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Boltzmann Transport Equation under the 

Relaxation Time Approximation

Good morning,  today we will  look into the details  of  Boltzmann transport  equation,

yesterday we derived I mean derived in the sense that it is not a very rigorous derivation,

but we showed that for a one particle distribution. So, you basically convert the complex

linear equation into a kind of solvable form of the Boltzmann transport equation. So, this

is the more practical equation to solve concerning the practical distribution compared to

the more complex computationally expensive linear equation; however, you end up with

having an additional term the Boltzmann equation which is the collision term. So, you

have to somehow learn to deal with the complex city involving collision and coalition is

actually in physics this a multi body problem; that means, many body problem involving

the scattering between at least minimum of 2 particles and it can also be extended to

large number of particles, even for a 2 particle system, if u want to express the coalition

term this written as what we call as the scattering integral.

From present state which is u know say K is your present state is your wave vector and it

collides with another particle which is having K 1 is the wave vector of other particle and

the after collision the respective wave vectors becomes K prime and K 1 prime. So, we

want to therefore, integrate this over the other wave vectors values for K 1, K prime and

K 1 prime and therefore, we are calculating what is the net change in the wave vector

due to scattering from its present state to another state for example, from say K to K

prime and the other one is the scattering which is coming from scattering from another

state which is probably K prime and if it scatters it wave vector come back to state K. So,

the net change in this out scattering minus in scattering will be v scattering integral. So,

which has to be integrated over the all other wave vectors space except the current wave

vector which is K.

So, therefore, this gives u the scattering integral and just the collision rate of change of

distribution due to collision. So, this is a very complex integral to evaluate and again

therefore,  people  maybe in  physics  have tried for some simply system, but  not  very



useful  therefore,  what  people  do is  they  apply  what  is  called  as  the  relaxation  time

approximation.

(Refer Slide Time: 03:38)

So, this it is a very simplistic, but very a practically useful approximation. So, what they

say is that the you are entire scattering or collision term that we have on the right hand

side can be simply expressed as a change from the equilibrium function. So, we can write

this as f minus f equilibrium divided by some time scale tau. So, In fact, it should be I

think the way we have written it yes, this is fine this is your simplest way of dealing with

the collusion now you will see that in this picture there is nothing we talking about 2

particle interaction and how the wave vector changes after collision and all that there is

no information of any of this particle approximation.

So, the inspiration for this comes from using what we call as the Bhatnagar gross Krook

approximation Bhatnagar gross Krook. So, this is simplified as b g k approximation this

is quite common in clarified gas dynamic. So, in the clarified gas dynamic is also the

Boltzmann transportation equation is also used and there is also a similar problem with

collision between the gas molecules and there we bring in b g k approximation very

similar to the 1 that we have written here. So, we take an analogy from the gas molecule

theory  or  gas  kinetics  and then  we apply  that  to  also  the  other  energy  carriers  and

simplify  the  collision  term.  So,  you  should  understand  that  this  is  a  huge  level  of

simplification  starting  from where  we,  where  we  looked  into  the  complex  coalition



integrals  and  so  on.  So,  we  have  drastically  simplified  the  collision  integral  with

something which is quite different, it does not describe anything about the change in the

wave vector space and all that, but what this physically signifies is that if you put this

back into  the  Boltzmann equation.  So,  for  example,  we have  written  the Boltzmann

equation  here,  if  you substitute  in  place  of  right  hand side and you ignore  all  your

advection terms that is the rate of change of position and in the case there is no external

course there is no change in the momentum also.

(Refer Slide Time: 07:01)

So, in that case you have the time rate of change of distribution function on the left hand

side  on  the  right  hand side you have  the  b g  k approximation.  So,  in  their  case  of

negligible advection and force therefore, we can find out the solution for this for the

simplest case there is no change in momentum space there is no change in the physical

coordinate  the  distribution  function  only  changes  with  time  right,  this  is  a  simplest

possible solution that you can think of what happens. So, what do you get here you have

d f by f minus f equilibrium is equal to d t by tau to find out integrated find the solution I

will come to the physical explanation of tau. So, through this we will able to interpret

what exactly tau is yes you can assume right now it is a constant. So, u can assume that

your tau is a constant this has units of time, but it is different from the actual physical

time yes. So, we have f minus f equilibrium is equal to c e raised to t upon tau. So, this is

the  solution  for  this  case  where  distribution  function  is  not  a  function  of  space  and

momentum, but it is only function of time. So, from this you can get a feeling of what



this  tau or relaxation time this  is called the relaxation time now right what does tau

signify here. So, if you are looking at t by tau which is quite large going to infinity it

should  be  e  power  minus,  I  think  we  have  made  c  power  I  think  it  should  be  f

equilibrium minus I think we have to make this as f equilibrium minus f. So, that we

know what we are talking about here just let me change this to f equilibrium minus f. So,

will have a minus sign here therefore, this will be f equilibrium minus f and we have a

minus sign.

So, what that signifies is large values of time going to infinity. So, what does it mean this

is going to 0 so; that means, your non equilibrium function is approaching equilibrium

distribution. So, you can imagine if you want to plot the equilibrium distribution this is

the kind of  uniform distribution  in  space.  So, if  you are supposed plotting  this  with

respect to space or momentum space or physical coordinate space this is may be like a

circle it is uniform it is not changing with any direction now, if you look at  the non

equilibrium function that will be now distorted like something like this. So, this is you

say f equilibrium. So, this is your f. So, you are all the time looking at their difference

between these 2 distribution functions and what it says is this relaxation time is some

kind of time scale over which you bring the non equilibrium distribution function and

you relax it to equilibrium distribution function.

So, this is a kind of time scale therefore, relaxation time indicates some kind of a time

scale  about  which  this  relaxation  of  non  equilibrium  can  take  place.  So,  physical

significance of the relaxation time is  basically  how long does it  take for a disturbed

system or system this which is actually having a non equilibrium in transport case to

bring  back  this  system  to  an  equilibrium  case.  So,  how  does  this  bring  back  to

equilibrium only through scattering  only through collision  right?  So, this  is  how the

collision is incorporated. So, entire collision is incorporated only through the scattering

time or the relaxation time otherwise people may wonder what this to do with coalition

is, but the information about the collision is completely buried into this definition of the

relaxation time.

So, this tells you that through multiple collisions. So, the higher is a coalition rate the

higher is a scattering rate the faster is the return to the equilibrium. So, or in other words

if you are talking about smaller relaxation times what does it mean? Higher will be the

collision rate; that means, the particles are probably packed, but close to each other. So,



the relaxation times are smaller. So, quicker will be the return of the non equilibrium to

equilibrium  distribution  function.  So,  this  is  the  way  that  the  Boltzmann  transport

equation with the relaxation time of approximation is used. So, now, the only unknown

parameter that we have to find is basically what is this relaxation time and what does it

incorporate and how do we calculate it. So, once you know that we can attempt to solve

the Boltzmann transport equation.

(Refer Slide Time: 14:52)

So, this is the very useful practical approximation that is commonly used to solve the

transport problems. So, if once you substitute this into the d t. Now, therefore, you write.

Let  me  check  the  signs  if  I  am  saying  it  is  f  equilibrium  minus  f  it  should  be  f

equilibrium minus f right. So, yes it should be f equilibrium I think here, I should change

the sign please correct it. So, this should be f equilibrium minus f here. So, therefore, this

part again now changes to f minus f equilibrium, some correction regarding the sign this

should  be  f  equilibrium f  minus  f  equal,  here  also  f  equilibrium minus  f  right?  So,

therefore,  this  is  you  are  what  we  call  as  the  Boltzmann  transport  equation  in  the

relaxation  time  approximation.  So,  we  write  b  g  b  t  e  under  relaxation  time

approximation  or  sometimes  people  call  this  b  g  k  approximation  and  what  is.  So,

important  about  this  Boltzmann  transport  equation  now  if  you  want  to  non

dimensionalize this.



So, let us consider a case without any external force. So, let us for the time being ignore

the 3rd term you can choose some reference velocity u reference for the sake of non

dimensionalization right and therefore, you can substitute this reference velocity into the

actual  dimensional  velocity,  similarly  you  can  choose  a  reference  length  scale  for

example,  if you are talking about something like heat transport between 2 plates. So,

plate  on1e  maintained  at  a  higher  temperature  t  h  and  plate  2  maintained  at  lower

temperature t c. So, you are talking about the scale length scale which is the separation

distance between the 2 plates which could be capital L. 

So,  therefore,  you  can  use  the  length  scale  to  non-dimensionalize  as  L this  is  your

characteristic length scale. So, now, substitute the reference velocity and characteristic

length scale try to get a non dimensional form of the Boltzmann equation. So, for the

time being we have neglected the third term which is in the momentum space we do not

want to non dimensionalize that  now and see what happens you do not have to non

dimensionalize  the  distribution  function  distribution  function  anyway  just  a  number

density you do not have to non dimension only non dimensionalize the time velocity and

position.

(Refer Slide Time: 19:27)

So, you can call something like v star is equal to v vector by u reference and something

like x star or r star whatever you want to call x by L y star as y by L or whatever, or you

can say generally r star is equal to r vector by L. And you can call t star t by some other



scale now, in this case what will be the time scale now based on the reference velocity

and characteristic length L by u ref. So, you have d f by final non dimensional form d t

star plus v start r star let us say f, on the right hand side we have f equilibrium minus f by

tau. So, what else will be there? So, we have a u ref u ref by L. So, this should be L by u

reference upon n right. 

So, therefore, now we can define. So, this is tau into u reference, how do you define?

What is the definition of; what is the relation between relaxation time and mean free

path? This is your mean free path right? So, therefore, this is your mean free path divided

by L. So, what is this is your Knudsen number. So, therefore, the non dimensional form

of the d t will have on the right hand side the corresponding non dimensional number

which is your Knudsen number. So, this is just like your non dimensionalizing your fluid

mechanics or heat transfer equation.  So, there you will have Reynolds number fantle

number similarly here you have the characteristic non dimensional number which is your

Knudsen number. So, that is what it says if you are talking about continuum that is the

case where the Knudsen number what is the limit for continuum going to 0. 

So, what does this tell about this equation when the Knudsen number is going to 0 what

happens to the equation now look at the terms.

(Refer Slide Time: 24:02)

So, this term will  now go to infinity. So,  this  will  become the significant  term right

therefore, this scattering will become the most important term for the limiting case where



you are approaching continuum that is because you have now too many energy carriers.

So, they can collide.

So, advection process will be very insignificant compared to your coalition process. So,

then that  is  your diffusion limit.  So,  all  your macroscopic loss of continuum can be

derived under this particular condition. So, for example, fouriers equation right Newtons

shear stress loss for ohm's law flicks law of diffusion all this can be derived under the

limits where you have you are dominated by diffusion, diffusion is nothing, but coalition

of the energy carriers. So, this is possible only you are talking about very small Knudsen

numbers where the scattering term becomes varies very significant and more dominant

compared to the advection term. 

On the other hand if you are talking about high Knudsen numbers Knudsen number is

going to infinity. So, this is you are what is this limit free molecular limit if you talk

about gas dynamics, if we talk about nanoscale generally this is called ballistic transport;

that means, in this case what happens to this term 0. So, there is no collision at all right.

So, Knudsen number is infinity there is no collision between the energy carriers; that

means, the transport is ballistic it is like a missile, if you talk about a high temperature

body and low temperature body here. So, the energy carrier from here directly goes hits

this particular boundary right. Similarly energy carriers at this temperature will directly

fly and hit this particular bond in between there are no energy carriers to collide and

transfer the information.

So, this is called a ballistic limit. So, they are just directly like a project time shoot at

shoot shooting from 1 boundary to the other and therefore, what happens there will be a

shock. So, when this energy carrier sees flies to the 2nd boundary it will encounter a

different temperature right. So, this has an equal for example, this has certain distribution

based on the temperature of this odd surface and now it goes and encounters the 2nd

surface which is at a lower temperature, but it does not know that information because

there are no energy carriers in between. So, there will be a shock. So, if you solve this

particular problem using the Boltzmann transport equation. So, what do you expect is

suppose this is your T h and this is your T c, there will be a temperature jump like this

and something like this and again a temperature drop like this. So, the phonons if you are

looking at solid the phonons cannot transfer basically all this information to the cold side

and similarly the cold side information is not transferred to the hot side. 



So, the phonons will have an energy density which is somewhere in between these 2

temperatures at the boundaries there will be a discontinuity. Because the phonon which is

coming from the cold side will have a lower density compared to the boundary similarly

the phonon going to from the heart to the cold side will have a higher energy density

compared to the cold bond therefore, it has to only now have a discontinuity as a solution

as and when you are Knudsen number keeps smaller and smaller you are approaching the

continuum limit. So, you find finally, for Knudsen number going to 0 what will be the

solution how will the solution look? This is your linear based on you are fourier equation

linear profile this is you are classical conduction profile right and why this conduction

profile is linear because it is dominated by diffusion.

So, when you do not have any information propagation by diffusion it is completely only

advection  which  transports  and therefore,  you have  this.  So,  this  profile  will  be  for

Knudsen number of infinity and this is your diffusion limit. So, now, you understand that

the Boltzmann transport equation is a self sufficient equation it carries all the information

regarding what kind of regime you are working with.  So,  you do not have to worry

whether you have to solve separate equation at Knudsen number going to 0, because the

same  equation  Boltzmann  transport  equation  will  be  equivalent  to  the  continuum

equations  at  that  limit  whereas,  it  will  also behave like a proper  nanoscale  transport

equation at larger Knudsen numbers. So, therefore, this particular equation here is valid

for all the Knudsen number ranges from 0 to infinity right. Because it can recover the

continuum  equations  on  the  lower  Knudsen  number  regime  on  the  higher  Knudsen

number regime it will become a unique solution. So, let us understand therefore, little bit

how to calculate these relaxation time and what does it  basically involve right.  Now,

when you are talking about scattering?
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So, this is a very important topic because the relaxation time is now as I said all the

information about the coalition and scattering between the energy carriers are buried into

this particular parameter. So, therefore, what are all the different modes of scattering and

how this information has to be conveyed to tau?

So,  1  of  the  important  modes of  scattering  is  if  you take  the  case of  electrons  it  is

electron scattering for example, if you take the case of phonon you talk about phonon

scattering similarly for gas molecules. Now, if you are looking at solids for example,

semiconductor their phonon transport is the most dominant. So, it is not only phonon

scattering, but you also have phonon scattering with other things such as impurities if

you are doping the semiconductor make it either p type or n type. So, this are external

impurities and. So, these impurities are dislocations in the crystal will cause a resistance

to the flow of this lattice vibration. So, when you model these as particles again you have

to think about scattering of phonons with these dislocations or impurities. So, therefore,

you can have a 2nd type of scattering which is your phonon impurity scattering because

the impurities themselves are not a physical carrier. 

So, they are some kind of resistance to the flow of phonon and the phonons have to

encounter  them most  likely  they  cannot  pass  through  these  impurities.  So,  they  get

scattered and that is a certain scattering time associated with that and finally, if you are

talking about the high Knudsen number cases what happens to the phonon? Which is



traveling from the left to right, assume that is no impurity here there are no other phonon.

So, there is no phonon scattering there is no phonon impurity scattering. So, we can say

that the right hand side term goes to 0, but you also have a phonon boundary scattering

the phonon just does not go and get stuck to the boundary it also gets scattered from the

boundary surface.

So,  it  is  a  physical  boundary  and  the  phonons  cannot  propagate  through  them.  So,

therefore,  the  3rd  kind  of  scattering  is  a  phonon boundary  scatter,  similarly  for  the

electrons you can also talk about all these and you also have in most of the metals and

semiconductors  electron  phonon  scattering  very  important.  Because  the  electrons

basically are free electron which can move about in the crystal and already you have this

phonons. So, there are many instances where the electrons have to now collide with the

phonons so. In fact, this is the reason why you have electrical resistance in the 1st place

if  there was no electron phonon coalition your resistance will be 0 the electrons can

freely flow through the metals or semiconductor, but they are resisted by the phonon. So,

therefore, you have a finite value of electrical resistance. 

So, in order to understand physically things like electrical resistance thermal resistance

you have to look at the individual scattering for example, electrical  resistance can be

explained by the electron phonon scattering and similarly the thermal resistance can be

explained by means of  phonon scattering.  So,  if  you are looking at  electron  phonon

scattering this is a highly inelastic scattering process. So, you have 2 different energy

carriers  colliding.  So,  your  energy  will  change  post  collision  your  wave  vector  will

change and also the coalition between electron and phonon will not be just like that. So,

the electrons cannot interact with all kinds of phonons. The electrons will sometimes into

it interact with the higher frequency phonons most likely the optical phonons and that

will result in the release of some electromagnetic energy also.

All these possibilities are existing. In fact, they use many of these principles to make

semiconductor based you know light emission phenomena and all this related to such

kind of electron phonon interaction. So, let us particularly focus on phonon interaction

because if you are looking at d transport in semiconductors. So, what happens is if you

are talking about a system where you have 2 phonons.
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Let us say you have phonon 1 with wave vector k the other phonon wave vector K 1 and

these 2 collide and you have a 3rd phonon which is formed these 2 common collide and

then  these  are  virtual  particles.  So,  you  can  say  after  collision  it  be  equivalent  to

formation of another phonon with a wave vector which is K prime. So, similarly if you

are talking about let me use the standard nomenclature K 3. So, let me call yes, let me

call this is K 1, K 2 and K3, let me not use this prime again because I have used this

before let me. So, similarly you can have similar collision between 2 phonons K 1, K 2,

but there is a difference between these 2. So, you can imagine this boundary what I have

drawn is the boundary of the brillouin zone. So, this is the periodic repetition of this unit

lattice  structure  and when we talk  about  the  phonon minimum wave length.  So,  we

talked about say monatomic lattice where we have this kind of a structure and what is the

minimum allowable wave length.

So, therefore, if you are talking about this is you are a. So, therefore, this will be 2 times

a. So, I have to redraw it not drawn its correct let me resolve. So, this is you are a here.

So, therefore, the minimum allowable wave length will be 2 a. So, wavelength which is

smaller than this does not make sense. So, you cannot have vibrations like this, which are

much smaller than the lattice space. So, therefore, this lambda mean is equal to 2 a is

going to define the boundary of the brillouin zone right. So, when we therefore, define

collision  between 2 phonons we have to  make sure that  the  wave vector  of  the  3rd

phonon is not greater than the allowable wave vector space within the brillouin zone. So,



if this wave vector exceeds the brillouin zone wave vector. So, this will suppose to move

out of the brillouin zone, but which is not possible because you cannot have vibrations

which are smaller than the lattice spacing. 

So, therefore, you have to correct this by pushing this back into the brillouin zone. So,

you have to therefore, correct it by some reciprocal what we call as a reciprocal vector

some correction is to be done. So, this is your reciprocal vector which makes sure that

your solution is physical and therefore, we correct it by that much and we push it back

into the brillouin zone. So, therefore, this kind of scattering where it does not exceed the

brillouin zone space this is called normal scatter and the one which has to be corrected

back using the reciprocal vector is called the unklapp scattering. 

So,  if  you want  to  write  the conservation  of  momentum and energy for  the phonon

scattering.  So, in the case of the generic case for the conservation of momentum, we

have K 1 plus  K 2 is  equal  to  K 3 for the normal  scattering;  however, for unklapp

scattering minus g. So, this reciprocal vector will be 0 for the case of normal scattering,

but is required for the case of unklapp, but whereas, we will talk about energy that is

perfectly conserved. So, these are the pre collision values of wave vector and energy and

this is the post collision value right.

(Refer Slide Time: 44:15)

So, in other words if you are representing by means of plot of E verses K for example,

the edge of the brillouin zone is what phi by a. Therefore, if you are talking about the 2



phonons, one which is having k 1 the other which is K 2, K 1 plus K 2 if it is greater than

phi by a. So, this is corrected by the reciprocal lattice vector and brought inside because

this is your maximum allowable value of K, corresponding to the minimum wavelength

lambda this marks the edge of the brillouin zone right so. In fact, if you take therefore,

the normal scattering momentum is perfectly conserved and there is no problem. 

Now in the unklapp scattering this is where the reciprocal lattice vector is used because

now this poses a resistance now to the momentum, other words I mean in the normal

scattering  case  there  is  no resistance  to  the collision  of  the  phonons and transfer  of

momentum  whereas,  in  the  case  of  unklapp  scattering  there  is  a  resistance  to  the

momentum transfer. So, the momentum is brought down by means of this reciprocal

lattice  vector  reciprocal.  So,  therefore,  this  is  the  one  which  results  in  the  thermal

resistance. 

On  a  fundamental  basis,  if  you  want  to  describe  why  we  have  a  finite  thermal

conductivity of a solid. So, that is because of the presence of unklapp scattering if there

was no unklapp scattering your thermal conductivity would have been infinite because

the phonons can flow easily without any resistance. They can transfer the momentum

they  can  transfer  the  energy  the  conservation  of  momentum  is  satisfied.  So,  the

momentum will not come down right so, but what is this resulting in the reduction of the

momentum is the unklapp scattering which brings down the momentum and therefore,

builds a resistance for the flow of heat.

So, this is the most important scattering mechanism when you want very when you are

considering the effect of finite thermal conductivity. So, therefore, to summarize unklapp

scattering  process  contributes  to  a  finite  thermal  conductivity.  So,  if  there  was  no

unklapp scattering. So, you will be having infinite thermal conductivity and whereas, you

are normal scattering does not contribute to any resistance no resistance. So, through this

you therefore, you can explain through the electron phonon coalition you can explain the

finite electric resistance and through phonon in unklapp scattering mode you can explain

the  finite  thermal  conductance.  So,  now,  how  do  we  therefore,  calculate  all  these

scattering  modes  we  have  normal  scattering,  we  have  unklapp  scattering,  we  have

phonon impurity scattering phonon boundary scattering.
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So, how do we calculate all of this? So, there are some standards expressions which I

would just like to give for example, if you take the case of unklapp scattering. So, the

relaxation time has a particular empirical correlation this is like this. So, now, these are

constant capital B and small b are constants and you are theta d you remember what it is

you are d by temperature and t is you are actual temperature the physical temperature and

omega is the frequency all this in Kelvin. So, depending on the kind of material these

constants can take different values so.

So, this is how empirically the phonon scattering time is calculated, similarly if you are

looking at phonon impurity scattering. So, the expression use this subscript is I a omega

power 4, where is also another constant this phonon impurity scattering can be imagined

like Rayleigh scattering in Rayleigh scattering also we have 4th power dependence to

frequency scattering time that is the Romans scattering or whatever, we attribute the sky

color is blue because the if you look at the frequency the higher the frequency the greater

the probability of scattering. So, that is why we have this. So, this is similar to your

Rayleigh scattering modes. 

So, that is why we have 4th power dependence on frequency. So, therefore, we have all

these  different  scattering  relaxation  times  therefore,  how do  we  calculate  your  total

relaxation time. So, we use what is called as a harmonic mean or this is also called as

Mathiessen rule which is just a harmonic average of therefore, 1 over tau will be 1 over



tau u this is a unklapp scattering time and the other is your phonon impurity scattering.

So, using the Mathiessen rule which is the harmonic mean of the different relaxation

times you can get your final relaxation time and substitute into the b t. So, we will stop

here.

Thank you.


