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Today we will look at the actual transport phenomena. So far we are focused on basically

the equilibrium process that is looked at thermo dynamics from the statistical point of

view, and also little bit about the transport process from the kinetic theory point of view,

but in order to move towards more regress transport process.

(Refer Slide Time: 00:57)

So, if you want to understand how the transport process has to be studied. So, first thing

you have to know about again this is the distribution function. So, in the case of the

equilibrium thermodynamics,  so,  we  looked  at  different  quantum state  and  then  the

ensemble of that, and we said there is the definite number distribution for each of this

quantum state if you have for n number of the particles. So, particular quantum state this

could be quantum state 1, 2, 3 and so, on.

So, we have so many number of quantum states and then you have a particular number

distribution n subscript i for each quantum state. So, we have n 1, n 2, n 3 and. So, let us

say this  is  last  quantum state  we have n subscript  omega.  So,  therefore,  if  you take



summation of n i this will be equal to total number of particles n which as distribute

across all these quantum states.

So, this was common in both the equilibrium whatever we have studied and also what we

are going to study in case of transport process; however, the differences that in the case

of equilibrium, each of this  quantum state  of particular  energy value associated with

these right. So, we talked about therefore, e i e 1, e 2, e 3, e 4 up to e omega, but this is

not sufficient  to describe transport  process see apart  from your values of energy and

corresponding equilibrium distribution function that the part  given energy carrier  can

take, we also have to understand for a transport process there has to be advect to.

Therefore, there are certain values of equilibrium distribution function which holds for

systems equilibrium are when there is no transport, but if there is the transport process.

So, how do we describe the distribution function now? So, of each of the quantum state

now instead of describing this with energy levels, we will  have to move and use the

position rector  r  the particular  quantum state  can have a  particular  value of position

rector that is in a point in space. So, it can be actually located at some position and it can

have particular value of momentum.

So, this is what in going to distinguish the actual transport from the equilibrium case. So,

each of this quantum state is now going to be represented with the value of the position

vector and the corresponding value of momentum vector. So, this is a more complex

scenario that we are considering. Therefore, if you are plotting a diagram where we plot

the momentum vector in a vertical coordinate and then have the position vector, on the

horizontal  coordinate  now each of the quantum state  is  represented by particular  dot

here.

For example, quantum state 1 could be this quantum state 2 could be this, quantum state

3. Like that I can put all the points each point representing quantum state and plot this on

to this map and therefore, a collection of all these quantum state will one and some. So,

whatever I have represented here.



(Refer Slide Time: 05:40)

So,  1  to  omega  number  of  quantum  states  each  representing  value  of  position  and

momentum. So, if have plot them on to this map of p versus r. So, have discrete points

and, if I describe the ensemble of all this together. So, that will be the contained with this

particular circle.

Student: (Refer Time: 05:31).

It should be can be started it can be, but not. So, widely because what we are saying this

each quantum states is more or less moving with the you know similar velocity, and

position it is not completely off now how do we talk about transport here therefore, we

want to look at  an ensemble of collection these particles  occupant  different  quantum

states finally, have to advect, when they advect; that means, this ensemble has to keep

moving in time. Therefore, if you start from time t equal to 0 we will have an ensemble

which is representing like this and now due do advection after certain time then this

ensemble would have travelled to this point in the this position in the p r diagram.

Similarly, after certain time if the collection of these particles would have had a different

value of momentum and position and. So, on this is now going to therefore, travel like

these with a definite velocity if there had been no velocity this would have been just

here.  So, this is basically  you can probably think of some similar  to the equilibrium

distribution function, and now what is distinguishing the transport process is that you

have  a  advection  happening  and  therefore,  there  is  a  change  in  the  momentum and



position vector with respect to time which as to be now tracked, and accounted for and

again the collection of these particles keep changing. So, these ensembles itself keep

changing it is collective momentum and position.

Therefore, we have to study not  only  the  average  energy  that  is  possessed  by  this

ensemble of particles, but also the relative motion and momentum. So, this have to be

studied  with  respect  to  time  and  this  will  give  you  information  about  the  transport

process. So, this on a very fundamental level and this kind of diagram, where you plot

your momentum vectors position vectors is called a face diagram, or phase space you

should understand this is a multi dimensional space which we simply plotted as p versus

r because r is a vector. So, this itself is a three dimensional space and momentum will

also vector which again a three dimensional space right. 

This we have just squeezed into some kind of a two dimensional map, and we have

trying to look at the transport. So, this kind of diagram was called a phase diagram. So,

therefore, if you looking at each particle. So, how many let us say if you are talking

about this is your let us say. So, this is the degrees of or dimensions we can distinguish

this your degrees of motion we will call this m dimensions these are your dimensions

that we are going to look at could be one dimension, or two, or three and if we have

totally  n  numbers  of  particles  the  ensemble  what  is  the  total  degrees  of  number  of

degrees of freedom. 

So, let us say this is n this is the total number of degrees of freedom small n. If you have

m dimensions basically m times n when you are talking about for example, just only the

position, it can move in a long time in translation x y z for example. And therefore, each

particles can have three degrees of freedoms therefore, n numbers of particles system of

n  numbers  of  particles  when  m into  n  degrees  of  freedom.  Now if  also  looked  up

momentum, momentum also are there in three directions x y z if you also include that the

total number of the degrees of freedom will be 2 times.

So, if you are including both the advection position also as well as the momentum into

the degrees of freedom the total number of degrees of freedom, that you have 2 times m

times n if you are talking about three dimensional space therefore, this is 6 times n, n

could be a large number of particles. So, if you are talking about (Refer Time: 11:31)



number 10 power 23 for example, you are talking about therefore, tracking an ensemble

of 10 power 23 order of magnitude particles within time.

So, this is not a very simple task. So, we will come to that. So, now, what we will do is

write down for example, the equation of conservation of this particular transport process.

So, if you take a control volume in the d r space. So, this dimension could be d r in this

could be d p, and what we are going to do is apply the flux conservation principle, here

that is the net rate of particles or points whatever you want to say because each dot is

now 1 quantum state represented by n i number of particles .

(Refer Slide Time: 12:31)

If you are therefore looking at the control volume boundaries you are looking at all these

particles  which  are  a  collection  of  all  these  points  which  are  collection  of  particles

basically entering and leaving the boundaries of the control wall. Therefore, if you want

to  write  down the  conservation  equation  we say  the  net  rate  of  particles  are  points

flowing, into control volume minus the rate of particles or points flowing out of control

volume should be equal to rate of change in the number of particles points inside control

wall. This is like your mass conservation, just like your mass has to conserve in the case

of study state whatever flowing in should be equal to flowing out, similarly now you

have a number distribution,  now if you take particular  control volume and apply the

conservation of this number distribution. So, you have this number of particles which are



our points which are entering this should be equal to something going out and something

which is changing within the control wall

So, if you have expand this to mathematical form, we can write this as if you represent m

f as the number distribution function,  which you already are aware right this is your

particle number distribution function only difference is that in the transport process this

is  a  non  equilibrium  distribution  function.  Whereas,  in  the  case  of  statistical

thermodynamics  this  was  an  equilibrium  distribution  function,  since  now  you  are

studying transport phenomena this has to be a non equilibrium, then only you have a

transfer process. So, f is now becomes non equilibrium distribution and therefore, it will

become a function of r and p right position and momentum. 

Therefore, if you write this mathematically the conservation equation will be d f by d t;

this is your rate of change of the particle distribution within the control volume. So, this

you are writing for a system with n number of particles. Therefore, you have to use the

superscript n, to do not how many number of particle system you are dealing with plus,

now you talk about the advection process right. So, if you are doing a lagrangian tracking

that is you are looking at this particular ensemble and then tracking its motion. So, it is

primarily only with time whereas, if you have a fixed control volume like this in space.

So, this becomes an oilarian motion. 

So, relative to this fixed volume you are tracking about the motion of these particles. So,

therefore, you have a change with respect to position as well as momentum right. So,

therefore, first derivative will be the rate of change with respect to the position which

will be d f, by d r. And now r is basically a vector. So, in the tonsorial representation you

can use r subscript i, you are tracking in each direction and again this f is the collection

of n number of particles and the velocity here, will be what does to advect in the position

with a definite velocity.

So, that is basically d r by d t you can use our subscript i dot. So, the product of this and

now this has to be summed over all  the 1 2 n, because now you have n degrees of

freedom.  So,  you  are  talking  about  a  n  particle  distribution  function  therefore,  the

number of degrees of freedom in all the three directions will be m cross n if you are

talking  about  m  dimension,  m  dimensions,  n  particles.  So  therefore,  this  has  to  be

summed over all of them you cannot individually track each particle, you know each



coordinate  space  and  write  the  conservation,  it  has  to  be  completely  for  the  entire

because is r 1 2 3 represents each direction now it is clubbed together a single r, that is

what we have drawn as p versus r diagram here and similarly p. And now each particle

will have definite location coordinate.

So, we cannot look at each particle again. So, we have to look at ensemble of particles.

So, for this ensemble with n number of particles basically it has to be having n degrees of

freedom. So, it has to be summed over all this and this collectively should represent the

advection with respect to space the other is the advection with respect to the momentum.

So,  we  are  talking  about  therefore,  change  in  also  the  momentum  as  it  is  getting

adverted.  Therefore, we will have a similar derivative with respect to the momentum

space p, and again for the momentum space also we have n degrees of freedom totally

and this is your derivative of p, so, again p subscript. 

So, this is the second derivative which is coming from the advection in the along the

momentum plane.  So, all  this  should be equal to 0 rights.  So,  therefore,  this  is your

conservation equation, if you represent a small rectangular control volume like this and

use  the  oilarian  frame  of  reference  you  can  write  down  the  change  in  the  number

distribution, what is happening in the position space in the momentum space and this is

your conservation equation. So, now, how easy is it to basically solve this equation?

Student: (Refer Time: 20:35). 

Here, now here it is the number total  number of degrees of freedom. So, we have m

dimension for each particle  and we have n number of particles.  So,  total  number of

degrees of freedom is small n which is m time’s capital n.

Student: (Refer Time: 20:57).

For each quantum state need not be there is a distribution function for an ensemble it is

collection of all these quantum states you have n particles capital n number of particles.

So, for that ensemble is what we are actually concerned about. So, this ensemble will

have a distribution function f,  which is basically  changing in time with position and

which moment.

Student: (Refer Time: 21:31).



Correct, so, you know you are right. So, what we are saying is now for each particle. So,

the way we are looking at this. So, you what you are saying is for each quantum state

there is a particular r i or b i or for each particle you are saying.

Student: (Refer Time: 22:24).

Correct.

Student: (Refer Time: 22:28).

So, this is one microstate you can call this is again a small micro ensemble.

Student: (Refer Time: 22:58).

The n must be constant for the macro ensemble. So, that is for this collection. So, now,

what you are saying is now each microstate has n i particles. So, within that you have the

particular distribution so; that means,  one particle  will  have a particular  position and

momentum, another particle will have another one and this collection is basically your n

i  which  is  a  micro  one  microstate,  with  a  particular  representative  momentum  and

position . So, you can actually look at this break down into each value of momentum and

position, we are representing this with one quantum state which is a microstate micro

ensemble, and like this we have several micro ensembles put them together you have the

macro ensemble.

Student: (Refer Time: 23:57).

Distribution of energy is different, yes the actual if you look at the actual occupancy

function. So, within this if you go within this you have a distribution function at different

values of momentum and space position. So, each particle will take up a particular value

of momentum and position and that is given by this n i.

Student: (Refer Time: 24:33).

But what we are doing now, statistically we are not concerned about tracking each and

every particles,  motion  and momentum you know. So,  what  we are doing is  we are

grouping  this  together  you  know  into  a  microstate,  into  a  microstate  and  we  are

representing  that  micro  state  with  n  particles  having  a  representative  momentum

effective momentum and position. So, that is one dot like that we have. So, many micro



states which are all given by each of these dots, now this together is an ensemble which

is your macro state.

Student: (Refer Time: 25:13).

Yes. So, we that are what I have written here, so, if you have three dimensional spaces

you have 6 n.

Student: (Refer Time: 25:37).

No sorry for it, now this is for the math the complete ensemble of all the microstates that

should  took  together  should  have  the  number  of  capital  and  number  of  degrees  of

freedom. So, we have n particles. So, capital and number of particles therefore, you have

capital n times m degrees of freedom should be therefore, the entire ensemble, and this

entire ensemble is now cutting across you know a particular oilarian in control volume,

therefore it is going to get now transported. 

So, it is less its position is changing due to a finite velocity its momentum is changing

due to that particular value of force that is your rate of change of momentum. So, you are

applying an external force which can actually result in change in the momentum plus,

you can change the position due to its velocity due to the advection. So, we are tracking

this particular ensemble and therefore, now we are not concerned about each and every

quantum state, we have gone to now average or sum this over the entire ensemble of this

microstate. So, that is why we are doing summation i equal to 1 2 the number of degrees

of freedom totally 

Actually, there is a much more detailed derivation of this which I have skipped through

and made it much easier for you to understand, because most of you are already aware

about how transport laws are derived. So, I am just giving an analogy with that to make

you understand that finally, it is amounting to a conservation only thing now when you

talk  about  conservation  of  say mass  or  momentum you are  only looking at  say two

dimensional  space,  or  three  dimensional  spaces.  And  therefore,  you  have  only  this

particular term. Now what I am saying is we are representing this  three dimensional

space in one d axis, and another three dimensional space of momentum in another axis.

So, therefore, we also have a second derivative coming from change in the momentum,

momentum space. So, this has certain significance, so, I will explain that to you. So, this



is basically your force the first term resulting in change of momentum, if there is no

force  this  term  becomes  0  and  this  becomes  similar  to  your  classical  conservation

equation, but what finally we are doing a telling is that if you want to solve this kind of

an equation.

What you have to do is you have to track all the n numbers of particles and you have to

also understand the degrees of freedom n degrees of freedom, you have to sum them over

all the n degrees of freedom, which is computationally very, very rigorous. So, you have

to keep track of all these micro states within the ensemble and also all the degrees of

freedom and therefore, we should distinguish all of them and then finally, sum them up

in order to satisfy this conservation equation. So, that is the way this equation can be

solved and practically this is not possible.

(Refer Slide Time: 29:13)

So, this kind of equation this is called as Lionville equation. So, the Lionville equation

holds for a system with the n number of particles, and this is too cumbersome to track the

distribution with n number of particles, the n particle system you have to track all the n

particles you have to understand the distribution function for each microstate and then

sum them over all the of freedom. So, this is going to be computationally prohibited. So,

we can right away say this although this is your perfect equation this is computationally

prohibitive to solve this therefore, the more practical approach is to reduce this to a 1

particle distribution function.



So, like we say you know, you in the represent if you take n particles out of that you pick

only one particle and think this is the representative of n particles, like a sampling this is

good enough to represent what the n particles distribution is and you assign this to 1

particle. So, now, this is going to be computationally easier, but you see the number of

degrees of freedom have just reduced like anything, but what is computationally feasible

to solve is to look at one particle distribution.

So, we have brought down all the degrees of freedom from n number of particles to 1

particle.  So therefore, if you are looking at three dimensional spaces your number of

degrees of freedom will be 3. So, from 10 powers 23 we have brought the number of

degrees of freedom to 3, if  you take 1 particle  distribution function.  So, for this  the

Lionville equation will turn out to be the Boltzmann transport equation. 

However, has a downside; so I can simply replace this d f n by d t with d f by d t which is

a  one  particle  distribution  function  these  all  the  summations  will  disappear  now,

essentially or the summation will have to happen in three dimension that is it, but what

will  happen since  you have n particle  system this  conservation  equation  is  perfectly

satisfied,  now  if  you  remove  that  and  you  put  1  particle  you  do  not  have  number

consideration.

So therefore, in the process we have to now add another term which is your collision

between the  particles.  So,  when you simply reduce  the  degrees  of  freedom it  is  not

simplifying maybe one part it  is simplifying the advection part  for example,  but you

introduce a newer term to satisfy the conservation equation then that is the coalition

term. So, therefore, neglecting all the mathematical details I will directly give you how

this 1 particle distribution will satisfy the conservation. 

Now, the term here will be in three dimensional spaces. So, you have this will be r dot I,

that will be u into similar to your valor. So, d r by d t in the x direction will be u velocity

d f by d x. So, this can be simply written as what, like some velocity vector dot product

with your gradient of the distribution function with position. So, this can be therefore,

simply written as d r by d t. So, let me use the same notation as you know textbook. So,

that. So, I just still use d r by d t and this is your vector dotted with your gradient in the r

space of the distribution function.



So, this has now for 1 particle simplified to a simple term, which is your transport term.

Now this is the other term which is with respect to your momentum space also can be

written  in  a  similar  manner,  dotted  with  del  p  f  that  means,  you have  3 degrees  of

freedom essentially in each space, momentum space and position space. And you are

finding the derivative in each direction making a dot product with your corresponding

change of that quantity with time; however, this will not be equal to 0 to satisfy the

number conservation there will be a term which I represent like this, but this is not a time

rate of change, I use this entire bracket subscript c this means this is called the collision

between particles.

(Refer Slide Time: 34:52)

So, this is the change in the distribution function due to collision between particles a rate

of change in the distribution.  So, this has is coming, because of reduction from an n

particle system to one particular system, but; however, we have greatly simplified the

transport equation, which now can be solved or we can at least attempt to solve this right;

however, due to the introduction of this collision term we have a lot of difficulties we

will see that this collision term is not simple.

So now, we are talking about maybe collision between two particles and you have a third

particle which is coming out and you can talk about collision between three particles, this

is a more complex situation. So, it becomes a multi body problem right. So, it depends

on how many number of particles you are actually looking at in a given time to solve this



collision problem even a simple 3 particle problem that is two particles colliding and

forming a third particle. So, two phonons colliding and you get a third phonon. So, two

electrons  colliding  getting a third electron.  So, even this  is  a very complex collision

process you do not have a very simple expression to model this and we make a great deal

of approximation to that.

Just give an example how the collision process looks like if you take for example, two

particle scattering process like this. So, let us say before we go into that we can write two

or  three  different  versions  of  the  Boltzmann  transport  equation,  let  me  call  this  as

equation number 1. So, this is your basic format we can also write this as you can see

this is your velocity of the energy carrier with which it is advecting, right and this is your

rate of change of momentum now what is rate of change of momentum force.

So, this is your force vector. So, the alternate ways of writing this is d f by d t plus you

have velocity vector. So, just to distinguish the derivative with respect to the position

space and the momentum space, I used dell subscript r and del subscript p. So, the other

one is your force vector del subscript p. So, now, this is what del subscript p is actually d

f by d p right. So, this I can write this in terms of velocities also I can replace p as m v.

So therefore, I can replace this derivative with respect to velocity and I can bring the m

out this is the mass of the particular energy carrier or particle. 

This is an alternate way of representing the force term. So, this is say equation number 2,

now there is also another way of representing this, we also know that if you look at wave

particle  duality.  So,  we  from  the  quantum  mechanics  we  have  already  derived  the

relations between the energy and the wave vector, and somehow we have used that also

for particles. So, we had looked at electrons in a crystal we have looked at phonon. So,

for all of this we have derived the dispersion curves which is essentially represented by

relationship between energy and the wave vector.

Therefore,  we can  also  keep moving from the  momentum to  the  wave vector  space

because many cases we have the dispersion relation we can deal with the wave vector

space. So, you can always deal interchangeably between the particle and wave aspects,

and we can also write the force term with respect to the wave vector. So, how do we do

that? 



So, you have the force vector again you have d f by d p d p will be simply h cut k. So, we

can  write  this  as  gradient  with  respect  to  wave vector  space  f  equal  to  e  f  by. So,

therefore, all these are the same Boltzmann equation only it depends on how you are

writing the gradient of distribution function, when you have a force you can write this in

terms of the actual momentum space, or you can write in terms of velocity space or in

terms of wave at the space all these are equivalent, because momentum is related to wave

vector and also to the velocity right. 

Therefore, now in order to solve this equation you need to track the particle with respect

to say three dimension, if you are doing this in three dimensions you have to calculate

the derivative with respect to the position in three dimensions and with respect to the

wave vector k x k y k z it. So, there are 3 dimensions of wave vector space. So, therefore,

you  have  to  account  for  6  dimensions.  So,  3  special  coordinates,  3  momentum

coordinates, and 1 time coordinate.

So, this becomes a 7 dimensional problem right. So, at least a 7 dimensional problem

right now, so, therefore, still this is much better than looking at 10 power 23 dimensional

problems, computationally this is possible to solve now the coming back to this collision

term. So, as I was describing for a simple to particle collision like this. So, you have two

particles.

(Refer Slide Time: 42:09)



For example, you can say one particle has position r. So, and you have wave vector k for

this, the other particle is also at the same position of these two are colliding with each

other.  So,  position  is  the  same,  but  different  wave  vector;  that  means,  it  can  have

different momentum different values of energy. So, at time t, so, after collision, so, this

two will  collide  and a new particle  is  formed and this  particle  will  have a value  of

position which is still r, but the value of k now can be denoted with k prime.

Therefore, you can write the d f by d t, if you do it in a slightly different way. So, I am

assuming that these two are not simply colliding and forming a particle, but some kind of

coalition which could be either elastic or inelastic, we are considering an inelastic system

in  which  your  momentum  is  going  to  change  and  energy  is  going  to  change  after

collusion.  So,  we  can  say  before  collision  you  have  these  two  particles  now  after

collision. So, this is going to change to r and will say k prime t and this momentum is

going to change to k one prime t. So, this is particle let me shade this particle one, and

this is also particle one after collision, this is your particle two before and after collision. 

So, that is there is also scenario where these two particles can collide and effectively you

represent this by a third particle with an effective value of momentum and position , but

in this scenario we are just saying the same particle before and after collision will have a

change in the wave vector from k to k prime, and the second particle will change the

wave vector from k one two k one prime therefore, the collision term for this case is

written as minus integral you have f of r k t this is for your particle one before collision

times f of r k 1 t, this is the second particle before collision and you have a function. So,

this function I will come to this, I will explain what it is we have k comma k 1 before

collision and this changes to k prime, k 1 prime after pollution and this integral is over

the wave vector space you have d k, k 1 k prime and k 1 prime .



(Refer Slide Time: 45:51)

Now this is a very complex integral, you have to integrate it is integrate this over d cube

k 1 and d cube k prime d cube means here, we have three dimensions we have k x k y k z

and not only that. So, this becomes therefore, triple integral in terms of k triple integral in

terms of k prime. So, this is k prime is after collision and then another triple integral for

the second particle after collision, this is one such integral and you have again another

integral we which will be f r comma k prime.

So, this is your first particle after the collision time’s f r k 1 prime t. So, this you can

consider is the distribution before collision. So, this is here before coalition term and this

is your after collision. The rate of change in the scattering is what we say after collision

minus  before  collision.  So,  that  is  how we are  writing.  So,  this  again  you have  the

function which goes from k prime k one prime to k, k 1 and again you have the integrals

3 triple integrals.



(Refer Slide Time: 47:28)

So, totally it is actually 9 integral we have k 1, d cube k prime, d cube k 1 prime, where

this w function is called wrong scale functions. So, I am not giving all the details, but

this is called the Wronskian, and this particular function in this case will be giving you a

function to tell you what will be the change in the wave vector, from an initial wave

vector for example,  in this case this is pre collision and how it  is related to the post

collision and similarly here post collision.

So, you have due to the coalition certain number of particles with a wave vector k k 1

changing to a wave vector k prime k 1 prime. So, this is going out. So, this is out going

out  from,  out  scattering,  out  from  a  certain  wave  vector  space  there  is  another

distribution here, which is coming in from another wave vector space k prime k 1 prime

to this value of k and k 1. 

So,  what  we  call  as  the  simplest  possible  collision  between  two  particles  this  is

represented by a very complex scattering integral. So, as you can see those these are all

integrals and in collection they are called the scattering integrals. So, you are talking

about therefore, 9 integrals here correct. So, therefore, this again computationally people

have never attempted to solve this; that means, you have to keep track of the wave vector

before collision,  after  collision  for each particle  and then you are now talking about

calculating  9  integrals  and  therefore,  this  gives  you  the  coalition  between  just  two



particles  again  the  more  complex  scattering  integrals  are  therefore,  three  particle

collisions and so, on.

But, why I want to emphasize this just to understand the sheer level of complexity when

you  deal  with  the  simplest  possible  collision.  So,  this  is  a  computationally  prove

prohibitive task to calculate the collision terms even for a two particle system therefore, a

huge simplification of this is made. So, we will talk about that in the next class tomorrow

so, but what I want to say is look at the levels of simplification that fitted starting from a

capital n number of particles to one particle and again the collision is now completely

approximated  to  something  very, very  simple,  but  still  the  resulting  equation  is  still

called the Boltzmann transport equation with a relaxation time approximation.

So, the original Boltzmann transport equation is this one with a very complex scattering

integral. However, to solve this practically we use the replace the scattering integral with

what  we call  as  relaxation  time  approximation.  So,  that  is  what  is  generally  salt  to

describe the transport from we will stop here.

Thank you. 


