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(Refer Slide Time: 00:20)

I think some of you may might, still  not have completely gone through run over the

derivation  that  we  did  yesterday.  Let  me  quickly  summarize  once  again.  So,  the

important thing when we talk about Nanoscale Energy Transport is to first understand

you  know whether  you  have  a  transport  parallel  or  perpendicular  if  you consider  a

particular nano structure.



(Refer Slide Time: 00:46)

So, depending on that, so, you have to formulate the Boltzmann transport equation and

for the case of electron transport which contributes to current flow, so that is the example

I  have  considered  and  I  have  also  taken  case  of  transport  of  electrons  along  the  x

direction and the confinement of the film along the perpendicular direction. So, for such

a case we have written down the Boltzmann transport equation which is of this particular

form.



(Refer Slide Time: 01:36)

And what is important here is to find out the (Refer Time: 01:46) function g and its

variation with respect to y. So, this is what is going to result  in the size effects. So,

therefore, now we have an ordinary differential equation which we could solve and then

we could get a solution in terms of you know y and s naught of x right.

(Refer Slide Time: 02:06)



Where s naught of x for the case of electron charged transport is you know given by this

particular expression.

Now, after this point is now coming to the solution. So, we have 2 contributions to this

butter  patient  function or  any non equilibrium distribution function because this  non

equilibrium distribution function is  now going to  have a  directional  dependence.  So,

therefore, it is going to vary with theta even in case of 1 dimension. So, it will have a

variation with respect to the direction cosine cos theta.

In this case we have to split up the distribution function into 2 components 1 which is

going in the positive y direction the other going negative y. So, we have identified those

2 components. So, that we can apply the 2 boundary conditions at y equal to 0 and y

equal  to  d  and  find  out  the  constants.  So,  accordingly  we  determine  the  complete

solution.

(Refer Slide Time: 03:20)

So, this is what you get g plus and g minus. Once you get the distribution function. So,

all that is required now is to put this in the expression for the charge flux or the current

flux. So, therefore, in terms of F if you write. Basically, we know that F is equal to g plus

F equilibrium and then if you integrate F equilibrium over the solid angle it is going to be



0 because this uniform not varying around mean about the solid angle and integral cos

theta sine theta d theta will be 0.

So therefore, all we are having this we end up with an expression only in terms of g plus

and g minus. So, we have split the polar angle or you know from 0 to pi by two and pi by

2 and pi by 2 to  pi.  So,  we have written that  in terms of  the direction cosines.  So,

correspondingly minus 1 to 0, 0 to 1.

(Refer Slide Time: 04:26)

And then, in the expression for g no we already have this v tau mu. So, in the case of

negative direction cosines minus 1 to 0 we can write this basically as you know value of

mu  here  is  going  to  be  negative  and  we  can  replace  this  from  0  to  1  and  the

corresponding value of mu will take negative values. Whereas, if you look at the other

side it is going to be positive. So, that is how we have rewritten this in terms of mu and

replaced the limits from 0 to o1ne instead of minus 1 to 0 and then after this is simply

integration you know.



(Refer Slide Time: 05:12)

So, we do use all the rules of integration and finally, we write the terms on the left hand

side such a way that we have current flux divided by the electric field plus whatever the

electro chemical gradients.

So, this is equal to basically you electrical conductive right and on the right hand side we

have basically a more complex expression out of which we can identify this group of

terms here, which is a circled basically is nothing, but similar to your bulk electrical

conductivity and 1 more thing I just I forgot yesterday is that you know this is a flux

correct so; that means, if you are talking about transport between 2 plates if you are

talking  about  some point  you  are  evaluating  this  quantity. Similarly  if  you  want  to

calculate the total flow just like heat flux and heat flow.

So, you have current flux and current flow you have to integrate this over the entire

length from 0 to d. Therefore, we have to also do 1 more integration here from 0 to d Dy.

Because we also have a  variable  y here in  the solution for  g,  g  is  a  function  for  y

therefore, to also when you finally, get the solution you want a net quantity we do not

want a electrical conductivity which is varying with y that does not make much sense

although I mean it is a flux and also it is a function of y, but finally, when you are talking

about thermal conductivity electrical conductivity they are for the entire system.



Therefore, what we need to do is integrate this expression across that particular plane

from 0 to d Dy and; however, we are dealing with on the left hand side terms of flux. So,

the right hand side now it is in terms of the integral values therefore, we have to divide

by d in order to still  make it  a flux unit.  So, that is the only thing I  think I missed

yesterday and if you do this integral with respect to y.

(Refer Slide Time: 07:49)

And also with respect to mu you have 2 integrals double integral we have terms 1 minus

mu square exponential minus y by v tau can be replaced with the mean free path time’s

mu. So, therefore, this entire expression is a function of variables mu and y you have to

integrate them and if you integrate. So, you can with respect to y if you first integrate.

So,  all  the  y is  will  be  replaced with  d.  So,  then  you will  be  simply  having a  non

dimensional parameter d by lambda which is yes. So, this is your zeta which is your 1

over Knudsen number right. So, inverse of your Knudsen number apart form that you

have to now integrate with respect to mu. So, those integrals I have expressed in terms of

the integral functions E 3 and E 5. So, you have 2 terms here. So, 1 if you multiply this

quantity with this you have you have 1 parameter mu times exponential of this right.

So, when you first integrate with respect to y you get this mu parameter and then next

other  parameter  will  be  there  will  be  mu  cube  times  this.  So,  there  are  2  integral



functions.  So,  that  is  why  I  denote  them  as  E  3  and  E  5  where  it  evaluate  the

corresponding E 3 and E 5 integral using this expression. We finally reach this point

which gives you the ratio of electrical conductivity for any Nanoscale film as a function

of your bulk electrical conductivity.

So, what it  means is  if  your Knudsen number is  very small  your zeta value goes to

infinity and this term minus that 2nd term will disappear and therefore, it will reach the

bulk  value  and  for  larger  values  of  Knudsen number  your  electrical  conductivity  is

reduced right. So, same way if you work out an expression for the thermal conductivity

whether it is thermal conductivity or only electrons or you take case of phonons you will

also get a similar expression similar to the ratio sigma by sigma b you will get k by k b

which is similar to that.

So, I think this is what we have seen.

(Refer Slide Time: 10:30)

So, I mean all you have to is you have to go home and make sure you work out again and

the steps intermediate steps. So, then you become more comfortable with derivations that

are it is not difficult. So, we have already done most of this before. So, only that you

have to be careful with the integration.



Student: (Refer Time: 10:57) negative only that the (Refer Time: 11:00) when we take

the ratio negative side will be continuity that angle to integration.

You are talking about the mu.

Student: No.

Negative in the.

Student: No (Refer Time: 11:10) zeta minus 1 upon (Refer Time: 11:13) these 2 j and j

minus (Refer Time: 11:16) then minus 1 is comes to the equation divided sigma we get

bulk.

Student: Then that time also will be.

You are saying that the sigma b is having a negative sign is it.

Student: Minus e square integration of something.

Minus e square is it. So, what do we have here do we have a minus e square.

Student: So, the negative negative sign will be cancelled.

In that case we have to retain you may be right because I think we have negative sign

here because this 0 to 1 is basically absorbed here. So, already we put a negative sign.

Therefore, there is no reason that this should simply disappear yeah. So, you may be

right. So, this will continue till here and.

Student: (Refer Time: 11:59).

Correct. So, we can just say that this is your including your negative sign this is your

sigma b right. Yes I think you can be, but at least if you are not careful with the signs in a



negative sign you know on for the entire term then it is, but inside the within the terms

you have sub terms. So, if you make mistakes then you will have wrong expressions.

Yes, because these are all very lengthy expressions. So, it is very difficult to keep track

of you know all the signs 1 after the other possibly 1 of the length lengthiest expression

in this course right. So, this is the case for transport parallel to the films and also with

diffused boundary conditions diffused catering of the boundaries what happens when you

have specular scattering at the boundaries.

(Refer Slide Time: 13:00)

The solution general solution in terms of C1 and C2 is still going to remain the same that

is  not  going to  change only  you have  to  apply  the  specular  boundary  conditions  to

determine the constants. Therefore, your g plus will be C1 still the same expressions that

we had written down minus s naught g minus will be C2 minus s naught. So, this for the

case where mu is greater than 0 this is for the case where mu is less than 0 this direction

cosine positive and this is downward direction.

Now, all  that  we  have  to  do  is  what  specify  the  boundary  condition  for  speculars

scattering. So, at y equal to 0 if you are talking about specular surface, so you have an

electron or phonon which is coming in a particular direction theta and it  is going to



scatter  with  the  same angle  the  other  direction.  Similarly, on  the  top  boundary  also

incident and reflected angles are the same. Therefore, at y equal to 0 you are if you call

this as f plus right that is the distribution which is scattered going in the positive mu and

this is your f plus or f minus this is coming into the boundary f minus this is coming with

the negative direction cosine into the boundary and that gets scattered and its coming out

in the positive direction.

So therefore, at y equal to 0 what is unknown is f plus because that is what is coming out

of the boundary. So, therefore, in this case f plus at y equal to 0 comma mu will be equal

to f minus at y equal to 0 comma minus mu right. So, whatever distribution function is

incoming is  just  reflected without altering the value of the distribution,  but only the

direction is changed in the sense that it is a mirror image of this. So, it is coming in the

know negative mu and now this is giving in the positive mu, but with the same angle the

same direction cosine and same magnitude this is like a mirror image.

Similarly, at y equal to d. So, at y equal to d what is need to be determine f plus or f

minus. This 1 what is coming out of the boundary f minus what is reflected f plus. So,

therefore, f minus at y equal to d comma minus mu is equal to f plus y equal to d comma

mu correct. So, also this means f equilibrium is independent of direction the same thing

can be said about g plus. So, g plus at y equal to 0 is equal to g minus at y equal to 0 and

similarly at y equal to d is equal to g plus y equal to d. So, therefore, you please use these

2 conditions into these expressions determine the constants C1 and C2.

Student: (Refer Time: 17:56).

Yes, just I have given that, but you do not have to. So, as long as you know that f minus

corresponds to negative mean you do not have to put a negative sign. So, you please

substitute this find out the constants. What you get?

Student: (Refer Time: 20:04) first condition (Refer Time: 20:06).

So, from first condition y equal to 0; so you get c one equal to c 2, but still that does not

tell.



(Refer Slide Time: 20:14)

What is the value of C 1? So, then you have to apply the 2nd condition y equal to d. So,

that is telling you C1 is exponential minus d by tau v mu minus s naught equal to C1

exponential minus d by tau v mu minus s naught. So, s naught s naught cancels even this

also will cancel yeah because here you have to be careful this mu is negative. So, if you

want to properly you know write it you can put magnitude of mu and this is negative if

you put magnitude of mu then this will be positive, that is may be a clearer way of

explicit way of writing.

Now, what we are saying now this expression left hand side should be equal to right hand

side, but clearly how can this be possible you have one side positive mu another side

negative mu. This can be equal only if C1 equal to 0. So therefore, C1 equal to C2 equal

to 0. Then what happens to g plus and g minus they becomes same right. So, g plus equal

to g minus will be equal to minus s naught.



(Refer Slide Time: 22:16)

So, now you go back to the expression for charge flux and substitute this and see what

happens.

Student: Sir (Refer Time: 22:57) g minus (Refer Time: 23:02) as d minus y function.

No the d minus y function comes from the diffused boundary condition correct, for the

specular case now we are starting from again the general solutions the d minus y comes

because the diffused boundary condition your constant turns out to be exponential d by

tau v mu your f is equal to f equilibrium. Please go back and see what we have done

yesterday this is the condition we get what diffuse. So, the constant C2 turns out to be

that. So, you can complete that exercise I will only give you the final result. So, this will

simply come out to be this.

Student: (Refer Time: 25:58).

Correct.

Student: (Refer Time: 26:04) both are same.



Both are same. So therefore, the other additional terms that 1 by 3 minus sigma d that

will actually not come right. So, all these integral functions with respect to mu and all

will not be there. So, only you have the sigma b term on the right hand side. So, it very

simply turns out to be the same as your bulk electrical  conductivity. So, this is now

completely different expression you know just if you change the boundary condition you

see  that  there  is  no  modification  in  your  electrical  conductivity  for  this  case.  So,

therefore,  the  nature  of  the  boundary  condition  tells  you  whether  there  will  be  a

distraction  in  momentum or  not  in  the  case  of  specular  boundary  condition  you are

perfectly observing the momentum.

So, whatever is incoming distribution is same as outgoing because there is no loss of

momentum and therefore, there is no need for reduction in the conductivity or electrical

or thermal whereas, in the case of diffused scattering there is an associated reduction in

the energy of  the emitted phonon or electron due to  this  distribution over  the entire

(Refer  Time:  27:32)  polar  angles.  So,  that  will  result  in  consequent  reduction in  the

conductivities. So, therefore, it is very important to understand that you cannot simply

say electron transport parallel to film is always resulting in reduction depends on kind of

boundary scattering that you are applying.

Most of the real time surfaces are neither entirely diffused nor entirely specular. So, they

will  be somewhat  in between.  Therefore,  how do we categorize that we use what is

called as a specularity parameter. So, this is given by notation p and if this is equal to 1 it

indicates it is a purely specular scattering, if it is equal to 0 it is completely diffused most

of the real surfaces are between 0 and 1 we do not know exactly, but it can vary from 0 to

1  and  depending  on  whether  you  have  a  specular  or  diffused  parameters  we  have

independently  got  the  expressions  now  what  happens  when  you  have  somewhere

between 0 and 1.



(Refer Slide Time: 28:56)

In that case the expression turns out to be including this specularity parameter also. So,

you have the splecularity parameter p appearing these cases when you put for example, p

equal to on1e this entire term disappears and you get your other expression if p equals to

0 you get back your diffused scattering expression. So, this is also very generic case for

different values of specularity parameters.

Student: (Refer Time: 29:58).

Yes, that is the yes. So, that is the integral. So, 0 to 1 entire expression times d mu you

have to integrate it I have not explicitly written the integral functions now. So, as e 3 5 I

have just given the total expression. So, the last part that I want to I do not want to derive

this because this is somewhat clumsier than the transport parallel to the film and might

confuse you. So, what I will do is the case where transport is perpendicular to the film I

will  only  give  you the  final  expression  and anyway since  you are  going to  do  this

programming assignment.

So, you will be doing the programming assignment for the transport perpendicular to the

film you can also do parallel to the film and compare with this expression you can give

either diffuse or specular  and you can verify whether you are getting similar to this



analytical solution, but mainly the more challenging case is the transport perpendicular to

the film. So, you will solve the Boltzmann transport equation and find the numerical

solution and I will only give you the analytical solution with which you can compare

with your results.

(Refer Slide Time: 31:24)

Therefore, for the case where you have transport perpendicular to the thin film; so if you

go back and revisit  what you have derived the Boltzmann transport  equation for the

transport perpendicular to the film.



(Refer Slide Time: 31:49)

So, this is the expression correct. So, we have both f equilibrium as well as g both of

them in the direction where the transport is. So, now, if you solve this I will give you the

final expression I will write the final expression in terms of the intensity for example,

right now what I will do is I will only give you the expression for phonon transport

because that is what you are going to do in the numerical solution also phonon transport

and I am going to express distribution function in terms of intensity.

I have also uploaded the reference paper on noodle, which gives you the equation cast in

terms of the intensity of phonon transport. So, you will be solving in terms of rather than

distribution function intensity it is just a small multiplication nothing more. So, therefore,

because y intensity is much easier as you can directly get the expression for temperature

from intensity similar to a radiation. So, in radiation also you define the total intensity

from which you directly extract your temperature.

In a similar way when you are talking about phonon transport we are interested in finally,

plotting the temperature distribution. So, if you are calculating the distribution functions

then you have to convert that in terms of equivalent temperatures and then get that also

can be possible, but more elegant way is to write directly the Boltzmann transport in

terms of intensity and therefore, your temperature can be directly extracted. So, in terms



of intensity the solution, this is your equilibrium intensity here in place of f I am just

writing  in  terms of  I  0  mu and again  these  are  integral  functions  the  same integral

functions what I have given for the parallel case should apply here also. This is I plus at

y equal to 0. So, basically the boundary condition what you are applying at y equal to 0

is this particular intensity and at y equal to d that is your boundary condition I minus

intensity of the phonon which is coming out at y equal to d in the downward direction.

(Refer Slide Time: 35:05)

So, this plus; so you have 3 terms essentially 0 to zeta I equilibrium E1 eta prime minus

eta d prime eta prime is a dummy variable. Where, now I equilibrium is related to your

temperature like this  and your integral functions mu power yeah u power n minus 2

exponential  of minus x by mu d mu the same integral function.  These are popularly

called as Fredholm integral functions. So, all we have you have to do is calculate the

temperature distribution as a function of eta.

So, eta is nothing but your non dimensional y. So, I am defining eta as y by mean free

path and zeta is nothing, but inverse of your Knudsen number. So, this expression if you

plug in solve it in met lab or even excel sheet this will give you the temperature as a

function of  y  or  non dimensional  eta  0  to  whatever  values.  So therefore,  this  is  the

expression now if you plot it how the temperature distribution looks.



(Refer Slide Time: 37:28)

So, I would like to define a non dimensional intensity I will call this as I equilibrium star

which is a kind of non dimensional temperature because we have related the equilibrium

intensity  with  temperature  right.  So,  it  is  similar  to  plotting  your  non  dimensional

temperature right. So, this is defined as I equilibrium eta that is basically this expression

as a function of eta minus this is your boundary condition at y equal to d right and the

boundary condition at y equal to 0 minus the boundary condition of intensity at y equal

to d.

So,  I  am  basically  non-dimensionalizing  my  local  temperature  with  the  boundary

temperatures.  So,  this  value  of  I  plus  and  I  minus  can  be  calculated  from  the

corresponding boundary temperatures. So, if I fix my bottom boundary condition at T1

and T2 I can use this expression calculate for T1 what is the value of I equilibrium at the

bottom wall  and  similarly  for  T2  what  is  I  equilibrium  on  top  wall  and  therefore,

whatever is coming out should come out with that particular intensity right. So, that is

dictated by the boundary conditions or temperature boundary conditions at the top and

bottom; so if I normalize and plot, so the normalized temperature versus eta.



(Refer Slide Time: 39:08)

So, that is the local variation of temperature with position. So, this value will be between

0 and 1 right it cannot exceed the boundary value, at Knudsen number of point 1 what

will you expect? This is similar to here furriers law a linear variation in temperature from

one  end  to  the  other  now as  your  Knudsen  number  keeps  increasing  this  could  be

Knudsen number of 1 suppose you go put a very high Knudsen number Knudsen number

of 100 for example,. So, in that case get a perfectly flat line. So, what does this indicate?

Student: (Refer Time: 40:30).

So,  there  are  no  scattering  between  phonons.  So,  for  very  large  nook  sun  numbers

approaching infinity this is called ballistic transport right. So, hardly the phonons see

each  other.  So,  the  directly  the  phonon  from this  boundary  will  come  and  hit  this

boundary. So, this is at temperature T1 this is at T2. So, it will come with an intensity

corresponding to that temperature and directly land on the 2nd surface, but what happens

there is a shock because the second surface is at temperature T2 and this phonon does not

know that. So, therefore, there will be a discontinuity at the boundaries.

So, this is your boundary right these are your boundaries. So, this phonon will see a

shock here and the similarly the phonon which is going from this to this. So, it is having



temperature T2 here it lands on this boundary, but it finds that temperature is T1, but it

cannot now adjust already it is gone and it is stuck there and therefore, you find there is a

jump.  So,  these  kinds  of  discontinuities  at  the  boundary  or  temperature  jumps  are

characteristic of this nanoscale transport.

At macro scale you will never have that because the phonon collusions are sufficiently so

much so that they can transfer all the information from 1 end to the other, but in the

nanoscale sub continue on regime this transfer is not possible because you do not have

complete information communication between energy carriers. So, you end up with all

this  discontinuities  or  in  other  words  if  you  look  at  y  equal  to  0  there  you  are,  I

equilibrium will not be same as what is the emitted phonon intensity understand. So, the

emitted phonon intensity will be different from the corresponding equilibrium value. The

corresponding  equilibrium  value  equilibrium  means  it  is  an  average  or  you  know

summation of the phonon intensity in all the directions.

So, what is coming out will definitely be different be from what is coming in. Therefore,

you are I plus will not be same as I equilibrium and what is I equilibrium that is the

indicator of temperature temperature now how do we define in nanoscale there is no it is

not  a physical  equilibrium thermodynamic temperature in  nanoscale.  So,  temperature

here is only an indicator of local energy. So, local energy density you have to somehow

express this and therefore, we call this as temperature, but and fortunately this becomes

the  same  value  as  the  physical  temperature  in  macro  scale.  Therefore,  it  is  more

appropriate  to  refer  this  in  terms  of  intensities  or  energies  rather  than  in  terms  of

temperature and similarly.

So, at y equal to d your I equilibrium is not the same as your I minus, if this was there

then what will happen this is the case where you nook sun number is less than point 1

then  this  will  be  equivalent  to  your  fouriers  law.  So,  everything  has  it  at  local

equilibrium. So therefore, there is no temperature jump, but for a case where you know

Knudsen number greater than your point 1 we are talking about say ten or 100 or 1 in all

these cases these is not satisfied. So, this is a very important characteristic. So, people

also  refer  to  this  as  temperature  slip,  this  kind  of  temperature  discontinuity  as

temperature slip right. So, this is the characteristic of transport perpendicular to the film.



So, I think we will stop our discussion on nanoscale energy transport with this because

more or less you have enough idea what is happening even in 1 dimension. So, so the

basic  the key understanding is  that  you know all  the size effects  are becoming very

important  at  higher  Knudsen  number.  So,  when  we  talk  about  now  temperature

distribution  this  is  this  is  basically  temperature  slip  correspondingly  a  thermal

connectivity also will start reducing because of this. So, these are additional resistances

at the boundaries. So therefore, effectively your nanoscale thermal connectivity will be

lower and this keeps dropping with increasing Knudsen numbers.

So, from tomorrow’s class we will start looking at micro scale and transport micro scale

will appear much easier. Now that we have done the nanoscale because we have the

proper foundation, so also the equations are more familiar to you. So, most of them are

continue equations. I hope that you know most of you were able to follow at least 70 or

80 percent of this content. Sometimes it might be completely new altogether, new topic,

and we have it is also intensive mathematically, but nevertheless it will give you a new

perceptive about this kind of transport.

Thank you.


