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Very good morning, today we will start new topic. So far, the last 30 lectures or so, we

focused only on the Nanoscale transport of energy and now in the remaining part, portion

of about 12 lectures, we will look at Microscale transport. Now I mean, as we discussed

in the very beginning, the introductory class you know Microscale phenomena is not so

very different from the micro scale and you have to be careful with what kind of fluids

you are dealing with. Accordingly the Microscale phenomena can become complicated.

If you are probably talking about gases, these are once which are usually rarefied when

you confined the distance between the channels and so on and in this case, the Knudsen

numbers  can  go  quite  high,  sometimes  if  the  order  of  1  and  therefore,  the  use  of

continuum transport can be questioned, but in other cases where liquids are used, even in

Microchannels. There is no problem using the continuum equation.

In that case, it  is not different from the Microscale, but you observe several physical

interesting  phenomena  happening in  the  Microscale  regime,  which  is  probably  more

relevant  than,  when  you  observe  this  in  the  macroscale.  These  kinds  of  interesting

phenomena are what we are trying to bring out, when we study the Microscale energy

transport.

The first part of this Microscale transport will be focused on gas flows because you know

if at all you want to say anything about deviation from continuum in Microscale, I think

it is for primarily gases and therefore, this is the first thing that we will deal with and

mean as the titles says, you know you have gas and this is the single phase system and

you are also looking about not just a simple gas flow, because simple gas flow could be

anything from a continuum, all the way up to sub continuum, but we are particularly

concerned about gas flows and Microchannels. This is where the Microscale transport of

energy can be studied.



(Refer Slide Time: 03:09)

Now  coming  to  why,  first  of  all  we  need  to  look  at  you  know  Microchannels.

Microchannels  are  increasingly  becoming  popular  devices  for  effective  cooling

applications, especially if you talk about electronic cooling. In such a case you know

what is different about Microchannels compared to Microchannels you know. If you look

at the fully developed flow through tubes and you also assume the boundary condition to

be a uniform surface temperature. The Nusselt number is a constant in the laminar flow

regime for the case of a uniform surface temperature. It is 3.66 whereas, for uniform heat

flux, it is 4.66.

Therefore, you have a fixed value of Nusselt number, especially in the laminar regime.

Now the question is, now what is the effect of heat transfer coefficient? What happens,

when you reduce the channel  diameter?  And what  is  it  is  effect on the heat  transfer

coefficient?

From this expression, it is clear that even if Nusselt number is remaining a constant, as

you reduce your channel diameter, heat transfer coefficient is going up. It is inversely

proportional to the channel diameter.

For example, if you want to get an idea, if you plot the heat transfer coefficient as a

function of the hydraulic diameter and you know if you go from the right towards the left

that is from a large Macrochannel, which is a say 10 10000 micrometer, to the case of 10

micrometers. This is plotted on a large scale and you plot the corresponding values of



heat transfer coefficient on the Y axis for 2 different fluids. 1 for air the other for water;

obviously, you know for water which is having a higher value of thermal conductivity. 

Although the Nusselt number is the same for both the fluids, you are talking about you

know higher thermal conductivity for water compared to air and therefore, water 10d to

have a higher heat transfer coefficients, but not only that as for both of both these fluids

as we reduce the size of the channel, from your Microchannel, Microchannel all the way

to Microchannel of the size of 10 microns.

You see that the heat transfer coefficient has also gone up 3 orders of magnitude, from 10

all the way to 10000. This is an inversely proportional proportionality that you observe

here is what is plotted here. This is very good because you know it is a D power minus 1

dependence, which is which means that if you reduce your channel 10 times, you are

going to find an increase an h by factor of 10.

This is very advantages especially when you are looking at a cooling system such as the

electronic cooling, where you have to focus on very small surface areas and you have to

at the same time dissipate large amounts of heat. Although the surface areas are very

small, the amount of heat that has to be dissipated or the heat flux that has to be removed

is very large and you know. The heat flux if you want to remove such large amounts of

heat  flux  and  maintain  this  component  at  a  fixed  temperature,  your  heat  transfer

coefficient has to be very high. That is how the convection cooling can be affective.

Herefore, from this simple analysis we can conclude that your, you know Microchannel

is way more efficient in removing overall heat transfer rate, compared to conventional

Microchannels and at the same time you also have a penalty to pay in terms of pressure

drop. It is not only that you know the heat transfer coefficient is going up simply for free.

At the same time you have to put in more pumping power to pump the same amount of

liquid to maintain the same Reynolds number for example.  That is again the relation

between for a fixed value of friction factor.

If you do the calculation, again you have a problem where if you reduce the amount of

the size of the channel, your pressure drop will keep going up. That is again delta P

which is inversely proportional to the diameter. Therefore, you on 1 hand it is good from

the heat transfer point of view, but from the fluid dynamics point of view, it means it is a

requiring additional pressure drop to pump the, to maintain the same Reynolds number at



the inlet. This is again a big penalty now as you can see on the plot for pressure drop as

you reduce  the  channel  diameter  by  3  orders  of  magnitude,  you have  you know an

increase by not just 3 orders, but about 7 orders of magnitude.

This is the pressure gradient Pascal per meter;  you know this is the kind of pressure

penalty that you have to pay. That is why this becomes a very interesting problem, if you

want  to optimize  by moderately increasing the Nesselt  number, keeping the pressure

penalty increase to a minimum. We cannot directly jump from this to this and claim that

this is very effective from hydrodynamic point of view, because your pressure drop is

going several orders of magnitude higher than that of the heat transfer coefficient.

(Refer Slide Time: 09:36)

But nevertheless, I think when you are dealing with small devices and you have to cool

them, innovatively you have to use Microchannels and therefore, you have to deal with

this counter intuitive problem. Now, again just revisiting, when we talk about gas flows

in Microchannels, we need to understand the basic definition of continuum, I think we

have already done this. I will just quickly run over this. When we talk about therefore,

properties,  these are  associated  with the continuum such as  the pressure temperature

density  therefore;  these are  the macroscopic  manifestations  of the molecular  activity.

These  are  valid  only  when you have  a  continuum with  sufficiently  large  number  of

molecules to contribute to these averaged quantities that are defined above and once you

are talking about you know the large mean free path, these continuum assumptions will



break down. Therefore, you have to find validity of the continuum assumption. To in

order to do that, we define the Nusselt number based on 2 characteristic dimensions, 1 is

the mean free path, the other is the length scale of the domain, and mean free path you

already know by now this is the average distance travelled by the molecules between 2

subsequent collisions.

(Refer Slide Time: 11:14)
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And we have also under kinetic theory, we have seen how to derive the expression for

the mean free path, very simple simplistic method tells you that if you how do I go back



with this? Now this is interesting, does it go back like this? Yeah, it goes, yes. I think this

works.

Mean free path, that what we have derived is 1 over pi 1 N D square and in order to also

correct for the relative velocity between the molecules, we when we derive the mean free

path we assume that 2 molecules are already in contact and now we are talking about the

distance travelled to collide with the third molecules.  That is the distance between 2

successive collisions. Already you have 1 collision, following that you want to see what

is the distance travelled by this effective molecule and collides with the third molecule

and that is how you get this. Now, but in that assumption, we are assuming the third

molecule  is  fixed  and  it  is  static,  but  in  reality  this  is  moving  with  a  Maxwellian

distribution. In order to current correct for that we have a reduction in the, or correction

factor that has to be introduced, which is a 1 over square root of 2.

From this definition, we also saw that both your temperatures and pressures are related to

the kinetic energy of the molecule. This is a very very important fact, what we call as

pressure and temperature at the continuum scale or nothing but the microscopic manager,

the macroscopic manifestations of microscopic kinetic energies and also we therefore,

get an expression for the mean free path by substituting for from the ideal gas equation

of state. We can substitute for the number density of molecules and write that in terms of

pressure and temperature.

Therefore, we have we know that at a given pressure and temperature and for a given

kind of gas molecule, we know what will be the mean free path. This calculation we have

already done.
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Now again you can also define the Knudsen number by using this mean free path that we

have  derived,  takes  this  expression.  You  can  also  non-dimensionalize  all  of  these

parameters  here  and  if  you do that,  you will  find  that  there  are  2  non dimensional

numbers, which are coming in the definition of Knudsen numbers. This is simply turning

out to be the ratio of Mach number 2 Reynolds number. Depending on the characteristic

speed you know if you are talking about you know mean molecular speed, this is given

by square root of 3 R T and you can define Knudsen number in terms of therefore, the

non-dimensional  numbers Mach number and Reynolds number and you can also for,

when you are solving any problem with a non-dimensional group of numbers, you can

use this expression rather than writing this in terms of dimensional quantities such as

pressure and temperature.
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We  have  already  looked  at  different  regimes  of  fluid  flow,  where  continuum

approximation  is  valid  and where you have  to  go to  sub continuum,  typically  when

Knudsen number is much smaller than you know point 1. That is we are talking about

point 0 0 1 and lesser than that. This is your real continuum flow and in this regime you

have a validity of thermodynamic equilibrium, all your equilibrium that you are talking

about and there is no problem, there is a perfect you know no slip condition for velocity

and  temperature  at  the  boundaries  and  you  solve  your  conventional  Navier  stokes

equations.

Now when you talk about moderate Knudsen numbers between point 1 and point 0 0

one, here also to some extent, you can use continuum, there is no problem all this is with

respect to gas flows. Mostly with gas flows you can reach up to you know Knudsen

number of 1 10, but with liquid flows you hardly cross the second regime. When you are

talking  about  continuum  assumption  that  is  valid;  however,  the  concept  of  local

equilibrium will not be satisfied everywhere. Especially close to the walls. This is where

the scattering of these molecules with the boundaries happen and if you look at them,

even Knudsen numbers of the order of 0.1. The scattering between the gas molecules will

become more rarefied compared to the boundary scattering and therefore, locally near

the boundaries, there will be non-equilibrium. Therefore, the thermodynamic equilibrium

concept will not be valid throughout the fluid domain.



Now, this can be accounted for, at the walls by bringing into water called a slip effects.

There are 2 kinds of slip, 1 for the momentum and the other for energy. We will see that

in the next few slides, how the slip boundary conditions are coming up, but you still

solve your Navier stokes equations in the broad sense, but instead of giving a no slip

boundary condition, you account for the local non equilibrium at the walls, by means of

the slip boundary condition. The slip is only our model, I mean in the real experiment I

mean if you go to the microscopic picture; it is basically a local non equilibrium. This

local non equilibrium cannot be simply accounted for in the continuum equations. It is

difficult to patch the you know the transition from the local non equilibrium near the wall

to an continuum away from the wall.

It  is  difficult  to  pass,  that  is  why, people  resort  to  using  this  kind  of  slip  boundary

condition models which can account for you know in some arbitrary manner, with some

kind of empirical constants. You just model this non equilibrium by another continuum

approach, but with some empirical constant which might contain some information, but

this is not a very rigorous method. Therefore, what happens if you continue increasing

Knudsen numbers? Even your continuum assumption, you know in the global scale will

completely fail. Even when you are talking about regions which are away from the wall,

you cannot use continuum approach and again we also have problems with the near wall

conditions as well, but overall you cannot use your Navier stokes and energy equation.

(Refer Slide Time: 19:31)



In this case, we have to use, what we call as no Burnett equations. These are coming

from expanding or  the  Boltzmann  transport  equations  to  several  terms  and retaining

some  of  the  lower  order  terms.  The  lowest  order  term  will  be  the  Euler  equation,

followed  by  Navier  stokes,  and  then  the  relatively  higher  order  term  will  contain

information, more information about higher Knudsen numbers. This kind of equation is

called the Burnett equation and this can be used for the transition flows. This is a, I mean

regime where definitely your Navier stokes equation will not be applicable right away

and with gases, it is quite likely that you can, many applications also in rarified gas flows

you can reach this particular regime.

Now, for Knudsen numbers crossing 10 you know, in that case you are now looking

completely into the molecular picture.  You have very few gas molecules and it is all

mostly gas molecular  collision,  center molecular  collisions and this will  also be very

negligible compared to the collision between the gas molecule and the wall and then how

do we analyze this? Even the Burnett equations cannot be applicable here, and then we

have  to  resort  to  something  like  the  Boltzmann  transport  equation  again.  Real  sub

continuum  pictures  Boltzmann’s  have  transport  equation  and  there  is  the  simplest

assumption is a relaxation time assumption.

In the rarefied gas dynamics are there for the B T with the relaxation time approximation

is used when you are in this particular regime, Knudsen number greater than 10.
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Therefore, I mean just a very important parameter again is the Knudsen number. Based

on the value of Knudsen number, you can actually go anywhere from continuum flow all

the way to free molecular flow and you have to know, since we are for you know gases

we still use the continuum approximation from here till  the slip flow, we have to be

careful, what happens when we go slightly beyond you know point 1?

There is a very thin separation between these regimes. Sometimes people also use the

slip flow regime models for Knudsen numbers of 0.3 or 0.5, but these are not very very

clear. What is the limit of the validity of the continuum models?

(Refer Slide Time: 22:33)

Yeah. This is again I think I showed this figure in the very beginning in the introduction,

just  to show their  different  kinds of micro systems and the corresponding the length

scales and what is the Knudsen number range that you can encounter in them. It is not

just simply anything which is small will have a Knudsen number; you know it depends

on the working fluid. We have therefore, 2 parameters, 1 is the mean free path, and the

other is the length scale. This is therefore important, what is the kind of application you

are looking at. In terms of Knudsen number, we have all these you know, horizontal lines

here, which classifies the transition from 1 regime to the other. The bottom most is your

small  Knudsen  number  regime,  which  is  continuum  and  the  top  most  is  your  free

molecular flow.



Now, if you move all the way from a larger length scale, which is of the order of say 100

microns  because  100  microns  now  could  be  mostly  you  know  towards  very  small

Knudsen numbers and as you are going towards the Nanometers you are talking about 10

power minus 2 microns and smaller than that. These are the order of few Nanometers. In

that case you are definitely going to be dealing with large Knudsen numbers.

In general as you move from the right towards the left, most of your applications will

have will see an increasing value of Knudsen number.

Therefore, this move like a straight line, in the straight line you are transitioning your

flow regimes as you move from the right towards the left. If you are talking about hard

disk drives for example, these are 1 case where you have very large Knudsen numbers

because the separation between the disks will be less than a micron and at the same time

you are talking about gas flows, air which is an air gap between the disks. Therefore, you

are talking about Knudsen numbers of the order of 1 and above. This is in a transitional

flow. If you are looking at an application involving analyzing the, you know air gap

between the hard disk drive. This clearly cannot be solved with the continuum equations.

In this case, your Navier stokes equations will fail to predict, whatever phenomena is

happening you have to at least resort to the Burnett equations with the slip boundary

conditions. Whereas, if you are talking about micro channels with gas flows, it again

depends, what is the fluid? If you use these Microchannels with gas flows, then you are

talking about slip flow regime. You are in the micron length scale. Therefore, you can

still  use  your  continuum equations,  but  only account  for  the correction  of  local  non

equilibrium  at  the  wall.  Whereas,  if  you  are  talking  about  liquid  flows  this  will

completely  come  down  to  the  continuum  regime.  You  just  solve  your  continuum

equation with your normal no slip boundary conditions and this will predict a perfectly

well, no problem.

Therefore,  when people  talk  about  Microchannels,  you should  not  get  carried  away.

There is nothing fancy in that, if you are talking about most of the Microchannels use

liquids, because as you saw the heat transfer coefficient is higher for liquids compared to

gases and therefore, practical cooling applications liquid is generally preferred and in

such a case that  is  nothing to  worry about  in terms of  modeling,  perfect  continuum

assumptions can be used. If you also involve other applications such as micro nozzles



and so on, they might fall in the transition or the slip flow regime you know. These are

the pro, these are the gray areas, where it is not clear whether you have to go to the

Burnett equations or use a continuum equation. They are somewhere you know present

in that regime, where it is difficult to classify what kind of model has to be employed.

(Refer Slide Time: 27:21)

Now again, I mean we saw that the Knudsen number is nothing but a function of your

Mach number to the ratio of Mach number to Reynolds number. We can again classify all

these regimes rather than looking at only Knudsen number, we can plot Mach number on

1 axis and Reynolds numbers on the other and we can also classify these regimes and not

only that it also depends on what kind of equations you want to solve.

The Navier stokes equations can be a compressible or incompressible. We did not discuss

about that. That can be analyzed when you also plot the Mach number and then decide

now where you are standing. Therefore, now what is interesting here as you suppose you

know you are in the laminar regime, you know we are talking about Reynolds numbers

which are less than a 1000, and most of these Microchannels since you have very small

diameters, mostly you will not cross the laminar regime, 99 percent of the cases.

Even when you are talking about very high velocities as you can see here, the Mach

number could cross you know sometimes even 0.31 and so on, but the corresponding

value of the Reynolds number will be always less than a 1000. These are very small

diameter tubes. In terms of Reynolds number you are doing good. You do not have the



problem of analyzing a turbulent flow. It is a simple laminar flow regime, but you have

to be careful what kind of equations you are solving. For example, if you look at high

Knudsen numbers. There is no problem if you are talking about Knudsen numbers less

than 0.01. In such a case you know even if you are talking about a Reynolds number of

you know close to a 1000, you are mostly in the incompressibility regime.

If you just draw a vertical line from here and a horizontal line towards the Y axis, we will

find  your  Mach numbers  are  reasonably  smaller  enough  to  make  an  incompressible

assumption,  but  whereas,  if  you  increase  your  Knudsen  number,  even  if  you  go  to

Knudsen number of point 1 if you are in the slip flow and you are operating at Reynolds

number of say 100. And if you just draw a vertical line and then a horizontal the Mach

number 10 Ds to be above 1 which means that you have a supersonic flow happening in

the channel Microchannel. This is this means that although you are in a laminar flow

regime, now you will see all these compressible phenomena happening.

The exit  Mach number can go up depending on the Knudsen number, the higher the

Knudsen  numbers,  this  value  will  go  up  even  for  smaller  Reynolds  numbers.  For

example, if you go to Knudsen number of 10, you are going into the compressible regime

for as small Reynolds number as how much? 10 power 5 into 10 power minus 2. That is

like you know very very small Reynolds numbers. It might appear to you that this is

hardly anything, but the velocities are very high now you are talking about velocities,

which are greater than how much, at least 120 meters per second. So, that is your Mach

number of 0.3.

You are at least talking about that much velocity, when you are dealing with Knudsen

number of 10. You have to be very careful although Knudsen number of 10 is not a very

common application even with gases I mean because if you just go back I mean, 1 of the

common application is the hard disk drive. You are talking about Knudsen number of

around 1, you are still  not gone into the Knudsen number of 10. Even if you look at

Knudsen number of 1, which will be somewhere here, it may not be Reynolds number of

10 power minus 2, but somewhere around 10 power minus 1. Even for that Reynolds

number, you might end up with compressible flow. You have to be therefore careful with

gas  flows  that  mostly  you  will  be  dealing  with  compressible  flows,  even  for  small

Reynolds numbers if your Knudsen number is greater than 0.1.



As long as you are you know less than 0.01, there is no problem, but if you are even in

the slip flow regime, there is quite a likelihood, if you are operating of the order of even

Reynolds number of 1, you see that if you look at Reynolds number of 1 and above. That

can go into the compressible flow regime.

Therefore, most of the models to continuum models for the gas flows in Microchannels,

are solved with the compressible form of Navier stokes equation.

(Refer Slide Time: 33:17)

Let us just summarize therefore, what would you do, if you had a Microchannel versus

Microchannel gas flow? In the case of Macrochannel gas flow, we know generally, what

we will do is we check the Mach numberand and if you are usually in the laminar flow

regime that is less than 2300 is the Reynolds number and you correspondingly look at

what is the Mach number. Usually it will be less than 0.3 and more likely that you will

use only incompressible models in the case of Macrochannel, very rarely it will simply

exceed  0.3  and  in  the  laminar  regime,  it  is  very  unlikely  whereas,  if  you  look  at

Microchannels, most of the times even for very small Reynolds numbers, you are in the

compressible flow regime.
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And  therefore,  not  only  rarefaction  effects,  rarefaction  is  the  high  Knudsen  number

effect, but also compressibility effects will also be become important. Therefore, what

are the kinds of equations that we can use to describe the gas flows? As you go from

Knudsen number, which is almost 0 to very high Knudsen numbers and Knudsen number

of 0 by the way exactly  0 although it  is  continuum, but it  indicates  that  there is  no

viscosity also, it means 2 things. We are talking about either a very large domain l going

is infinity, which is not usually possible or mean free path going to 0 is also not possible,,

but in terms of viscosity, you know the viscosity is 0.0.

That means, it is completely described by in viscid theory or Euler equations and then

you talk about your finite Knudsen numbers, it could be 0.000001, but nevertheless; that

means, it is a having a finite viscosity. Viscosity effects are important and it is continuum

and therefore, you solve the Navier stokes equation with no slip boundary condition and

then  slowly  in  the  slip  flow,  you  start  encountering  the  slip  flow  regime  between

Knudsen number 10 power minus 3 to 10 power minus 1, where you use your Navier

stokes equation with what we call as the first order slip. There are different slip boundary

conditions depending on again the Knudsen number. 

People have tried to still use the Navier stokes equations to as much higher Knudsen

number as possible, only modifying the order of the slip at the wall. They were desperate

to hang on to it, although it is not required. If you are still going above 0.1, people have



developed  what  is  called  a  second order  slip  boundary  condition.  They still  use the

Navier  stokes  equation primarily  outside  and near  the wall  at  the wall,  they use the

second order slip, but you need not do that. 

There are problems there with the numerical solution with the second order slip. You can

as well directly solve the Burnett equations with a slip bond with the first order slip

boundary condition and even if you go to smaller no length scales Knudsen numbers of

the order no 10 and above you have to go to Boltzmann transport equation.

These are the different levels or different kinds of models that you will be encountering

as you go towards higher and higher Knudsen numbers.

(Refer Slide Time: 37:13)

What  are  the  basically  distinguishing  factors  again?  We  have  very  important

compressibility effects from the heat transfer point of view; we also have what are called

as viscous dissipation effects because you know if you look at heat transfer course. If you

are talking about the viscous dissipation, viscous dissipation is governed by the ratio of

Eckert number to Reynolds number.

Eckert number is U square U square term; that means, as the velocities are becoming

higher, the Eckert number will be larger and when you are talking about compressible

flows the viscous dissipation also becomes very important.  Therefore,  along with the

viscous dissipation, along with the compressibility effects for the heat transfer point of



view, the viscous dissipation becomes important. This will tell you how the work the

forces which contribute to the work are finally, dissipated as heat in the fluid.

This becomes important, if you have either a very highly viscous fluid or a compressible

fluid and of course, you also are dealing with the rarefaction, low pressures in the case of

Knudsen  number  flows  and  you  can  also  have  problems  because  of  temperature

dependent properties, if you have large temperature gradients, for example, because large

temperature gradients indicate higher local non equilibrium. You can also have variation

of  properties  with  temperature  and  at  the  walls  you  have  problem  is  the  boundary

conditions, you have to resort to using the slip velocity and for temperature also you

need a slip boundary condition and there is also something called as thermal creep or

thermal transpiration in which the gas molecules go from you know 1 end to the other

due to a temperature gradient.

This also has to be accounted for in the slip boundary condition you know that, this is a

correction factor that we usually employ at high Knudsen numbers. Again dominant role

of surface forces,  if  you neglecting any surface force of the macro scale  they might

become very important at high Knudsen numbers.

You  have  to  be  doubly  careful  before  you  ignore  any  surface  force  whereas,  the

volumetric forces like gravity and all my might not be so important here. These are the

different complexities.
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When you go to the Microchannel gas flows and again you know this ratio of surface

area to volume and we have done this  simple problem also.  If  you are reducing the

dimension, what happens to this ratio?

(Refer Slide Time: 40:19)

Therefore, the overall governing equations is if you are looking at the Knudsen number

range up to 0.1, we use the continuum approximation and we solve the compressible

Navier stokes equation. The compressible Navier stokes equation which is written in a

coordinate  free  representation.  You  have  the  continuity  equation;  you  have  the

momentum and energy equation. In the momentum equation, you are having this term

which is  2 by 3 del  dot U. For the incompressible  flows that will  be 0.  That  is  the

additional  term coming in the momentum equation due to compressibility  and in the

energy equation; you have this term here to by 3 del dot U. For the in compressible flows

that will be 0 and that is the additional term coming in the momentum equation due to

compressibility and in energy equation, you have this term here 2 by 3 del dot U and

apart from that, you also have the pressure work this is your del dot P U.

If you are solving for energy, therefore, in the incompressible regime, you do not have

this pressure work term del dot P U, will become 0 and also this term will become 0.

This  is  your  heat  conduction  term,  this  is  your  advection  term,  this  is  your  energy

transfer due to work discuss work. Therefore, your stresses and pressure will contribute

to work which will therefore, affect the internal energy. These are your contribution of



these stresses or viscosity to the work and this is your pressure work term, this is your

energy heat conduction and there could be some external body force, which can also do

work on the system and they can change the energy of the system.

(Refer Slide Time: 42:32)

Therefore,  this  is  the  juries  are  the  generic  Navier  stokes  question  that  you will  be

solving for gas flows in micro channel.  Therefore,  in the case of continuum you just

simply apply the no slip boundary condition.

(Refer Slide Time: 42:45)



But you know now as we are going towards larger and larger Knudsen numbers, we will

see that particularly there is a region near the wall in which the gas molecules are out of

equilibrium with the wall itself. We have seen this in the Nanoscale very clearly. We have

a temperature jump at the wall. Similarly there is a velocity jump also and this becomes

significant for higher Knudsen number. What do we do? How do we then account for this

kind of sub continuum phenomena into a continuum picture?

This is done a little bit you know empirically. By introducing what is called as a wall slip

boundary condition.

(Refer Slide Time: 43:38)

There are 2 kinds of slip, if  you are talking about momentum transport,  that is your

velocity slip and how does it look? In your conventional flow between 2 parallel plates,

if you draw from the center line to 1 end you have a profile which is a parabolic profile

for example, but when you increase your Knudsen number, at say Knudsen number of

0.1, you will not see a profile which is becoming 0 at the wall, but it will look like it to

have a finite velocity. This is your velocity jump similar to the temperature jump that we

derived  in  the  Nanoscale  transport  and  temperature  jump  is  also  and;  obviously,  a

consequence of this. That is because at this particular region in this region, you do not

have equilibrium in momentum and energy between the gas molecules and the wall.

There are going to be hardly you know the mean free path is no the Knudsen numbers

are large, the mean free path is large and therefore, the gas molecules are likely to collide



with the wall,  more likely to call it  with the wall than themselves and therefore, you

know they travel with a certain information of momentum and energy and when they

encounter the wall they see that there is a jump. Therefore, they cannot adjust suddenly

to that and therefore, the jump remains. This jump is there as you can see here and what

happens to very very high Knudsen numbers? Finally, you see the jump becomes very

sharp. You have a velocity profile which is maybe a vertical line and then from there it

has to jump to 0 at the boundary, similarly with the temperature. The profiles therefore,

shift as you are looking at higher and higher Knudsen numbers from a more gradual

variation to a very sharp jump.

This is usually observed even with the Knudsen numbers of 0.1 and therefore, you know

although this is a completely molecular phenomena, it is very difficult to understand how

to incorporate this in a continuum framework. See 1 of the earlier  earliest  models to

incorporate this into continuum came from Kundt and Warbury, 18750.

(Refer Slide Time: 46:15)

They just suggested that you know this slip, it appears that is an apparent slip length; that

means, if you join this profile velocity profile at the wall and you continue and extended

to inside the solid it will become equal to 0 somewhere at a depth of zeta from the no

edge of the wall. This value of zeta is called the slip length. It is some kinds of virtual

origin. We can say from which the velocity profiles start you know from value of 0 and



then they continue to increase. In the case of small very small Knudsen numbers less

than 0.001, this slip length will be approaching 0.

Therefore, directly the apparent origin will be directly from the wall. Now, for higher

Knudsen numbers this origin or virtual origin seems to shift into the wall because of the

slip effects and therefore, the slip length zeta seems to be a finite value and this increases

with your Knudsen number. How do we incorporate therefore, the slip effects, we just

give a value of slip velocity at the wall, which is the slip factor slip length times the

gradient of velocity at the wall. This is a kind of dimensional analysis. You know the

gradient at  the wall  gradient of velocity  you multiply it  by the slip length.  This will

become the units of velocity and therefore, this is an ad hoc you know a very simple ad

hoc manner to incorporate  the effects  of slip now this  coefficient  of slip is  going to

become an empirical parameter. We do not know how to exactly evaluate this.

Therefore, people do experiments for different fluid and solid combinations they observe

what  is  this  slip  length;  that  means,  they  measure  this  velocity  profile  and  they

extrapolate it and check where the virtual origin is and they obtain the value of the slip

length and that is used in the numerical model. There is no rigorous theory for obtaining

this,  but  there  are  some  empirical  ways  of  determining  the  slip  length.  People  for

example, Maxwell in 1879 have developed some expressions for inflating the slip length.

1 of the expression is that your slip.
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Slip  length  can  be  expressed  as  a  function  of  what  are  called  as  accommodation

coefficient. This accommodation coefficient is denoted by Sigma and your X that zeta is

equal to 2 minus sigma by sigma times Lambda where lambda is your mean free path

here. We are now bringing in and again another constant we are rewriting the slip length

in terms of the accommodation coefficient sigma. The question is how we then evaluate

the accommodation coefficient.

(Refer Slide Time: 49:50)

Maxwell tells that you know depending on what kind of interface or boundary that you

are dealing with, the value of the accommodation coefficient can be different.
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For example if you are talking about the specular reflection, that we discussed the last 2

classes, where you have a gas molecule coming in and reflecting with the same angle,

but in the opposite direction, then you have a value of these accommodation coefficients.

I think we have used different notation here. Let me just see I think we have used the

different notation.

This alpha here should be nothing, but sigma. I think we have just changed the notation

here. Please correct it. According to the case where your specular reflection is there, the

value of sigma will be equal to 0 for diffuse reflection, the value of sigma will be equal

to 1. Now, let us check if this makes sense when you put it yeah, when you put it to 1 for

example, for diffuse reflection. So, this becomes this Lambda times D U S by D A and

when it approaches 0, I think 0, Perfect effect 0 is not a practical case, but somewhat

smaller than this value will be increasing. This will be a very large value, but most of the

cases, where you are dealing for example, if you are talking about air, for this case the

value of the accommodation coefficient can be somewhere between 0.87 to 1. Usually

this is on the tending towards the diffuse reflection psi. In that case you know, it will be

just close to Lambda times D U S by D N, where Lambda is the mean free path.

This was the model given by Maxwell. What he says that you know I think we do not

have time will stop here, but yocu know, he looks at it in a very simplistic manner that

what is the cause of the non-equilibrium at the wall. It is basically reflection of these



molecules from the boundary and the way these molecules are reflected either they are

specular or diffuse will govern the kind of non-equilibrium. Therefore, he just proposes

the  accommodation  coefficient  to  define  what  is  the  deviation  of  the  values  of

momentum from the equilibrium values  just  like you have F non equilibrium and F

equilibrium? He just  defines  you know the values  of  momentum deviation  from the

Maxwell  Boltzmann  distribution  function.  Amount  of  being  the  more  the  amount  of

deviation, the higher is the non-equilibrium. We will just stop here.


