but now any real channel that you take will have this value of equivalent roughness and

therefore, how do you see this effect now friction factor will definitely go up.

So, it is seeing a higher value of roughness the pressure losses will be more, so, how this

is  to be accounted  for into the existing correlation.  So, Kandlikar  proposed the very

simple model for this. So, this is called the constricted flow model. So, all he assumes is

that, since you have calculated the equivalent roughnesses you can assume the diameter

of the channel is now come down by this much length or this much dimensions. So, that



is equivalent to 2 times epsilon. So, your actual diameter now or your constricted flow

diameter  is  equal  to  your  original  diameter  minus  two  times  epsilon.  So,  the  flow

actually now sees a constricted dimension rather than the original dimension. 

So,  if  you  propose  a  correction  for  the  constricted  diameter  and  still  retain  all  the

expression for friction factor and. So, on the same expression only replace your Reynolds

number in the original, case you have your d you replace now with d c f. So, then it

seems to be working quite good. So, if you for example, modify the Moodys chart the

original Moodys chart was based on with the actual diameter d you modified based on

the constrictive flow diameter and you get a set of curves, and apparently if are all the

micro channels they seem to be matching very well with this modified Moodys chart.

So, a very simple model, but never the less very effective and accurate, so, all we have to

only consider now is the constricted diameter. So, therefore, accordingly your definition

of  Reynolds  number  gets  modified  based on the  constricted  diameter  and again  the

velocity also gets modified correct.
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So, originally the velocity was seeing a larger cross sectional area, now you have to

calculate the constricted flow area which will be smaller therefore, the velocity will now

go up right. So, the definition of Reynolds number will be now based on the velocity

based on the constricted flow, and also the diameter  also will  b the constricted flow

diameter, and based on this you still use the same friction factor which is dependent on



the Poiseuille number. So, that remains the same only the values of u m and d h will

become different and therefore, your pressure drop will become different, so, in the case,

of  micro  channels  with  the  roughness  effects.  So,  a  pressure  drop  gets  modify  by

replacing your velocity and your conventional velocity and diameter with the constricted

flow diameter and the constricted velocity. So, the other things still keep remaining the

same all right. 

So, we will stop here I think tomorrow we will talk a little bit more about this effect of

constricted  flows  model  and so  on.  So,  I  think  we should  be  able  to  complete  this

chapter.

Thank you.


