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Good morning. We will complete the exercise on the Ohms law. Derivation of Ohms

laws from the Boltzmann Transport Equation. I hope all of you are able to go back home

yesterday  and  try  to  rewrite  some  of  the  steps,  I  think  very  similar  to  the  phonon

transport  except;  that when you take the derivative of the equilibrium function,  with

respect to x, we have to make sure now, that we have gradient of the Fermi level, e f

rather than the temperature that was there for the forum transport and the other thing is

that, we have an electric field due to the transport of electrons and that also has to be

included because of the Lorentz force.

The  essentially,  the  change  in  the  gradient  in  the  equilibrium,  with  respect  to  the

momentum  space  or  the  velocity  space  also  has  to  be  accounted  for  through  the

dependency  of  the  energy  on  the  momentum  or  velocity.  So,  we  have  therefore,

expressed our derivative d f naught by d x, as well as d f naught by d v, in terms of you



know dependency of Fermi level on x and also the energy on v x. So, therefore, we have

a additional term compare to what we had for the phonon transport.

(Refer Slide Time: 02:02)

That was the term, which is the term e f and there be no transport of charge or current.

So, this electric field term; would have been 0 and this would have looked similar to the

phonon transport and if there was only temperature gradient then instead of dE f by d x;

you would have d t by d x correct.
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With this additional term therefore, we now have the generalized form of the Ohms law

which is applicable equally for both metals and semi conductors.

However, when we are now focusing on metals, we can make an approximation that, the

number density of free electrons are already too many and assuming that, the change in

the Fermi level is not too large with position therefore, we can neglect the gradient d f by

d x and therefore, we get reach the point where we can write down the Ohms law for the

metallic materials. If you want to cast it in the classical form of Ohms law, we have to

therefore, relate it to the property called electrical conductivity. Therefore, this is your

classical  form  of  Ohms  law.  Therefore,  we  now  get  a  relation  to  estimate  electric

conductivity from, the Nanoscale transport process.

The  Nanoscale  transport  process  here  involve,  the  dependency  of  the  equilibrium

distribution  function  on  energy as  well  as  the  relaxation  time,  velocity  of  electrons,

density of states for electrons and so on right. We can also do a further simplification of

this.
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For example if you once again go back to the Fermi Dirac distribution function. Which is

relevant for electrons and if you look at how the occupancy distribution looks right. So,

about the Fermi energy level e f, you can say this is your chemical potential at 0 kel

right. You have for example, certain distribution of electrons; now below the Fermi level

and few above the Fermi level and therefore, if you are really plotting this at 0 Kelvin

this would be a, sharp cut off, it is a direct delta function. Whereas higher temperatures

you have a gradual occupancy. 

All the lower energy levels are first occupied and then beyond the Fermi level also there

are electrons present. These are the free electrons now which can move around and these

are the cost for the high electrical and thermal conductivity of metals right. Therefore, if

you  want  to  calculate  the  derivative  d  f  equilibrium by  dE,  you  will  find  that  the

derivative usually has finite value around the Fermi level whereas, if you move away

from the Fermi level. So, that will be 0 because they are usually flattened out, so unless

you are looking at very high temperatures. At very high temperatures, then this curve

will  gradually  become  straight  line.  There  we  cannot  make  this  assumption,  but  at

moderate room temperature and so on. 



Low temperatures; we can make an assumption that therefore, d f equilibrium by dE is

non 0;  around the  Fermi  energy level.  We have  already  made  this  assumption  once

before; in deriving the heat capacity of electrons. If you put this assumption therefore,

the integral term of d f equilibrium by dE, says that I mean only around e f, this value

will be finite and non 0 and other regions; it will be 0 and if you integrate therefore, d f

equilibrium. It should therefore, satisfy from values of energy 0 to infinity, it should be

one basically. So, if you integrate this with respect to d e, you know then it should make

sure that maximum value is 1, minimum value is 0 and therefore, this can reduce to the

form minus e square by 3. So, the value of a tau at Fermi level, we have velocity at

Fermi level. You have the density of states also at the Fermi level. We are now making

simplistic  approximation;  where  in  all  the  derivatives  at  different  locations  can  be

ignored and only, we are looking at evaluating the integral at the Fermi level.

At the Fermi level you take all the values corresponding to the Fermi level and you

simply take them out as constants and integrate d f by dE d and which turns out to be 1.

Because this is has to vary from, the value of f equilibrium has to vary from 0 to 1

overall. in this case; the reduction of expression for thermal conductive happens from

this to this form. So, we will call this as equation number 2 and this is mostly the form

that is used to evaluate the electrical conductive of metals. That means, you use directly

the  density  of  states  evaluated  at,  the  Fermi  level  e  f  into  this  expression.  The

corresponding  relaxation  time,  the  relaxation  time  can  be  assumed  to  be  constant

independent of the energy level. And we can also assume the velocity of the electrons to

be constant. In that case, we can directly evaluate dE f substitute in to this and therefore,

you get the expression for the electric conductivity right.

This is similar again, if you go back and refer to the expression for thermal conductivity.

What did we have? We also had tau v square and C. C v divided by 3. Except now, we

instead of C v; we have something like e square times, the density of states. Here also,

the  C  v  had  a  density  of  states.  We assumed  suppose;  if  density  of  states  can  be

integrated assuming tau and v are constant. We get the total volumetric heat capacity.

There is analogy between the ways the electrical conductivity and thermal conductivity

are related to the relaxation time and the velocity of the energy carriers. So, this is to give

1 example. If you for example, yesterday we were talking about the case, where you can



also have simultaneous transport of charge flux and it can also transport temperature.

That is a case, where you have a non isothermal surface. So, in that case you also have a

temperature gradient along with the electron flux.

(Refer Slide Time: 10:26)

Therefore,  how do  we  evaluate  in  that  case.  So,  this  is  usually  the  case  when you

consider the thermo electric effects; that mean, you have a semi conductor or metal. You

have a d t by d x and you also, have the change in the electro chemical potential gradient.

There is an electro chemical potential gradient, you have a temperature gradient when

you want to therefore, calculate our d f equilibrium by d x. So, the same expression is

still valid for this case f is equal to f equilibrium minus tau v x into d f equilibrium by d x

and so on. Except that now, d f equilibrium by d x can be written as d f equilibrium by

dE into dE by dE f by d x right.

You also can write this as d f equilibrium. We can write this as partial derivative here d f

equilibrium by d t into d t by d x. So, now, you have an additional term which accounts

for they also transport of heat; along with the charge transport. Now, you therefore, have

to plug this into the expression here. Let us call this 1. In place of this you plug. There

we had only dE f by d x; now we also have the second term which is the temperature

gradient term and then proceed. Therefore, this is much more complex expression then,



when you consider without the temperature gradient or without the charge gradient. But

never the less; what this tells you, we can also do a similar procedure to calculate for

example,  the c  by coefficient.  For  calculating into understand,  for given temperature

difference how much is the current actually produced and similarly Peltier coefficient

which is the other effect you pass the current and then; you can basically maintain as a

result temperature difference.

You can basically transfer heat from a colder side to hotter side; which requires a work

input according to second law of thermo dynamics right. That work input here is the

currant. This is used in the Peltier effect. Therefore, we can get expression for both the

Seebeck and Peltier  coefficients.  So,  I  am not  going to  do  this  now, but  if  you are

interested you can refer to text book and I think in the test book this has been derived.

With this, you know all these are things which probably, you know for the micro scale

point of view. Now we know how, now we have to use thermal conductive electrical

conductive and similarly if you want to do this for molecules.

(Refer Slide Time: 14:05)

So, we are talking about ideal gas molecules right. We can derive the Newton's Shear

Stress Law. Where you want to say that tau x y is the shear stress, is related to u d u by d

y. Now, this is going to be a little bit more straight forward; only I will give the Maxwell



distribution. So, this can be derived for a scenario, where we can again talk about flow

between 2 plates. The top plate is moving this is the called the couette flow ok.

The top plate is moving with a velocity U, bottom plate is fixed and steady state velocity

profile; turns out to be a learner profile like this. 0 at y equal to 0 and at y equal to let us

say H, which is the separation between the plates. It attends the velocity of the top plate

U and you have your molecular velocities; v x and v y and similarly in the third direction

you have v z right.

(Refer Slide Time: 15:39)

For this case, the Maxwell Boltzmann distribution function; will be looking like n into m

by 2 pi k b t the whole power 3 by 2, where n is the number density of gas molecules

number of, total number of molecules per unit volume. m is the mass of the molecules

and we have e power minus m. Now, in the classical Maxwell Boltzmann; we have v x

square plus v y square plus v z square. 

That is the translational kinetic energy. Assuming these are all only mono atomic gas

molecules divided by k b t right so; however, now since we also have a flow right. We do

not, not only have a random motion of the molecules, but also bulk motion of these you

know gas molecules in a certain direction. So, in this case we can say that, the bulk



velocity in the x direction is u; which is a function of y this is the velocity profile. For the

couette flow u of y will be U into y by h.

It  is  a  linear  profile.  If  it  a  poiseuille  flow, in  a  circular  duct  then  you can put  the

parabolic  profile  and  so  on.  But  never  the  less;  the  classical  Maxwell  Boltzmann

distribution, does not account for basically the bulk motion. We have to therefore, correct

this. Therefore, the velocity, will become v x; which is your molecular velocity minus u

of y, which is your bulk velocity the whole square. Where as in the other directions, there

are there is no bulk velocity therefore, you have only the molecular velocity divided by 2

times  k  B  t.  So,  this  becomes  what  is  called  as  the  displaced  Maxwell  Boltzmann

distribution. 

This is usually used, when you are talking about flow transport. When you are talking

about statics; then you use your conventional Maxwell Boltzmann. When you talk about

bulk  motion;  then  in  term  you  replace  that  with  the  displace  Maxwell  Boltzmann.

Simply,  wherever  you  have  the  velocities  you  have  to  correct  it,  by  the  difference

between your molecular velocity and the bulk velocity and this is now used.

You again have the relationship between f and f equilibrium minus tau into v dot del r f e

equilibrium. The force term is 0 here correct. Now, we have to evaluate this. You have f e

equilibrium minus tau and this  is  your  molecular  velocity  here.  This  because  please

remember; this is the velocity of energy carriers, not the bulk velocity right. Therefore,

this will be v x. We have v x, v y, v z; however, when you talk about the gradient or

derivative of f e equilibrium. Your f e equilibrium; now can have gradients in all the 3

directions, but in our case in which direction it is going to be significant.

Student: Along y.

Along y because this profile u is the function of y therefore, when you want to express d

f equilibrium by d x, along d x, there is no variation. Because I mean u x, u y, u z are all

constants whereas along y, your bulk velocity profile is the function of y. Therefore, this

we have to be careful; when you take the dot product of this. So, we have v x, v y, v z

and therefore, this will become v x times d f equilibrium by d x, which will be 0. I plus



you have v y into d f equilibrium by d y j and since this gradient is 0 along x therefore,

only this has to be retain. You have f equilibrium minus tau v y into b f equilibrium by d

y.

Now, d f equilibrium by d y can be written as d f equilibrium. So, what is the function of

y? Only u is the function of y. It related to u and u have d u by d y. So, this can be

substituted to calculate; your shear stress, now the expression for shear stress becomes

much easier.
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Because Maxwell  Boltzmann distribution is  a  continue  distribution.  You do not  sum

them over, but you directly integrate them. So, therefore,  you directly integrate them

over all; d v x, d v y, d v z right. Over the entire momentum space, you directly integrate.

You do not have do a conversion involve density of states and all that here.

How will you calculate the shear stress? It is like; it is nothing but flux of momentum

right. Momentum flux is nothing but shear stress. In this case the momentum flux; you

are  talking  about  the  flux  of  x  momentum  right.  In  which  direction,  y  direction,

therefore, we have the x momentum, which is m v x; however; the flux will be in which

direction  y.  Therefore,  we  have  to  multiply  it  with  v  y  and  the  corresponding  non



equilibrium distribution.  Therefore,  this  has to  be integrated over all  the through the

entire momentum space; we have v x going from minus infinity to infinity v y and v z.

So, this can be interpreted as therefore, the momentum flux per quantum state. Which

you are now integrating over all the quantum states, the quantum states; however, we

cannot say quantum state in for the gas molecules. 

Because they are all continues distribution functions. These are nothing, but the entire

momentum spaces, which is continues. If you take one small chunk, may be d v x, d v y,

d v z. So, you have a particular flux of momentum. And if you integrate this over the

entire  once  again  conceptualize  like  spherical  coordinate  system;  you  get  the  total

momentum flux. And this momentum flux is nothing but the flux of x momentum which

is going vertically upward. This is the flux of the x momentum in this direction. 

This is what we want to calculate to relate to basically calculate the shear stress tau x y.

Because, we know that this, tau x y has to be relate to d u by d y. So, which is basically

nothing but the expression of the flux of x momentum in the vertical direction, gives you

the stress on the shear stress on the bottom plane. You can do a similar analysis like, we

did for phonons; all you have to substitute now is the expression for f from this into this.

You can evaluate d f equilibrium by d u; basically you can differentiate it with respect to

d u and similarly d u by d y. Because d u by d y is known for the couette flow and I will

give only the final expression.
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If, you do all that; you can express tau x y as sum the mu into d u by d y in the form;

which is classically known, where mu will come out to be 1 by 4 times d square, square

root of m k B t by pi.

I will leave this, as an exercise for you to substitute and integrate this. You can do this

integration in mathematical. d is the diameter of the molecule. Now, how this we got is

you remember. We have actually the expression in terms of the relaxation time, but we

can rewrite that in terms of mean free path and we have already derived the expression

for mean free path in terms of diameter of the molecules. We can substitute that and

finally, get a very fundamental expression. 

In terms of temperature, in terms of the mass of the molecule, in terms of the diameter of

the molecule, and if you compare this again with your expression from kinetic theory, it

will be similar. If you go back and rewrite that expression, the expression that we derived

under kinetic theory again; we need to substitute for the mean free path. You can go back

and refer to that expression; you can substitute for mean free path and finally, you will

get the same expression here. Is that clear?



So, therefore, using the Boltzmann transport equation, with an assumption that you know

the deviation from equilibrium is very small.  We have shown that we can derive all

continue  constitutive  relations.  All  of  them almost,  you  can  also  derive  the  fix  log

diffusion in the similar manner. When you, if you want to talk about therefore, mass

transport, momentum transport, heat transport, charges transport, these are the 4 main

most important transport  mechanisms. That is dealt  with by mechanical engineers by

chemical  engineers,  electrical  engineers.  All  of  this  can  be  shown  to  obtain  from

fundamentally from the Boltzmann Transport Equation.

This one thing and I want to quickly summarize, summarize and conclude; what we can

basically  take  away  from  using  Boltzmann  Equation  for  deriving  the  Continuum

equation;  however, we have to also look at  the validity of the Continuum Equations

themselves. Already, I have given you, some indication that, there are problems when

you apply them to slightly higher Knudsen numbers. But let us try to understand, what

the physical bases of this are. It is a generally talked about in terms of Knudsen number,

but what happens? What really gets violated? When you apply the Continuum equations

to large or moderate Knudsen numbers; to illustrate it once again we will go back to the

assumption that we made in deriving all these Continuum constitutive relations.

(Refer Slide Time: 28:29)



We always assume your f equilibrium to be independent of the directional space and we

therefore, took another distribution, which is the actual non equilibrium distribution and

the deviation between these 2 right. Now this is going to be the indicator of the extent of

the local non equilibrium. So, this is your at your particular location x, we are talking

about your deviation of f from f equilibrium.

So, the higher the deviation, the more is the indicator of local non equilibrium which

means that more is the deviation from making a Continuum assumption. Therefore, we

use this function g to indicate how far your f is displaced from your f equilibrium. We

made an assumption that number 1, that your deviation is substantially smaller than your

actually  equilibrium distribution  function  itself.  This  is  the  basis  of  deriving  all  the

Continuum equations right. 

So, and number 2 also the gradients, whether you are talking about the momentum space

or the actual physical Space. The gradients of the deviation function are actually much

smaller than the equilibrium gradients. This is again an important assumption that (Refer

Time: 30:36) to eliminate all the derivatives involving g. And also, we made another

important. Therefore, as we can also say that, we can also look at the time scales on 1

hand you had for example, d f equilibrium by d t and you also had d g by d t and on the

right hand side; you had your f equilibrium minus f which is nothing, but g by tau.
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So, we also neglected these terms with respect to the right hand side. We said, we are

looking at study state. But even when you are looking at unsteady process; the order of

magnitude of these terms for the Continuum processes, can be found to be smaller than

this term. For example, if you are saying d g by d t, it is much smaller than g by tau. So,

therefore,  since we are claiming that  the order of g and order  of  b  g is  similar. So,

therefore, we have to say that, the physical time scales t will be much greater than your

relaxation time tau right.

In order for this assumption to be valid what this means? You know do not, not only have

problem with Knudsen numbers. So, there can be a case were, a you can have value of

Knudsen number equal to 0.001; that means, it is going to satisfy this condition and this

condition, but still that can violate this third condition. How because you can have time

scales, which are much smaller than the relaxation time, it is a good example of this will

be for example, if we have a laser pulse which is basically irradiated on a surface. It

could be a metal or semi conductor. So, we are talking about this pulse width of the laser.

So, if you have a pulse lasers. So, usually pulse lasers are used in machining processes

and so on. You have continuous lasers, you have pulse laser, but pulse laser have specific

applications, where you want to make some deformations on the surface. You want to



(Refer Time: 33:32) out some material and so on. This pulse width can be very very

short. So, if you are talking about a picosecond laser; that means, the pulse width is of

the order of 10 power minus 12 seconds. And similarly, we have up to femtosecond

lasers. It is a pulse width is of the, order of 10 power minus 15 seconds. You just give a

pulse, which is of that width and you let it go. 

Now this pulse comes and hits the surface; now what is the order of mean free path? If

you are talking about phonons for example, just the order of magnitude; you have done

some calculations in your assignments. So, you should be able to tell me. Let us say

silicon; semi conductor material. 1 nanometer is very small. It should be of the order of

22  few  100  nanometers.  Even  if  you  say  20  nanometers  if  you  are  talking  about

electrons; then that can be the order of few nanometers.

But generally all this relaxation time scales of the order of nanometer. Now, when you

use picosecond or femtosecond laser what happens, this condition is violated. Clearly

therefore, you are talking about Knudsen number which is perfectly seems to be in a

Continuum range,  but the third condition is clearly violated so; that means,  still  you

cannot make this  assumption for this  case to derive the Continuum equation.  This is

clearly not this is not your Continuum. 

Therefore, you have to be careful, when you judge. What is sub continue? Not only the

length  scales,  but  time  scales  are  also  very  important  because  to  derive  all  these

Continuum equations, from fundamental Boltzmann transport equation. We have to list

down the assumptions we make and one of the assumptions is that your physical time

scales are much larger than the relaxation time scales and if any process which violet this

will not satisfy Continuum right.

This is the very very important thing and I mean to highlight this, how we ignore this,

many times when we even derive you know heat transfer laws. Just to give an example,

because this is a good example also given in (Refer Time: 36:39) test book. I find that

many people may not even understand, that they are violating. This is actually, the case

were we talk about no I think many people would have done this. In the heat transfer, we

derive the semi infinite approximation in conduction, transient conduction. How many of



you remember the transient conduction problem? In transient conduction what we say is

there are  different  ways of dealing transient  conduction.  We have small  biot number

cases; we have a moderate and large biot number case that is one thing. And we have

another  case for example,  if  you take entire  earth we do not want  to  spend time in

solving conduction, right from the core of the earth to upper layer. So, that is impossible

to do right.

You are talking about several thousands of kilometers and finally, if you go and measure

some  point  here.  So,  this  temperature  will  be  quite  different  from this  temperature.

Assuming that, some I mean, we do not have any source of energy at the core. If you

apply some heat at this point, let us say you maintain this as T wall. If you consider the

other  end;  which  is  may be several  thousands of  kilometers.  Within  few seconds or

minutes this will never be able to sense this temperature correct. Therefore, this will be at

whatever initial temperature it is there. 

We do not have to solve a transient conduction rigorously through the entire body. So,

we make an assumption that the other end is always static; so that means, the initial

condition is imposed on the other end as a boundary condition. So, this is always at the

initial temperature whereas, you solve the heat equation only for say, what we called as

half of the domain half of the domain and we impose this condition to the other end

whereas, the this end is where we impose the physical temperature, higher temperature or

a heat flux or a convection boundary condition.

And when we solve this typical, the transient heat conduction, which all of you know.

So, d T by d t is equal to you have alpha k by rho c p. So, we can write this as basically

alpha times d square t by d x square. If you are talking about heat conduction in this

direction and with the boundary conditions that at x equal to 0 you have T wall and at x

going to infinity. It is at the initial temperature t i.



(Refer Slide Time: 39:41)

The solution that comes out will be T x comma t will be an exponential d k minus x

divided by square root of alpha t, is of this form. You have some other constants but

basically it is an exponential variation. What it tells is that, if you apply a temperature

pulse  for  example,  here  momentarily  and  then  live  it.  According  to  this,  now  this

expression is of course, we already use the Fourier's conduction equation here right. And

then we are deriving this equation for temperature. So, what it say that x going to infinity

what is a value of temperature.

So,  let  us  say  this  is  something  which  is  quite  large.  Maybe  something  like  100

kilometers  or  something  like  that.  So,  if  you  plug  in  the  value  of  x;  this  value  of

temperature according to this equation will not be exactly 0, but it will be some finite

value  right.  Even a  momentary  pulse  this  does  not  distinguish,  whether  you have  a

picosecond pulse or you are continuously heating. So, whatever you apply. So, this says

that at position which is very very large. 

So, there the value of temperature is still finite means, that it is assuming that the speed

of propagation of heat is not equal to the speed of sound in the medium, but it is infinite.

The  moment  you  apply  basically  a  temperature  or  a  heat  flux  on  one  end  and

immediately other end is able to sense it and response to that. Which is, which we know



now, from the basic energy carrier point of view that cannot be possible because the

energy carriers in this case, it would be phonons or electrons are traveling with the finite

speed.

And many a times, if you are talking about femtosecond or picosecond irradiation; we

cannot even by the time it even senses the I mean incoming radiation basically you have

the impact. They cannot even transfer this. Therefore, you get hot spots. Suddenly you

get portions, which are having very high temperature; because the local electrons are too

excited,  that  they cannot  even transfer  the  energy to  the neighbouring  electrons,  but

simply they explore with lot of heat; however, if you use the Fourier's equation it is very

clear that it tells you that the speed of propagation of this heat is infinite and the other

end is still able to sense some finite value of temperature. 

So, this is a clear elastration of the fallacy of using the Fourier's constitute relationship;

for a case where it is definitely not possible to no. In this case you definitely cannot

except, if you put a thermo couple there, you will not be able to actually measure any

temperature coming from the other end; but the distribution from the Fourier's equation

shows its only exponentially d k right.

Therefore, what do we do for such cases? Where you have problem with, where the

Fourier's law violates, but you want to still retain the Continuum based assumption. You

do not want to completely discard the Continuum based assumption. The cases where

you have extremely small physical time scales correct or you have problems with this

kind of you know semi infinite medium and so on. 

Therefore, we use what is called as the Cattaneo equation. So, this is called Cattaneo

equation. The Cattaneo equation is a modification to the Fourier's equation; or it is a

correction to the Fourier equation. So, basically your Fourier equation says that your heat

flux is equal to minus k d T by d x. Now the Cattaneo equation puts a correction term to

this, which is basically tau into d q by d t it adds the correction term.

So, what this tells you is that it now brings in a time factor. This is your relaxation time

of the energy carrier. You see the Continuum equation themselves; do not talked about



anything about the collision of energy carriers and so on. But without bringing that into

account, you cannot talk about the finite speed of propagation of heat. So, therefore, to

correct for that, we have a relaxation time tau. In the case of larger Knudsen numbers;

you can talk in terms of large values of tau. 

So, then this term become significant if you talk about the limiting case, where tau goes

to 0. So, this can disappear vanish and you get your Fourier's equation right, but this is a

correction term which accounts for the finite speed of the propagation of heat and if you

substitute this into the heat conduction equation.  Our heat conduction equation states

that, your rho c d t by d t is equal to minus del dot q.

(Refer Slide Time: 45:47)

So, you can substitute instead of the classical Fourier's approximation, you can substitute

the Cattaneo equation and you can derive, what is called the hyperbolic heat conduction

equation. Resulting equation is called hyperbolic heat conduction equation. So, this is

called hyperbolic, because of accounting for the finite speed of propagation. So, like any

hyperbolic equation and this is used as a substitute in cases where you have problems

with the time scales. So, any physical process which has smaller time scales than the

relaxation time. So, we still may use the Continuum assumption, but we correct it with

the Cattaneo equation.



Just with this I want to finish this part. Now also talking about, we are still talking about

Continuum equation. So, the last part is. How do we really derive all the Continuum

equations, there is conservation of mass, conservation of momentum, conservation of

energy and so on. Because we showed that all the constitute relation, that is relating flux

with  the  gradient  we  are  able  to  derive,  but  what  about  the  conservation  of  all  the

fundamental quantities like mass momentum and energy. 

So, even this can be derived from b t e. Just to show that for example, you have your

Boltzmann Transport Equation plus you have f by m dot del v f, if you take the moments

you know. So, when we say moment,  we have to  multiplied with the corresponding

quantity x. which is of interest for example, if it is mass you multiplied by mass, if it

momentum, momentum energy and you integrate this over the entire momentum space.
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So, we call this is d cube v and on the right hand side. So, on we have on the right hand

side, the collusion term also which has to be multiplied by the corresponding quantity

and you integrate it.  So, your x could be mass or momentum or energy. It could be

kinetic if you have monotonic gas, you can have kinetic energy plus, you can also have

vibrational energy, potential energies and so on.



You substitute into this and we can integrate it over the momentum space. So, we will be

able  to  see  that,  we  can  get  all  the  conservation  laws  like,  continuity  equation,

momentum equation and energy equation. Not only the constitutive relations, but also the

conservation equations can be derived from the Boltzmann Transport Equation by talking

the suitable moments.

I will probably put a small homework problem, where you can substitute for mass and

then show that continuity equation can be derived from this. It is a quite straight forward.

With  that  we  will  stop  discussion  related  to  application  of  Boltzmann  equation  to

Continuum process. In the next 2 to 3 classes, we will derive use Boltzmann equation to

derive the Nanoscale transport process. So, far we have not done any example where we

have a high Knudsen number case and we want to see how for example, the temperature

distribution looks. That is the last part of the Nanoscale transport. We will take that up,

starting  tomorrow  another  couple  of  class;  we  will  derive  the  Nanoscale  transport

process.

Thank you.


