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Good morning everybody and today this  will  be the last  few lectures  on nano scale

energy transport.  Since we do not have too many analytical solutions at large (Refer

Time: 00:42) numbers, will take up 1 or 2, very simple cases for which we can find the

analytical solutions and then I will give computer assignment. That will be what you are

working on even in  1 dimension you know. 1 dimensional  transport  of  phonons for

example,  using  Boltzmann  transport  equation  and  you  can  for  which  we  have  the

analytical solution and you can compare it with your numerical solution and understand

how to solve this kind of type of equations.  The Boltzmann transport  equation is  an

actually integral differential equation. This is not something that you come across in a

normal partial differential equation course and also the fact that it is dependent on so

many dimensions. Even in 1 dimension, you are not solving only 1 dimensions space.

You are also solving the directional space.

Therefore, it becomes 2 dimensional and therefore, even in 1 physical dimension, you

have to  solve with  2 dimensions  therefore,  that  itself  is  computational  intensive  and

when you go to 2 D and 3 D, it becomes function of you know 7 co ordinates and so on.

It  is  a  rigorous  solution  but  at  1  dimensional  level,  you  can  try  to  find  numerical

solutions and also we have analytical solutions at study state. You can try to compare

your  results.  That  is  the  good  way  to  probably  you  know  conclude  the  you  know

discussion  on  nano  scale  energy  transport.  There  are  also  more  advanced  concepts

pertaining to you know composites you know nano composites and so on, but we will

not cover in this particular course and there are also researches, research going on in for

example, calculating the thermal conductivity of nano structures.

As I said in the case of bulk materials, the thermo physical properties are invariant and

what is peculiar about the nano structure is the size dependents of this properties and

therefore, we call this as the size effects.
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This is a very typical word used at it nano scales to denote the dependence of thermal

conductivity  and for  example,  electrical  conductivity, if  you take  you know electron

charge transport. All this function of thickness of the material that you are considering

and you can also show that to the limiting case, where you have a very small Knudsen

numbers. This approaches your bulk values. When we are talking about nano scale heat

transport or in any energy transport, you generally refer to what is called the size effects

and let us study 1 such size effects. We can first start with for example, with the electron

transport and; that means, the flux of the charge, flux of current. This is your current flux

which gives you the electrical conductivity and therefore, we can first understand the

size effect with respect to electrical conductivity and we will see analogs to that how the

thermal conductivity also exhibits size effects. To do this, now we are therefore, talking

about real nano scale transport.

I mean although we were discussing many things about nano scale right before in the

beginning,  the  real  nano  scale  transport  starts  here.  All  this  till  now  is  to  put  the

perspective on different kinds of subjects such as statistical thermo dynamics, quantum

mechanics, all this are the fundamental building blocks and we finally, showed that for

transport process the Boltzmann transport equation is the fundamental equation and from

which we can drive all the classical constitute of relations. These were not really nano

scale in that sense. The real nano scale transport will be dealing with now in the next 1 2

or 3 classes. To do this, again let us go back to the way we are deriving our continuum



equation.
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In that case, we assume a quarter pation functions, distribution function from the, which

is the difference between the non equilibrium and the equilibrium distributions and if you

substituted this in terms of G and F equilibrium in the Boltzmann transport equation. You

were having terms which involved G and F equilibrium. You had D G by D T D F

equilibrium by D T plus you had also the gradient with respect to position for both G and

F equilibrium as well as you had the variant with respect to the momentum space for

both of them and then finally, on this side you had G by tau, scattering tau. The scattering

term is approximated by means of the B G K relaxation time of approximation.

This is your Boltzmann transport equation, I think all of you should know this by heart

and therefore, you should be able to write this at any point of time you know. We also

made several assumptions in deriving the continuum equations as I said that if you look

at the order of say D G by D T and D F equilibrium by D T. In comparison to the

scattering term on the right hand side, these are much smaller correct or in other words

we  said  the  physical  time  scales  or  much  greater  than  your  relaxation  time  scales.

Therefore, we can also call this in the in a sense that we are looking at more like a study

state process we are not bother about variation of this distribution of time therefore, we

neglected the time variation and we also invoked the assumption that your G should be

smaller  compare  to  F  equilibrium and  also  the  respective  gradients  of  G should  be



smaller  than  the  counter  parts  for  F  equilibrium.  Similarly  with  the  gradient  in  the

momentum space invoking all this.
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Therefore  we  wrote  your  F  in  terms  of  F  equilibrium minus  tau  into  V dot  l  R  F

equilibrium plus F by M. This was the underlining transformation of B T. The actual B T

is quite complex from there, we put all this assumptions and then we converted this to

this form, which we use to derive all the continuum equations.

But; however, now when we are dealing with nano scale transport, we are talking about

in the present case, we want to study transport in nano structures. In that case we cannot

make all this assumptions. Of course, we have to make certain assumptions to solve them

for the nano scale problem as well, but we cannot make this kind of assumptions what

are the assumptions suitable for this problem. One is we can still make the assumption

with respect to the time scales because we can say that although your Knudsen numbers

are  high,  we are  looking at  problems where  the  physical  times  are  greater  than  the

relaxation  time.  That  means,  we  are  not  looking  femtosecond,  picoseconds,  laser

radiation kind of process here. We are looking at clearly size effects, size effects coming

from reducing the size of the structure not due to disparity in the time scales. Therefore,

still we can make the first assumption that D G by D T D F equilibrium by D T. These

are much smaller than the collision term on the right hand side because this is still valid.

This is 1 one important assumption. What is the other assumption that we can make? If



you look at the term F by M del V G, this is the variation are this is the gradient of the

pet robe function in the momentum space, we can say this is also small compared to the

corresponding change in respect to F equilibrium. If you make these 2 assumptions, the

D T can be rewritten in Cartesian coordinates, 2 dimensional Cartesian coordinates. We

neglect the unstudied terms. We have only the advection terms both in the physical space

and momentum space. The first term we have V dot del R F knot, if you expand this we

have V X D F equilibrium D X plus V Y D F equilibrium by D Y and similarly for G we

have V X D G by D X plus V Y D G by D Y and the other term, which is important is D

F equilibrium by D V X plus F Y by M D F equilibrium by D V Y this is equal to minus

G by tau.

In  other  words  by  invoking  the  second  assumption  here,  we also  say  that  whatever

deviation function or perturbation function could be quite large in the physical space

because this is a nano scale phenomena you know. When you are talking about very high

Knudsen numbers, you are non equilibrium function is suppose to deviate quite a bit

from your equilibrium function. But this effect comes only with respect to the physical

coordinate  and  not  in  the  momentum  space.  This  is  therefore,  a  very  important

assumption. With that assumption, we reduce the dimensions, number of dimensions for

G. G therefore, is only a function of X and Y where as F equilibrium is a function of X Y

V X and V Y. So, this is your starting point and let us now considers 2 kinds of transport. 
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One is we can talk about transport which is parallel to thin films. Thin films are the nano

scale,  nano  structures.  You  can  talk  about  a  nano  structure  like  this.  You  have  a

separation. This is your film; the film is thick with units of D. This is your thickness of

the film here. It could be the order of few nano meters, for example, and your coordinate

system is attached to the bottom plane and you have a momentum space which is V x V y

and this is your V vector which makes an angle, let us say theta with a vertical. I mean

this is your convenience if you choose theta here; you can choose the projection of this

on to this plane and make an angle phi with the horizontal. It is up to you in the other

case we choose theta  as the angle with horizontal  and then the projection on to  the

vertical plane making an angle phi with the vertical line. Now we are just picking for this

convenience you can also do the other way.

Now we are talking about a temperature gradient which is not in the vertical direction,

but in the horizontal direction. In this case you have a temperature gradient or you can

have gradient of the thermo energy level and you can have corresponding electric field.

In this case therefore, you maintain a temperature gradient or a gradient in Fermi level

such that electrons move along the X direction. This is a case where your transport is

happening parallel  to  the films.  Your film is  actually  like this  confining the film by

dimension D, but the transport is happening along the film. The other case, where you

study your heat transport and all that is 1 plate the bottom side is at 1 temperature top

side is another temperature. 

In that case, transport is happening perpendicular to the film but this 1 of the simplest

case you can start with transport parallel to the thin films in that case. Now, let us draw

the momentum space separately. You have V x V y V z. This is your momentum vector

and this is your polar angle theta. Now polar angle we are defining as angle with respect

to the vertical coordinate V y and the projection of this on to the bottom plane the V x

that plane. That will make an angle phi,  the azimuthally angle with respect to the X

coordinate, V x coordinate. And therefore, now let us look at the terms D F equilibrium

by D Y. Now with respect to F equilibrium, now F equilibrium is a function of your x y

V x V y according to the equation that we have written here yeah. Now, in the case

where  you have  transport  parallel  to  the  thin  film,  what  will  be  the  most  important

function, F equilibrium variation in the X direction, or Y direction; in the X direction

because we have transport in that direction. 
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Therefore, now when you talk about D F by D F equilibrium by D Y, we can actually

assume this is smaller than the corresponding deviation function gradient in the same

direction. You have very strong gradients F equilibrium varying with X because of either

the temperature dependence or because of Fermi level dependence on X.

However, if you look at the variation of G, in this case, G will be very strong function of

Y. Therefore, in comparison with D G by D Y we can neglect D F equilibrium by D Y on

the other hand if you are looking at D F equilibrium by D X. So, this will be quite strong

compared to D G by D X. Therefore, now this are again we are made already couple of

assumptions here 1 2 and brought to this form, now for the case of transport parallel to

the  films  we  make  assumption  number  3  and  4.  Depending  on  the  direction  of  the

transport,  you  can  say  what  will  be  the  order  of  magnitude  of  the  derivative  F

equilibrium in the X direction it will be very important significant, where as in the Y

direction it will be non-significant. Therefore, when you write down let us say this is

your equation number 1 and reduced for the case of transport parallel to the film, can all

of you write that down?

We have D F equilibrium by D X very dominant, second term will be less significant, the

third term also will be less significant and then we have the fifth and sixth term out of

these 2 again, when you talk about D F equilibrium by D V X D F equilibrium by D V Y

which will be more significant. We have transport along the X. Therefore, the external



force  which  will  be  acting  the  electrical  field  or  whatever  it  will  be  acting  in  that

direction.  Once again we can ignore D F equilibrium by D Y comparison to D V Y

comparison to D F equilibrium by D V X.
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With all of this assumption for this case, the D T will reduce to therefore; it depends on

scenario, if you are now looking at the other case transport perpendicular to the film.

If you maintain therefore,  a temperature gradient or maintain an electric field in this

vertical direction in that case, how will you reduce this equation? When you talk about D

F equilibrium, in which direction will be the gradient? In Y direction, This will be the

greater corresponding to D G by D X D Y sorry and similarly if you are talking about D

F equilibrium by D X this will be much smaller in comparison to D G by D X and

similarly, D F equilibrium by D V Y will be great larger compared to corresponding

derivative here.
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Therefore, for this case, you get V Y D F equilibrium by D Y plus I think let me just

make sure I think the right terms here. This should be V X. I, this should be X D G by D

X plus I have F Y by M D F equilibrium by D V Y should be equal to minus G by tau. I

think this should be fine right now.
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What we will do first? Let us take the first case the phonon transport or electron transport

parallel to the thin films. We will take the case 1, transport parallel to thin films and can

you try to solve I mean what I can give you as a hint now, take the equation number let



us call this number 2. We have D F equilibrium by D X; you have D G by D Y D F

equilibrium by D V X. Now, let us group these terms. 1 side, left side we will group the

terms with respect to G on the right hand side we will group the terms with respect to F

equilibrium. Can all of you do that? You group that and write the right hand side terms

which are functions of X for example, D F equilibrium by D X we have D F equilibrium

by D V X. So, you can write this as some function of X and then try to get the solution

for that particular differential equation just attempt it.

Write 1 side of function of Y the other side function of X and whatever we have D F

equilibrium by D V X D F equilibrium by D X. These are just some function of X. You

group all of them as 1 single function of X and then you try to solve the O D with respect

to Y. I hope you could get to this point now right. I am writing on 1 side function of Y, G

is a function of Y and the other side F equilibrium as a function of X. All of this on the

right hand side together, we have 1 functions of X, the reason why we are doing this. In

fact, is that now when you take thin films and parallel to that it  is not very obvious

whether there will be size effects in this case because you have a confinement in the

direction which is perpendicular to the transport? You might wonder if I have a transport

in this way, how this confinement is going to bring size effect. 

But  what  is  happening in  nano scale  is  that  we are  talking  about  now scattering  of

phonons  or  electrons.  Not  only  electron,  electron  scattering,  but  electron  boundary

scattering is happening. This is going to bring about distortion of the equilibrium non

equilibrium function quite substantial,  even when you have transport  along the plane

along the film the distortion can happen in the perpendicular direction because of this

scattering mechanism. That is why we say that D G by D Y is still strong here.

Your D F equilibrium does not change with respect to Y; however, your D G by D Y we

cannot say that because D G by D Y is the reason why we are getting a size effect for this

case now there, where as a if you look at the transport perpendicular. So, there is a small

correction that you have to make. So, the transport perpendicular it is very clear if you

have  a  temperature  gradient  in  this  direction  and  you  have  a  confinement  in  that

direction. Your F equilibrium is going to vary in that direction and so is your perturbation

function. Perturbation function is also very strongly dependent in that direction not D X.

Please correct that. Therefore, we do not have D G by D X term here. It will be D G V Y

D G by D Y. What should be ideal case the way I have written here? This should be large



and you can say that, this is small and you have D G by D X approximately 0 because in

this  case  the  distortion  or  perturbation  cannot  happen  along  X for  a  case  you  have

transport perpendicular to the plane. I hope you are able to understand the point. So,

when we now do the solution you will be able to get this fact, but what you have to

understand right now is when we start the problem, where are the nano scale effects

coming from?

When you talk about transport parallel to the thin film, in this case the distortion function

still has to varying along Y. That is what is bringing the size effect. When you are talking

about transport perpendicular to the film, already the confinement is the Y direction, the

transport is also in the Y direction, the distortion function will be vary along the Y Y

direction. There is no variation of distortion function along X. In that case, your D G by

D X will  be 0,  you understand, but still  when you are talking about  transport  the F

equilibrium  will  depend  on  the  direction  of  the  transport,  but  not  the  perturbation

function, in the case of transport perpendicular to the film. You please correct it; it should

be V Y D F equilibrium by D Y plus V Y D G by D Y. 

Both  the  distortion  function  and  F  equilibrium  will  vary  along  Y, where  as  in  the

transport parallel to the films you are F equilibrium varying along X distortion function

varying along Y, but without that variation of distortion function along Y, there will be no

size effects. That is 1 which is causing size effects even when you have transport parallel

to the films and we will see how it is happening that is because of boundary scattering.

So, now, when you therefore, write this equation for thin films parallel transport parallel

to the films, we are grouping this all the Y terms on the left hand side all the X terms

because what we are more interested is to find the solution of G as a function of Y and

this is what contains the size effects information in it.

Therefore, we for the sake of solution we will just combine the terms with respect to X

as 1 function of X, for solution with respect to Y, this is not required that can be just

added as it is at the end. With we are more interested in seeking solution with respect to

Y and especially for G as a function of Y and therefore, when you solve that. Can you

solve this particular O D E now? We have this is equal to minus S knot of X. This is your

O D, where you have non homogenous term. There will be a complimentary function

there will be a particular integral, the complimentary function will be the solution to the

homogenous differential equation. What will be that function?
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That will be tau V cos theta into D G by D Y plus G equal to 0. This will be the solution

to the homogenous o D. The solution comes out to be; can all of you please quickly work

out and tell me? G is a function of Y. We can say C exponential minus Y by tau V cos

theta.

This is where the actual size effect is coming from. You are confining your Y direction.

You  are  confining  this  with  few  nanometers.  This  is  where  the  distortion  of  G  is

happening along Y and this is going to bring in the size effect for electrical conductivity

or  thermal  conductivity.  Therefore,  now  if  you  add  also  the  full  solution  will  be

complimentary function plus particular integral now is a function of X, does not depend

upon Y. That  can  be just  simply added on to  this.  Therefore,  you will  get  the  final

solution of G G of Y plus S knot will be equal to C exponential minus Y by tau V cos

theta. You keep this solution right now and mean while we will find out the expansion

for this S knot. Now we know already that S knot term is basically this. You have D F

equilibrium by D V X; you have D F equilibrium by D X. 

Just like we did it yesterday’s class, we can expand now D F equilibrium by D X as D F

equilibrium by D E F or D T in this case. Let us say you considering only transport of

electron flux, current flux. Therefore, this is the dependency of Fermi level on positions.

We can write as D F equilibrium by D E F into D E F by D X. Similarly if you are

talking about D F equilibrium by D V X, it is a function through E D F equilibrium by D



E into D E by D V X because of the dispersion curves.  Dispersion curves give you

relation between energy and the momentum, the same way that we did yesterday.
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If you do that, the expression for S knot of X will be minus and you substitute for the

force, Lorentz force charge time’s electric field. It comes out to be minus E times tau V

X D F equilibrium by D E into E X plus 1 by E D E F by D X. Please check this with

yesterday’s expansion. We also use the fact that your D F equilibrium by D E F is equal

to  minus D F equilibrium by D E.  I  asked you to  check that.  Did  you check that?

Different take the derivative of Fermi direct distribution function with respect to D F

with respect to U and check. There will be same in magnitude opposite minus the, did

anybody check that? So, you are convinced. All you could reach to this point. You have a

solution with respect that G of Y plus S knot. S knot is a function of S X and solution for

S knot is already known. It is a function of F equilibrium. 

Now here is where we understand try to understand what is happening to the scattering

of electrons. Now, when you talk about whether it is transport parallel or perpendicular,

inevitably you should talk about scattering of electrons at the boundaries because this is

where the confinement effect makes the difference. If there was no confinement, this

scattering from the boundaries will be very negligible. Electron - electron scattering will

be more predominant over electron boundaries scattering, but when you are now talking

about a confinement that you bring in, does not matter you whether you have transport



this way or this way, now you are going to have electron which come because as you see

from the solution to the B T electrons can travel in spherical coordinate system. It did not

travel only vertically up or horizontal.

It can travel in sphere encompassing in all directions of a sphere. There can come in any

direction. Electron which is coming like this will hit the boundary and it will change the

direction, similarly electrons which come to the bottom boundary will hit and change

direction.  Therefore,  this  process  of  electron  boundary  scattering  is  the  1  which  is

causing gradient of the perturbation function along Y. Even for transport parallel to the

plane, if you for example, therefore, look at the scattering mechanism from the bottom

boundary, we have assumed the coordinate starting from the bottom Y and we have the

scattering electron from the top surface.

When with respect to the coordinate system that we have taken for we have V X V Y. V

vector. We have taken theta with respect to the vertical. Therefore, what angles of theta

does this scattering from the bottom correspond to theta going from. You can, when you

are talking about variation of theta. Theta 0 starts from here and then you are talking

about  0  to  pi  by 2  and then  pi  by  2 to  phi.  When you are  talking  about  therefore,

scattering upwards direction, what is the variation of theta? 0 to pi by 2; and what about

the downward scattering? Pi by 2 to. Is that clear? This corresponds to the scattering in

all these direction. This is your upward direction where theta can vary from 0 to pi by 2

and now if you talk about scattering in this direction downward direction your theta can

vary from pi by 2 to pi and the other half is coming because of rotating phi. 

Now you are talking about a sphere. Your theta varying from 0 to pi and phi varying

from 0 to 2 pi. You first swipe a semi circle and then rotate it about the vertical axis or

correct. That will bring a full sphere. Therefore, we have these direction cosines here. In

this case direction cosines will be positive. Cos theta and in this case it will be negative.

We will call this part, which is scattered from you know which is moving towards the

positive in the positive direction cosine space as G plus and the solution which is moving

in the negative direction cosine space G minus. I hope all of you are following this. We

have this G as a function of not only Y. In fact, it is a function of cos theta as well.

And therefore, we have scattering of G going in all direction, even for 1 dimensional

problem. We are segregating,  we are breaking this  into the ones which are going up



scattering and going up the other which are scattering and going down we call this as G

plus and G minus. 

(Refer Slide Time: 49:07)

The same solution, therefore can be written as, you can say that G plus will depend on Y

and the positive direction cosine space can be simply S knot exponential. I have to do 1

more step here. The other thing is we have to apply from the boundary conditions in

order to calculate the constants. Now, will have 2 constants for this case, 1 for G plus

there  will  be  a  constant  the  other  G  minus  will  have  another  constant  understand.

Therefore,  we  have  2  constants  we  have  to  find  this  by  corresponding  boundary

conditions.  We have to  understand,  what  is  the characteristic  of the scattering at  the

boundary? What type of scattering it is? There are 2 extreme possibilities, 1 is called

diffuse scattering, the scenario I have depicted here.

An electron can come in direction, downward direction like this and the surface can be

so rough, that it scatters in all the directions from the boundary. This is called diffuse

scattering. In the diffuse scattering you have a uniformity of the emerging distribution

over the entire directional space.  All  of these are uniform, equal,  where as the other

extreme is called secular scattering you have a perfect mirror image, you have like a

polished mirror. It comes in a particular direction. It reflects like a mirror, mirror image

you know direction which is making theta to the vertical. We will look at this 2 boundary

conditions in detail in the next class, based on that we will calculate this constants, find



the solution and we have still not got the final solution, solution is only for G. Now we

have to use this to calculate the current flux, the way we did in yesterday’s class. Only

difference is yesterday we were doing it of continuum case and now we are doing for

nano scale case. 

So, we will stop here. 


