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Fundamentals of Statistical Thermodynamics Part 4

This you can do it by the end of the semester.

Student: (Refer Time: 00:30).

Correct. By the last class or final exam you can do it. This all the three assignments, this

two assignments, the computer assignment and the problem formulation, you turn it over

at  the  end.  Now, I  think  in  the  last  class,  we  looked  at  the  calculation  of  the  heat

capacities.

(Refer Slide Time: 00:59)

First we started off with heat capacity of gas molecules. We use the Maxwell Boltzmann

distribution and we formulated it. Next we looked in to the phonons. We use the Bohr’s

Einstein distribution function, calculated the expression for the heat capacities. These are

volumetric heat capacities.

So, the unit is for this is Joule per Student: meter cube. meter cube Kelvin and in this

case  I  think  towards  the  end  we  hurried  up,  but  I  ask  you  to  check,  we  have  the



expression for basically the heat capacity like this and then we also have an expression

for the number of quantum states per unit volume by integrating the density of states and

then we rewrote this expression in terms of N by V. We substituted for N by V and it

looks like this. Why we are putting in this formulation is that here as you can know in the

case of phonon crystal; this N number of quantum states with n atoms. There are with n

number of atoms you have N number of quantum states. Therefore, these are nothing but

number of atoms in the crystal structure.  If you are therefore, looking at a particular

crystal  structure say monatomic;  these are  again valid  for only monatomic  once;  the

acoustic phonons considered. You have the Debye Approximation. So, I hope all of you

can recollect that.

So, even this with now a chain of these atoms forming the crystal. If you know the count

of  this  n  number of  atoms therefore,  that  can be  directly  substituted  to  get  the heat

capacity  and  this  integral  can  be  evaluated  depending  on  the  upper  limit  of  the

integration which is your Debye temperature and the Debye temperature we have defined

here. It is an equivalent temperature equal to some K B T similar to the temperature that

be replaced here with the Debye temperature for the crystal that is equal to h bar equals

to omega. This corresponds to actually omega D. This is your Debye frequency which

decides your Debye temperature. Once you know the value of Debye temperature we

substitute this, calculate this integral and we also will know at a given temperature what

is the ratio of theta D by T we will know number of atoms. Therefore, we can evaluate

what is the value metric heat capacity.



(Refer Slide Time: 04:00)

The final energy carrier for which we need to evaluate the heat capacity is the electron.

Now when it comes to electrons; phonons it is clear. Phonons in metals they do not play

very vital  role. They are mostly in semiconductors or dielectrics their  contribution is

significant but electrons are like everywhere. They can be important in a semiconductor

also and predominantly in metals.  Their  contribution is there both in semiconductors

dielectrics and also metals. Therefore, our analysis has to be slightly different when you

look at metals and calculate the heat capacity compared to semiconductors; why because

of the dispersion curve. We will right now focus mainly on the metals structure where if

you recollect  how you are  dispersion  curve  was.  That  is  your  E versus  K.  Do you

recollect?  We have a  conduction  band approximated  like  this;  we could also have  a

valance band like this and this was the band gap and where is the Fermi level located?

Usually in the case of metals that is inside the conduction band. This is what it going to

make  the  analysis  different  between  metals  and  semiconductors  the  location  of  the

reference the Fermi level.

Therefore, we start with the edge of the conduction band which is the reference 0 and

from which we start  our  integration.  Therefore,  if  you want  to  calculate  the internal

energy  for  the  electrons;  again  we  will  apply  our  rule  that  you  have  a  distribution

function for the electrons occupying each and every quantum state or energy level and

therefore, we multiplied with the corresponding energy of that quantum state; that is your

electron energy E that is energy level of particular quantum states so this distribution



function will be your Fermi Dirac and the Fermi Dirac is a function of what? It is a

function of the electron energy E, temperature and chemical potential mu. For sometimes

the for reference sake we can take the chemical potential to be equal to the Fermi energy

level E f.

Now, therefore f is nothing but your volume metric distribution of electrons. Electrons

occupying a particular quantum state per unit volume multiplied by the energy of that

particular quantum state and when you sum this over all the energy levels that will give

you the volumetric internal energy. Based on this we can calculate your heat capacity.

What we are now going to do in this case unlike the phonon where we did again we use

the summation over all  the quantum states and then we converted this summation to

continuous integral.  The same way in this case we have dispersion relation which is

continuous and so is our density of states. D of E as a function of E. If we plot the

density of states; it will start from 0 at the edge of the conduction band and some where

you have the Fermi level is a function E minus E c. 

Therefore, to convert this into a continuous integral again we resort to using the density

of states. This summation; discrete summation will be replaced by a continuous integral

by introducing density of states. Density of states is nothing but the number of quantum

states per unit volume and if you multiplied by the energy gap D (E); that is nothing, but

the number of quantum state per unit quantum. Therefore, this has to be multiplied by

density of states d E. The discrete summation will  now we replaced by a continuous

integral and the limit is of this integration; now the density of states we have to go from

0 which is the starting of the conduction band and the electrons can move all around

anywhere within the conduction band. It can actually go up to infinite and if I want to

calculate the number of electrons per unit volume or number density of electrons; within

the conduction band these are the free electrons.



(Refer Slide Time: 10:06)

Electrons are there right from balance band and even before, but why we are interested in

only this band? This is what is contributing to the actual internal energy because these

are the free electrons which are actually moving about transferring the energy from one

end to  the  other. So,  these  are  the  once  which  are  free  to  move,  these  are  the  free

electrons. Therefore we are interested in only accounting for electrons in the conduction

band. If you want to therefore, whenever I say electrons do not think that these are the

only electrons in the entire crystal. These are the free electrons. Number of electrons per

unit volume; how do I calculate? I want all the free electrons in the conduction band;

again  look at  this;  if  you remove E from here  and just  simply  sum the  distribution

function what does it give you?

Particular quantum state these are the number of electrons per unit volume; next quantum

state; number of electrons; so, the sum all these; totally it will give you Student: (Refer

Time: 11:52) the number of electrons per unit volume. Therefore, how do we calculate

now number of free electrons? Let us say n subscript e; this is the number density of free

electrons.

Student: (Refer Time: 12:11).

Replace sigma with integration; integral 0 to infinity what should come inside?

Student: (Refer Time: 12:35).



Student: D of E d E.

D of E d E; D of E d E gives you only quantum states. It does not give you how many

electrons are actually occupying that.

Student: (Refer Time: 12:48).

f.

Student: (Refer Time: 12:52).

D of E; the actual number of electrons occupying each and every quantum state; you

have to multiplied by the distribution function. Now for a given metal for example, this

number of free electrons is constant. This value is a constant it can move around, but this

number is a constant therefore, this is equal to a constant. Next what I am going to do let

us say this is equation 1, this is equation 2; I am just going to do little bit of manipulation

with equation 1. I will add and subtract my Fermi energy level to this. I can write this as

E minus E f because Fermi energy level is a constant value because this is the value of

chemical potential at 0 Kelvin or it tells me till what energy are the electrons occupying

the conduction band at 0 Kelvin. That is my reference level so that is a constant value.

(Refer Slide Time: 14:20)

I can simply add and subtract that mu D of E d E plus now I have to add E f f E T mu D

of E t d E. I hope you understand what;  Fermi level is  the chemical  potential  act  0



Kelvin. Chemical potential means that is the potential up to which it is the energy level

up  to  which  the  electrons  are  filling  at  Student:  0  Kelvin.  0  Kelvin;  at  different

temperatures this level will be different of course, that higher temperature this level will

keep  moving  down  and  down  further  down.  So,  that  gives  you  the  local  chemical

potential; that it is your electro chemical potential that is your electro chemical potential

people call it.

But we are interested in the reference at 0 Kelvin. So, that value is fixed and therefore,

now if you want to calculate the volumetric heat capacity of electrons; this is simply d U

by d T. Therefore what happens to the second term?

Student: (Refer Time: 15:49).

This is 0 why?

Student: (Refer Time: 15:55).

f is a function of temperature.

Student: (Refer Time: 15:59).

Correct. Therefore, we have now defined n e as integral this so therefore, this can be

written as;

Student: (Refer Time: 16:12).

E f into.

Student: n e.

n e; E f is a constant. Therefore, n e is the constant d f is the constant derivative of this

will not change with the respective temperature. Therefore, we will have; so what will

change  out  of  this  first  term with  the  respective  temperature?  Only  the  distribution

function is a function of temperature.

So, you have therefore, E minus E f into d f by d T D of E d E. Can you calculate what is

d f by d T? You know your Fermi Dirac distribution function; 1 by exponential E minus

mu by K B T plus 1.



(Refer Slide Time: 17:27)

Therefore, calculate d f by d T; derivative with respect to temperature.

Student: (Refer Time: 18:29).

We have E minus mu Student: (Refer Time: 18:35) correct upon K B T square Student:

(Refer Time: 18:38) E minus mu by K B T by Student: (Refer Time: 18:47) plus 1 the

whole square. Therefore, your C e; x0 to infinity E minus E f we have E minus mu by K

B T square into exponential minus mu. Now we have to have that that is why here we

have to understand the how the density of states behaves, how the distribution function

behaves?



(Refer Slide Time: 20:07)

If you look at the Fermi Dirac distribution function once again; if you plot your f f D as a

function of E at 0 Kelvin how does it look?

Student: (Refer Time: 20:27).

Minus, minus should cancel I think in the d f by d T you are saying or?

Student: (Refer Time: 20:42) exponential of minus of.

This is 1 by this.

Student: (Refer Time: 20:48).

So, I do not think there will be; I do not do not think that should be another; is it? just

check; I think.

Student: (Refer Time: 20:59).

Plus.

Student: (Refer Time: 21:01).

I think it should be fine. Minus of E minus mu; let me just go back and check why then

how did I miss this; I think must have made this mistake in the beginning where did I

make it because it should be just plus E minus mu by K B T. Let me check, but when we



derived this I think there was plus E minus mu. I think probably in the table I must have

made this.

Student: (Refer Time: 21:51).

Ok, but let us see.

Student: (Refer Time: 21:55).

Table we made this; here we have plus E minus mu. I think while we derived it; it was

correct.

Student: (Refer Time: 22:08).

But I think after that I in the table I made the mistake. So, it should be plus please correct

it.

So,  that  at  very  high  energy  level  it  should  go  back  to  the  Boltzmann  distribution

function that is exponential minus E minus mu by K B T. So, at 0 Kelvin if I know my

Fermi level as this E f at 0 Kelvin how will this distribution look?

Student: (Refer Time: 22:58).

This is 0, this is 1.

Student: (Refer Time: 23:06).

What is that?

Student: (Refer Time: 23:09).

Zero where?

Student: E f.

At E f; so, therefore, how does it look?

Student: It is symmetric about; the curve is symmetric.

Symmetric is; it will be anti symmetric.



Student: (Refer Time: 23:31).

It will be a step function. Everything below the Fermi energy level is occupied, above a

Fermi energy level there are no electrons because why at 0 Kelvin the maximum till

which energy level till where electrons are occupying is the Fermi level therefore, if you

take Fermi level as the reference at 0 Kelvin; you have only electrons occupying till the a

Fermi level. Therefore, the occupancy function is 1 up to the Fermi level above which

there are no electrons; completely zero.

Slowly at higher temperatures this will start shifting from this Dirac delta function to a

more continuous function. So, this then slowly it will become like this at may be 100

Kelvin. At even high temperature it will become more gradual and then finally, very high

temperature it will be just some straight line. What does it mean? At higher and higher

temperatures the electrons can move conduction band more freely. Therefore, there is a

good amount of chance that also the lower energy levels and the energy levels beyond

the Fermi levels are also occupied. If you look at again you go back to the dispersion

curve here; if you are talking about 0 Kelvin; you have electrons occupying till  here

above which do not have anything. Now as you keep rising the temperature; the electrons

can keep moving this way and therefore, there will be some possibility that electrons can

fill all this higher states. So, very high temperatures you will have lot of electrons filling

also the higher state it can freely move above.

And therefore, you will slowly see the shift from a sharp cut off like this at 0 Kelvin to

more smoother and finally, nearly straight line; that means, you have equal probability of

electrons occupying above Fermi level and below Fermi level. Therefore, if we look at

the gradient d f by d T; d f by d T is this particular value will be typically non zero only

around this center that is above the Fermi level. So, this region and this region if you

look at d f by d T in regions I mean which are typically close to the lower energy levels

and higher energy levels they will not change much.

But primarily the maximum change will happen about the Fermi level. The gradient d f

by d T will be mostly about this value and therefore, and about this value what happens

to the density of states? It will usually taper off. We can assume that where the d f by d T

maximum that is around the Fermi level; your density of states is nearly a constant. With

this  assumption  we  can  therefore,  pull  this  density  of  states  outside  the  integral.



Therefore, we can rewrite this equation as D of E f. We will assume that this density of

states is not going to change too much from your Fermi; the value at the Fermi level. The

Fermi level already reaches somewhere close to the saturation point. 

Now, the next D f mu might be somewhere here, the next D of f mu might be somewhere

here. But all these values are negligible change compared to D of E f. Therefore, we will

assume that that is constant equal to D of E f. So, that we will pull this outside directly

the integral and therefore, this integral now will become important only in a region about

E f. Therefore, we can write this 0 to infinity now as E f minus some d E f E f plus d E f

that is we take a band about this; Fermi level about which we are now doing this integral

because  that  is  where  d  f  by  d  T is  primarily  non zero;  the  other  places  it  will  be

negligible.

Therefore, we can write about this zone; we can replace this E minus mu with E minus E

f.

(Refer Slide Time: 29:26)

Therefore we have E minus E f the whole square by K B T square into exponential E

minus E f by K B T divided by exponential E minus E f by K B T plus 1 the whole

square d E . We can assume some dummy variable x is equal to E minus E f by K B T.

Therefore,  this  can be written  as K B square some rewriting  into T times  D of  E f

integral. So, my 0 to infinity for example, can be replaced with if I replace d E with d x

as the dummy variable. This will become x square e power x by e power x plus 1 the



whole square. Please check this therefore, I will have an additional K B square in the

numerator and T .

I am replacing d E as d x times K B T. So, the original integration was from now zero to

infinity;  therefore,  E equal to 0 means x equal to minus E f by K B T. That is your

modified over limit and E equal to infinity means x equal to infinity.

Student: sir already K B T square. So, we have only multiply and divide by K B T (Refer

Time: 31:55).

K B T; that is K B T square. Therefore, we multiply in K and divided by again K B so

that this will be x square

Student: (Refer Time: 32:06).

And therefore, we have K B square.

Student: (Refer Time: 32:11).

From d E also we have a K B and then we multiplied divided by K B. So, we have K B

square outside. So, K B square T D E f and this becomes x square.

This particular integral turns out to be if you evaluate equal to a constant pi square by 3.

Therefore, your; and also we can substitute for; so one more thing what we may have to

do is the number of the number of electrons. So, we have written down the expression

for calculating the number of electrons; that is your equation 2.



(Refer Slide Time: 33:22)

Therefore if you substitute for the Fermi Dirac distribution function zero to infinity f D

of E d E; if you substitute for f and then also the density of states.

I will just give you only the final expression that comes out will be; 2 by 3 E f D of E f.

This is your number density of electrons expression; you can actually just try it out as a

home work substitute for f and D of E and then you evaluate this  at 0 Kelvin.  That

means, you will be integrating only it in the Fermi energy level E f. Therefore, you can

rewrite our expression for heat capacity you can replace D E f in terms of you know n e

and E f and therefore, your C e turns out to be 1 by 2 pi square n e K B into T by T f.



(Refer Slide Time: 35:05)

Where; T f is equal to E f by K B. This is another temperature this is called the Fermi

temperature  just  like  we  have  the  Debye  temperature  in  phonons  we  are  defining

,introducing these are not physical temperatures; some kind of conceptual temperature

based on the value of the Fermi energy level. Similar to the Debye temperature which is

based on the phonon energy level at omega D; the same way we are now introducing

another temperature and we are substituting for E f in terms of T f as K B times T f and

therefore, this is our final expression let us say 3.

Therefore, according to this expression once you know the number density of electrons,

free electrons you know the Fermi temperature; based on the value of the Fermi energy

level  for  that  metal  and  the  actual  temperature  room  temperature  or  high  elevated

temperature you can calculate the heat capacity.



(Refer Slide Time: 36:20)

And therefore, if you have plot it how does it look with respect to temperature. We have

heat capacity volumetric heat capacity joule per meter cube Kelvin and we have a log

scale in the temperature 1, 10, 100, 1000; how does it look for the case of electrons? This

is the constant, this is the constant and this is the constant for a given metal. It will be a

straight line.

It will start from some value at 1 Kelvin and then go up like this where as for phonons

we have our expression which is given by this once you know the number of atom per

unit is value you know the Debye temperature; substitute this we can plot this has a

function of temperature. So, how does look if you plotted it? It will be like this, it will go

on and then finally, it will saturate. This is for phonons. In fact, for the two limits for

phonons; I have not actually discussed this so let me quickly complete that for the case

of very low temperatures. So, that is one (Refer Time: 38:06). That is the case where

theta D by T going to low temperature limit, infinity, very small values of t may be order

of 1 Kelvin, 2 Kelvin cryogenic temperatures. 

Theta D by T going to infinity then C V will actually go as if you evaluate it cubic power

of temperature where as for the other case where your t is very large theta by T going to

0; if you evaluate C V this terms out to be a constant equivalent to 9 N by V K B. This

integral will exactly turn out to be theta D by T the whole cube so this will cancel of and

then you will exactly have a constant value this is for the high temperature limit and this



is  for  the  low  temperature  limit.  Therefore,  at  the  low  temperature  case  your  heat

capacity if you look at really zoom in this will be cubic variation of temperature here to

be like this it will not be a straight line. This is your C V going as T cube and for the high

temperature case this will be a constant and in between you have some kind of linear

variation. This is the nature of the heat capacity variation for phonons and electrons.

So, we will stop here. I think now you must have a good understanding of what you

know Statistical thermodynamics can tell us. It has helped us to define internal energy

from all the micro states based on which we can calculate a very important property of

the material which is the heat capacity and depending on whether we have dealing with

gas molecules, whether we have dealing with semiconductors, dielectrics or with metals

we know how to evaluate heat capacity, what is the contribution to heat capacity in each

case and how it behave it is temperature. So, the next problem is to look at transport of

heat.

If you want to solve the diffusion equation; one parameter, one property is heat capacities

which  we  have  obtain  from  this.  The  other  is  your  thermal  conductivity.  Thermal

conductivity  we cannot  obtain  from just  assumption  of  equilibrium because  it  is  the

transport property. We have to look at transport of heat by the energy carriers only under

that situation we can evaluate the second most important thermo physical property. Once

you understand how to evaluate that then we can directly evaluate the thermo physical

properties from a very fundamental understanding and solve the macro scale equations.

So, the next class we will start with a hand waving argument of evaluating your thermal

conductivity for heat conduction and in the case of hydrodynamics viscosity that is your

transport  property  that;  is  also physical  property. These  two will  evaluate  in  a  hand

waving argument using what we call kinetic theory before we go to the rigorous method

using the Boltzmann transport equation.

So, this kind of this class completes the equilibrium; the so called equilibrium part. This

Statistical thermodynamics can only give this much of information, but if you want to go

calculate the transport properties such as conductivity viscosity and so on then we have

to look in to also the transport of heat flow and so on. So tomorrows the next class we

will start looking at evaluating these other thermo physical properties also.

Student: (Refer Time: 42:47).



OK.

Student: (Refer Time: 42:49).

For which case.

Student: (Refer Time: 42:54).

Electron case.

I think this.

Student: t minus d f (Refer Time: 43:02).

This one; it goes from minus E f by K B T to infinity. This turns out to be a constant; that

means, the value of E f is kind of frozen here so this should be a constant the lower limit

Student: (Refer Time: 43:23).

I mean the reason why I have you know involve that is to only tell you the D E can be

pulled out inside the integral. You can actually do the integration from 0 to infinity, but I

wanted to pull D E f outside the integral by telling you that d f by d T is very strong

gradient only about D E f about which your density of states is invariant.

So, I involved that approximation to pull D E f, but you can actually do the integral right

from 0 to infinity. Therefore, your integral will have in this case after you transform into

dummy variable will be minus E f by K B T to infinity. What was your question; that was

your question right we were actually looking at d f minus D E f.

Student: (Refer Time: 44:30).

So, that is at e a is equal to 0; at E equal to 0 x is equal to minus K f by E f by K B T and

at E equal to infinity it is infinity. 

So, we will stop here.


