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Film was attempted by him in 1993, those are Arun Majumdar and in the case that the

distribution  function  there  is  not  explicitly  used.  But  he  defines  the  moment  of  this

distribution  function  called  intensity.  And  based  on  this  intensity  he  solves  the

Boltzmann  Transport  Equation  in  terms  of  the  intensity  of  what  he  calls  is  Phonon

Radiative Transport. So, he coins a name called E P R T Equation for Phonon Radiative

Transport, it is nothing but the same Boltzmann Transport Equation the relaxation time

approximation and cast in terms of intensity of phonon transport a phonon radiation. So,

that is return in terms of f equilibrium.

So, I mean he uses a numerical technique and he solves this is one dimension, use a

simple finite difference is ok finite difference should give you a solution, but what is

important is we have seen this distribution functions are not only function of physical

position just one dimension it is not just function of x, but also function of, for example,

polar  angle  theta.  So,  you  have  to  also  solve  this  in  theta  space.  So,  you  have  to

therefore,  numerically  discretize  you  are  physical  space  as  well  as  your  spherical

coordinate  space  physical  space meaning your x here,  and also the directional  space

which is your in terms of theta.

So, you have to discretize this into discreet number of directions between theta going

from 0 to pi and phi going from 0 to 2 pi phi it is going to be uniform in terms of phi that

is the assumption of one dimensional transport and then use the finite difference method

and solve this numerically.

So,  integration  can  be  done  by  using  trapezoidal  rule  or  any  stranded  numerical

techniques  Simpsons  rule  that  should  workout  and if  you take  high  number  of  grid

points. So, if you discretize it in a very fine manner you will be able to accurately match

it with the analytical solution.



So,  I  want  to  you to write  this  programme to do that  the  reference  is  the paper  by

Professor Arun Majumdar 1993, I thing it appeared in journal of applied physics. If I

remember. So, the title is something like equation for phonon radiative transport and it

talks about basically writing the b t in terms of intensity solving that numerically and

getting the solution for different Knudsen Numbers s from Knudsen Numbers s of 0.001

all  the way up to  Knudsen Numbers  of 100 where it  is a ballistic transport.  So, you

simply get a big discontinuity at the boundaries and then you have a horizontal line. So,

we have looked at that kind of solution before. So, he talks about all this.

So,  I  want  you  to  write  this  programme all  by  yourself.  So,  you can  use  what  are

programming language you would like whether it is a proton or c c plus plus or matlab

python whatever  you want  to use.  So,  it  is  a  not that  difficult  it  is  only basically  2

dimensions  one  physical  coordinate  the  other  is  the  directional  coordinate.  So,  you

should discretize them use some method to calculate the integrals and therefore, solve it

for temperatures and plot the temperature distribution as a function of Knudsen Numbers

s. So, by that you will understand exactly whatever we have done, I am giving you some

analytical solution. So, how do you actually solve the b t for more complex cases then

you will be able to know the procedure and compare it with this kind of simple solutions

all right.

So, today and tomorrow let us work on the remaining part of this transport equation try

to find some simple solutions before we go on to the micro scale part. Therefore, we

started off from the b t again you have made some approximations and again, we have

derived to sets of t t is, one for the case where transport is parallel to the film and for that

case we saw the f equilibrium is in the direction where the transport happens in the case

where you have coordinate system where the transport is happening in this direction, the

equilibrium distribution varies in that direction. Whereas if you look at the (Refer Tim:

05:46) from the equilibrium. So, this is the indicator of the non equilibrium.

(Refer Slide Time: 05:27)



So, this non equilibrium if it also happens along x, there is no size effect because the film

is confined in this direction perpendicular to the transport direction. Therefore, in order

to  bring  the  effect  of  this  dimension  on to  transport  the  deviation  from equilibrium

should vary as a function of y and not as a function of x the reason is that; now as we

know if, you take at this particular point. So, you have the phonons which are basically

scattered  from all  directions  right  and falling  on to  this  point  and similarly  they are

scattered out. So, there is phonons which are coming to this particular boundary and they

are scattered by the boundary.

So,  as  you see  that  these  are  direction  dependent  and  each  of  these  phonon if  you

physically  track  the  coordinate  each of  this  will  actually  come from different  points

along x right.  So,  they  will  be originating  physically  from this  point  and then,  they

propagate in that direction and they reach this boundary similarly from another position

another set of phonons in a different direction will rich the same point on the boundary. 

Therefore, you see that this, phonons are carrying information which as which are now

basically showing a variation along x. So, that goes and scatters and therefore, why dj y

dj by dy contains the information of the confinement is this. So, basically you have there

is a change in the equilibrium distribution function along x and now, since it is also

direction dependent.



So,  this  information  is  conveyed  to  during  this  scattering  of  the  phonon  from  the

boundaries and therefore, there is a gradient now set up in also the vertical direction for

the deviation from the equilibrium. So, dj by dy. Now will start vary right along y also.

So, this is now going to carry all what we call  as size effects similarly the transport

perpendicular to the film is quite straight forward. So, you have transport in this direction

therefore,  equilibrium  function  varies  in  that  direction  and  also  the  deviation  from

equilibrium will also be dominant in only the y direction because of the confinement.

(Refer Slide Time: 08:29)

Therefore for that you have only all the derivatives with respect to y. Therefore, we first

started  with  the  transport  parallel  to  the  film we separated  out  the  terms  which  are

functions of y, these are the most important terms that is we have to solve for g basically

and all the terms with respect to f equilibrium we retail on the left hand right because,

these are the functions which are known f equilibrium is known which ever distribution

function you take and you can therefore, find out the derivative with respect to x and v x,

whereas,  what we need to know is solve for g which gives you the non equilibrium

distribution.

(Refer Slide Time: 08:41)



Therefore, S naught of x can be now written for example, in the case of charge transport

it comes out to this particular form.

(Refer Slide Time: 09:23)

So, the variation of f equilibrium with respect to x is coming from the dependence of the

Fermi level on x that is this term and the other term is the variation with respect to v x in

the momentum coming from in the variation of e on that. Therefore, we have 2 terms 1,1



with the respect to the variation with respect to the momentum the other with respect to

the physical space is that clear.

Therefore, this will be your term which is the function of x and which is known; if we

know d e d e f by d x you just simply substitute it the electric field you can substitute it

the variation of d v equilibrium d f equilibrium by d e.

(Refer Slide Time: 10:31)

So, now what we can do is solve for g which gives you the non equilibrium distribution

function. So, so as we as we saw that we if you solve for g the full solution become g of

y plus S naught is equal to this,  now this  is the function.  Therefore,  g is not only a

function of y, but also function of theta. So, it is carrying therefore, both the directional

coordinate as well as the physical coordinate. So, if you want to break this down into the

transport of electrons going in the positive y direction and the negative y direction.

Therefore, if you look at the top boundary for example, the top boundary is going to

scatter whatever electrons come to that boundary are going in the negative y direction.

Therefore, the direction cosine for this will be negative. So, the theta in that case will be

varying from pi by 2 to pi. So, the pi by 2 to pi will contain information of all these

scattered phonons in the down ward direction and similarly the phonons reaching the

bottom boundary will have phonons scattered 2 in the positive y direction. 



So, there the theta will vary from 0 to pi by 2 and the direction cosines will be positive

right.  Therefore,  at every point we can break this g into a positive g and negative g

because we have only transport in the y direction. So, which are going in the positive y

and scattered scattering the negative y.

So, we can actually divide therefore, this g into g plus and g minus right and therefore, I

hope you could can follow till this point right and your Azimuthal angel phi is varying

from 0 to 2 pi. So, that makes thus distribution symmetric. If you are solving from theta

0 to pi by 0 and then, you are rotating from phi 0 to 0 pi. So, you are going to get the

same distribution with respect to theta in the other side also. Therefore, we do not have to

really bother about what is happening to the distribution on this side on this side this

distribution is going to be just simply similar to this your theta your phi is going to rotate

this and make it make it a symmetric distribution about the vertical access, I hope you

understand this. Therefore, the most important directional coordinate will only be theta

there will be only a variation with respect to theta and not with the respect to phi. 

(Refer Slide Time: 13:29)

Now, knowing this, we can have 0 solutions. Therefore, the solution can be written as

you have a g plus which is a function of y and the directional cousin mu in which is

nothing, but cos theta that is the cousin which it makes with the respect to vertical assess



right we have theta with the respect subtended with the respect to the vertical accesses.

So, that will be your directional cousin.

And in the general solution we had a constant. So, we will write this as C1exponential

minus y by tau into v into mu I am writing my cos theta as mu minus S naught and

similarly my g minus will be another constant C0 this constant is going to be different

from  this  because  this  corresponds  to  the  distribution  going  in  the  positive  y  and

therefore, I give a plus sign. So, this constant is going to be different for this scattering

going in the downward direction, but the other terms will remain to be similar. So, why

we  are  writing  this  in  terms  of  0  functions  is  actually  one  function.  But  we  have

identified a positive y and negative y is to apply the 0 boundary conditions because, we

have scattering from the top wall scattering from the bottom wall. So, they are going in

certain direction from the top it is going down from the bottom it is going up.

Therefore, it is convenient to break this in to 0 distribution functions at every point to

find out the constants using the 0 boundary conditions. So, if you apply the boundary

condition at y equal to 0. So, what kind of boundary condition can we apply now, that is

the next important question? So, the one that I have described here is the case were you

have a  particular  phonon or  electron  which is  coming in  the direction  like  this.  For

example, and this is getting scattered in, many different directions, there are 0 extreme

cases of scattering. So, one is called diffuse scattering. In this case now you can imagine

this boundary to be quite rough. So, any incoming electron or phonon will get uniformly

scattered with the same magnitude in all the directions. So, you can draw a length of

these arrows uniformly to represent they are all of the same magnitude.

So, this is quite similar to your radiation transport in radiation also you have a particular

intensity of incoming wave which hits the boundary and can get scattered or reflected.

So, we have 0 different kinds of reflections one is a diffuse reflection were the intensity

of the reflected beam is uniform the same magnitude and uniformly spread over all the

directions this is similar to the diffuse scattering we are talking here the other is specular

you can imagine the surface to be very smooth like mirror  finish and therefore,  if  a

particular electron or phonon comes and makes an angle theta I this is your incident

angle. So, it gets reflected such a way that theta r is equal to theta I and it gets reflected

only in the same direction.



Therefore, this is completely different kind of a boundary condition compare to this. So,

in  other  words  this  is  a  kind  of  a  boundary  condition  where,  any  non  equilibrium

distribution  function  if  it  encounters  a  diffuse  interface  or  diffuse  boundary  will  get

converted into a equilibrium distribution function which is uniform because a what is the

characteristic of equilibrium distribution function it is? It is uniform with the respect to

directional  space  there  is  no variation  only you have  a  variation  with respect  to  the

physical  coordinate,  but  not  with  respect  to  directional  space.  So,  when  you  say  f

equilibrium f equilibrium is not a function of theta and phi.

Therefore, whenever your phonon distribution function encounters the diffuse interface

your non equilibrium distribution f will  become equal to f equilibrium because,  it  is

uniformly scattered whereas, in the case of specular it is not? Therefore, to apply the

boundary condition at y equal to 0 at that is at the bottom surface our f will now become

equal to f equilibrium in the case of diffuse scattering and therefore, this will tell that g

will be equal to 0. So, these are 0 extreme cases the real surface will be combination of

both of them. So, similarly at y equal to let us say d this is at the top boundary again your

f will be equal to f equilibrium and therefore, g will be equal to 0.

So, now when we are saying this g here what does it indicate g plus or g minus the first

one  at  y  equal  to  0  g  plus  and here  g  minus.  So,  we can  therefore,  put  this  in  the

corresponding distribution at y equal to 0. So, we will be using let me call this as 1 and

this is 2. So, at y equal to 0 will be using 1.

(Refer Slide Time: 21:24).



So, can you substitute and let me know what is the constant C1 S naught. So, you have

C1 is equal to S naught from the second boundary condition your C0 turns out to be S

naught e rise to d upon tau v mu.

Therefore if you substitute this in terms of g plus will become S naught into exponential

minus y by tau v mu minus S naught and we have g minus which will be S naught

exponential d minus y by tau v mu minus S naught will call this as equation 3 and 4. Is

that clear? There substituted for C1 and C0 that is it.

Now, now that we know the non equilibrium distribution functions in the positive y and

negative y, all we need to put calculate what is the flux of the charge, how do we do that

we already know how to do this right. So, let us call what is the notation we used for

charge flux.

(Refer Slide Time: 23:25)



Student: j

J we used j. So, let us use the same. So, j which is indicating your charge flux or current

flux, how do we calculate it? Do you remember from your distribution function? You

should not even go back you should just by now know how to do it. So, for a single

quantum state what is the charge flux.

Student: (Refer Time: 23:55) 

Minus e v x into f per unit volume. Now, therefore, integrate over all the quantum states

k x k y k z. So, this will give you ampere per meter square. So, if you convert this now

how to convert  the  summation  into  integral  dkx,  dky, dkz  from which,  you can  use

density of states covert this momentum space into coordinates involving theta and phi

correct. So, what do you get in terms of theta and phi.

So, we have one integral over d e and then 0 to 0 pi d phi and then, we have 0 to pi minus

e into v of x f we have density of states d of e by 4 pi sin theta d theta v of x is nothing,

but v cos theta is that clear we already did this conversion before while deriving the

continuum equations. Now, all we are doing going to do is what we know solution for g

which is nothing, but f equilibrium minus f. So, we define g as f minus f f equilibrium or

f equilibrium minus f I think, it was f minus f equilibrium, right? f minus f equilibrium f

minus f equilibrium and therefore, we can write f as g plus f equilibrium we know the



solution for g from equations three and four all you have to do is break this 0 to pi from 0

to pi by 0 and pi by 0 to pi.

So, that is positive direction cosine and negative direction cosine. So, write in terms of g

plus g minus. Therefore, now j will become minus one by 4 pi e d of e this is over energy

and then we have 0 to 0 pi, it is not varying with the phi space. So, this can be taken out.

Now with respect to 0 to pi, my cos theta is nothing, but mu right mu is equal to cos theta

therefore, d mu will be sin theta d theta. So, I can write this as d mu and this as mu and

therefore, my limits of integration will become, if I put cos 0 mu will be 1 cos pi will be

minus 1. So, it will be minus 1 to 1. So, I can break this minus 1 to 1.

Student: (Refer Time: 28:00).

Yeah. So, minus one to 0 v of x or v times g plus g minus here minus one to 0 indicates

the negative cosine. So, will use g minus y comma minus mu this indicates negative one

plus 0 to one v g plus y comma mu all this d mu right into this is de. Therefore, all we

can do is sub now what happen to f equilibrium integral f equilibrium cos theta sin theta

d theta d phi 0 because f equilibrium is a uniform in theta and phi direction. Therefore, if

you integrate cos theta sin theta d theta d phi is going to be 0.

So, now you can substitute for the solution for g plus and g minus. So, if you do that I

will only give you and also for S naught. So, S naught we can substitute from here. So, if

you do that.

(Refer Slide Time: 30:08)



So, you will get a lengthy expression j one by four pi get e e d of e d e 0 to 0 pi d phi and

0 to 1 v into e tau v x b f naught by I am substituting for S S naught here into e x plus 1

by e d e f by d x exponential minus y by tau minus 1 d mu essentially equation 3 I am

taking S naught common. So, we have this minus 1 and S naught have simply substituted

from there.

So, this is on one half the other half will be 0 to 1; we have v into e tau v x d f naught by

d e into e x plus 1 by e d e f again S naught and exponential we have d minus y by v tau

mu minus 1d mu. So, I have one v x here. So, that should become b square let me see did

I miss.

Student: cos theta

There should have been a cos theta again extra right I think yeah so.

Student: (Refer Time: 33:02) mu e.

Yeah, but I think this v x should be there, but there should have been a extra cos theta

there right. So, in the d omega that is your solid angle should be cos theta sin theta d

theta d phi correct. Therefore, there should have been the additional cos theta, am I right?

Therefore, we can right this just thing in term of v x here and just simply continue.

Student: (Refer Time: 33:42)



Yeah. So, that cos theta is mu.

Student: (Refer Time: 33:46) 

So, v x I am just living it as it is. So, v x is going to be just v cos theta I will observe it in

the next step. So, there is again one more v x where we will again have a v cos theta. So,

will have cos per theta there. So, we have v x v x coming here and then. Therefore, we

will have v x here v x here. So, we have v x square which is v square cos per theta.

So, that is nothing but v square again mu square. So, we can also write in terms of that.

So, can you now rewrite this in term of mu and try to find out what will happen if you

integrate with the respect to mu? So, you have this function is a function of mu and your

v x square is nothing, but v square.

Student: Mu square.

Mu square.

Student: (Refer Time: 35:08)

Yeah. So, I we can write minus 1 to 0 as equivalent to minus of 0 to 1 mu

Student: and also gives negative sign the mu

Yeah. So, that I think that I am this have been observed when I got a positive sign here.

Student: (Refer Time: 35:24) 

I do not think so.

Student: (Refer Time: 35:27) 

There will be 3 negative signs here.

Student: (Refer Time: 35:33) 

Yeah minus sin theta yeah I think, but you are right this will be again minus sin theta d

theta, but I think finally, what I work out is you get only a positive sign here, we have to

check that again please we have to be careful here just hold down v x is not cos theta

here it is sin theta because our notation is this is my theta and this is my v x . Therefore,



v x will be v sin theta. Therefore, this will be 1 minus mu square this nothing, but sin

square theta.

Student: (Refer Time: 36:33) 

Ha.

Student: v y is v cos to.

Yeah v y is v cos to theta. So, in this case we have taken theta to make to be angle with

the vertical and our transport is in the x direction. So, that will v sin theta and therefore,

you will have 1 minus mu square this sin call theta. So, please integrate it with respective

mu I think.

(Refer Slide Time: 37:38)

Student: mu cos theta 

Mu will be.

Student: sin theta.

Mu will be cos theta here mu in the sense now that is the positive y and negative y. So,

that will be with the respect to cos theta we have v x still I am not completely convinced



about my think this is. So, I think few more thinks now. So, will we write v x it should it

should be just a second. Yeah. So, let me again clarify this your v x is not simply v cos

theta it is v cos theta. It should be v sin theta cos phi because in a 3 d you are looking at

this projection in this particular plane which is making an angle phi. So, you have to

actually look at v cos phi which is basically this one and your also looking at this cosine

in this direction. Therefore, it is v cos phi sin theta right. So, that is your direction cosine

in the x for this case.

Therefore, you also have a cos phi. So, there will be a cos square phi also in addition to

this. So, will be adding cos square phi to this d phi and this. So, this d mu now I think

now I mean this d mu is fine. So, we do not have to therefore, do anything here I think all

things  are  falling  in  place.  So,  you  have  to  be  careful  that  we  are  working  with

transforming theta to mu. Therefore, our sin theta d theta is become the mu and again

when we are talking about transport v x here. So, that is nothing, but v sin theta cos phi.

Therefore, we have v square sin square theta cos square phi and sin square theta we can

write as 1 minus mu square and cos square theta you have as integral 0 to 0 phi cos

square phi d phi. So, to just give you, this integral 0 to 0 phi cos square phi d phi will be

equal to pi you can evaluate and check this and finally, So, you should. So, you have a

common term. Therefore, see a therefore, we can take this entire term e x plus 1 by e d e

f  by  d  x  out  and  therefore,  we  can  write  this  as  j  and  you  can  bring  this  to  the

denominator.

(Refer Slide Time: 43:04)



So, we have e x plus 1 by e d e f by d x. So, this will be equal to 1 by 4 and we have over

e we have e square v square tau and we have the dependence on e will be through d f

equilibrium by d e we have d of e. We have very lengthy expression here. Therefore, we

have there is an e here and e here. So, we have e square and we have v square d f naught

by d e d xf d e.

So, this is the term common term e f e of x plus 1 by e d e f by d x is taken out and to the

other side. So, we have this term here and the others are all dependent on mu. So, we

have 0 to 1, 1 minus mu square into exponential minus y by v tau mu minus 1 d mu plus

0 to 1, 1 minus mu square exponential d minus y by v tau mu minus 1 d mu. So, this pi

cancels because our integral cos square phi d phi is phi. So, this 1 by 4 pi and that pi

cancels  of  right.  Now please  go back to  our  derivation  of  ohm’s law what  was the

expression for electrical conductivity that we got? Which term is it?

Student: (Refer Time: 46:10) 

Now, therefore,  if  you look at  it  apart  from that  apart  from that  we also have these

additional terms which are nothing, but the size effect terms. So, now, if you look at j

divided by e x plus 1 by d e f by d x what is this what is your homes law say your j

should be equal to electrical conductivity times your electric fail e of x plus f if you have

a electro chemical potential 1 by e d e f by d x right. Therefore, this entire term here is

nothing, but minus sigma you understand. So, when you divide this current flux by the



electric filed this is nothing, but minus of sigma. So, j should be minus sigma of this.

Therefore, this is minus sigma. Therefore, the expression for electrical conductivity, now

where he have Nanoscale transport is equal to this and out of which we obtain that the

bulk value of electrical conductivity expression is this correct.

I  hope all  of you are able to follow. So, the expression for bulk value that  we have

derived let us go back to that this is your expression we have minus e square integral tau

v square d f equilibrium by de d of ed e we have minus e square by 3. Therefore, we can

write this as we can multiply and divide by 4 ok.

(Refer Slide Time: 48:23)

Therefore, what we have here can be rewritten in terms of the bulk thermal conductivity.

So, this entire term is nothing, but your bulk electrical conductivity understands. So, j e

by e x is nothing, but a bulk electrical conductivity.

If you therefore, write this in terms of sigma by sigma b, the expression on the left is

nothing, but sigma and what we have is in terms of sigma b therefore,  we can write

directly an expression for ratio of sigma by sigma b.

(Refer Slide Time: 49:30)



So, that will come out to be 1 minus 3 by 8. So, I am just using some notation I will

expand what it is 1 minus 4 times e 3 of zeta. So, you can use some notation minus e 4

zeta.

and what is  zeta  this  is  nothing,  but  d by mean free path or this  is  equal  to 1 over

Knudsen Numbers and my e subscript n of x indicates integral 0 to 1 mu power n minus

0 exponential minus x by mu d mu. So, all I am doing is writing this product of v tau into

mean free path and then, I evaluate these integrals and I will leave I will end up with 0

integral terms 1 which is e 3, e 3 is nothing but mu times exponential minus x by mu d

mu the other is e 5. Where I have mu square mu power cube mu cube exponential minus

x by mu d mu.

So,  I  have  to  separately  evaluate  this  e  3  and e  5 integrals.  So,  and then I  get  this

resulting expression for ratio of sigma by sigma b. Therefore,  So, this gives you the

expression for the size effect in electrical conductivity for the nanosacle transport. If your

Knudsen Numbers is very small, what happens to zeta term very large and therefore, this

entire  term  vanishes.  So,  for  the  case  of  Knudsen  Numbers  going  to  0,  what  have

happens to sigma by sigma b goes to 1. So, it requires your bulk electrical conductivity

now when your Knudsen Numbers becomes, very large what happens your sigma will be

not smaller than your sigma b. So, this is called the size effect I hope all of you are able

to  follow  this.  So,  we  have  derived  from  the  first  principle  using  the  Boltzmann



Transport Equation although it is a very t d s process we saw that, but this is a simplest

possible analytical solution for describing the size effects, from which clearly it says that

if  your  Knudsen  Numbers  the  vanishing  limit  of  Knudsen  Numbers  your  electrical

conductivity  becomes  your  bulk  value  for  larger  values  of  Knudsen  Numbers  your

electrical conductivity smaller than, you bulk value; that means, if you plot if you make a

plot of this ratio sigma by sigma b as a function of Knudsen Numbers.

(Refer Slide Time: 53:55)

So, it is starts from one and then goes like this right. So, this is called the size effect. So,

a nanoscale transport where is a reduction in the electrical conductivity even for the case

where your transport  of electrons is along the thin film and you have a confinement

perpendicular to the transport even in this case there is a size effect seen because, of the

scattering from the boundaries. So, this scattering is going to reduced the momentum of

the electrons and therefore, it is going to also reduce the amount of electron conduction.

Now, what happens if instead, similarly if you calculate also the phonon if, you replace

now with these electrons with phonons and you have a temperature gradient in the x

direction. So, you have instead of electric field we can have temperature gradient and we

have heat conduction parallel to the thin film and we have confinement perpendicular to

that. So, in that case you can calculate the ratio of k by k b which gives you the size

effect  for  thermal  conductivity  it  turns  out  to  be  it  will  be  exactly  equal  to  similar



expression as sigma by sigma b, you can do this as an excise and see that in this case you

do not have any electric field you have only temperature gradient follow the same steps

instead of electron charge flux you replace this, with heat flux and you will end up with

expression which is identical to sigma by sigma b. So, you have a similar size effect for

also the thermal conductivity.

Now the interesting question is what happens if you use specular boundary condition

instead of diffuse in turns out? If you use specular boundary condition that the ratio of

sigma by sigma b will always be equal to one for transport parallel to the thin film or in

other words specular boundary condition does not affect the momentum of the electrons

or  phonons.  Therefore,  even if  you have a confinement  and if  you apply a  specular

boundary condition this is not going to destroy the or reduce the conductivities.

Tomorrow I will show you simply how this happens for specular boundary condition. So,

with that you will be able to understand that this size effect becomes very important in

the transport parallel to the plane only if you have a diffuse boundary condition whereas,

if apply specualr boundary condition there is no change in the conductivity parallel to the

confinement.  So,  we are talking  about  now all  these conductivities  which are in  the

direction of transport which are perpendicular to the confinement. 

Now the other case is where we have size effects in the direction of confinement there

irrespective of whether you use diffuse or specular you will  always have size effects

because  the  direction  of  the  gradient  and  in  the  direction  of  change  in  the  non

equilibrium are in the same direction irrespective of whether you diffuse or specualr

boundary condition there is going to be therefore, an effect of this confinement.

So,  this  is  a  most  important  property  of  nanoscale  energy  transport.  So,  if  you  are

working at small Knudsen Numbers you will not be one seeing this effect, but at large

Knudsen Numbers s this becomes very prominent.


