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So, good morning all of you, yesterday we looked at the Boltzmann distribution function,

how we derived Boltzmann distribution function form simple probability assumptions,

and the most important thing about this distribution function is that, it gives you what is

the filling or number of particles that can occupy the energy levels, what is the order in

which they occupy, so this is the most important consequence of the distribution function

and also according to the kind of system that you are dealing with, you can talk about

what we call as canonical or grand canonical these are the 2 most common ensembles,

and we fit the system with phonons, molecules and protons to the canonical ensembles,

and the electrons are usually assigned to the grand canonical ensemble.

So,  accordingly  we  can  write  down  the  probability  distribution  function,  for  the

canonical ensemble which looks like this and for the grand canonical ensemble like this.

So, having now identified the corresponding distribution functions for the corresponding

energy carriers, we will now apply this to derive the distribution function for each and

every energy carrier. 



(Refer Slide Time: 02:04)

So,  therefore,  this  is  not  just  sufficient  if  you  are  looking  at  only  the,  know  the

probability of distribution of this particular energy carriers from this we have to first

calculate the denominator which is the partition function, this is the summation term, this

is still not complete and we have to also apply the corresponding energy levels. So, this

is the generic form here. So, depending on your dealing with molecule or phonons or

photons, appropriate values of energies have to be substituted. So we have to evaluate the

partition function in the denominator and then come to the distribution function. 

(Refer Slide Time: 02:48)



So, today we will start with the applying this for first molecules. So, let us first start with

molecules, which are more familiar, you do not even have to any quantum mechanics to

understand  the  energies  energy  levels  of  these  molecules,  So  these  are  basically

continues energy levels, we do not have to apply any quantum mechanics principles for

determining  the  energy  levels  here  and  if  you  are  talking  about  monatomic  atom,

typically the one that will now consider monatomic atom. So, this is just one atom like

this and it can have translational motion in all the three perpendicular directions, we can

have V x, V y, V z.

So, therefore, the corresponding energy that possess by this particular atom, can be just

half m, V x square, V y square plus V z square. So, it is three degrees of freedom for

kinetic energy, translational kinetic energy. So, there are no vibrational modes, there are

no rotational modes, purely translational Kinetic energy. So, therefore, you see this V x,

V y, V z are continues energy levels. So, you can actually span from minus infinity to

infinity depending on the direction that they are moving across.

So, now we will substitute into the definition of partition function, now we know which

distribution  to  pick,  so  we  look  at  molecules,  therefore  belong  to  the  canonical

ensembles, so we can therefore, calculate the partition function accordingly. So, your z

will now be summation e power minus Ei by k B T. Now for a continuous function. So,

we will use the integral, instead of the discreet summation here. So, this summation is

good as long as you have discreet energy levels.



(Refer Slide Time: 05:32)

But if you apply this for molecule, were you have continuous energy level. So, this can

be replaced as a summation, and now what kind, how many integrals you have? You

have three integrals, one in x, one in y, one in z. So you have minus infinity to infinity

and you have e power minus m by 2, I am just substituting our kinetic energies into

divided by K B T, and this integral is over d v x, d v y, d v z, is it clear.

So, we are just now evaluating the partition function. In the case of molecules, these are

continuous  and  therefore  we  replace  the  summation  with  these  integrals.  So,  if  you

evaluate this. In fact, you can actually try this in symbolic manipulation software like

Mathematica, because this you cannot integrate by hand right now. So, you can perform

this triple integral in a package like mathematica which will do numerical integration and

give you the answer. So, that should come out to be m by 2 pi K B T, the whole power

minus 3 by 2.



(Refer Slide Time: 07:25)

So, this will be the result of this particular integration triple integral. So, this is your

partition function z and therefore, what will be your probability distribution function P E

of i.

Student: sir now we transfer that velocity v x, v y, v z that turns of x y. Yeah you already

have the integrated this over minus these are for limits for v x, v y, v z. Student: but v x

is the function over x. Correct, but all these are in v x space only, there is probability. All

these are in momentum space you do not have any issue. So, we know the limits of the

integral for v x, v y, v z. 

So,  all  you  have  to  do  is  plug  it  into  some  symbolic  manipulation  package  like

Mathematica and it will directly give you what is the result of this it will do a numerical

integration for this. So, once you know the portion function now you can calculate your

probability distribution. So, for this case it will be therefore, e power minus E i, let us

write  it  in  terms  of  E  by  K  B  T.  So,  this  is  what  is  there  in  the  numerator,  the

denominator was the partition function now which we have evaluated. So, we will take

this to the numerator, you will have m by 2 pi, K B T, the whole power 3 by 2.

So, therefore now what we need to actually evaluate, is not just the probability, but the

distribution function,  a number distribution.  So, how much number of molecules can

occupy by a particular energy level and So on. So, now once we know this probability

the way, we are going to evaluate  the distribution.  So, this  f here is  the actually  the



number distribution function for energy carriers. So, we know that PE of i is nothing, but

what actually it is n of i by summation n of i. Now we want to get back something like

this. So, if you want to get the number distribution, so we will multiply the probability by

the number density, that is the number of molecules in a unit volume of a system. For

example, so this is a pure number, now what we are getting here is a density per unit

volume, that is number of number of molecules per unit volume, it is a number density.

 So, this distribution signifies number density here, where as this is just pure number

count.  So,  therefore,  for  the  entire  volume,  when you want  to  calculate  the  number

density; so we will simply multiply the probability, with a corresponding number density.

So, this we will call this as number density here, number density of molecules.

So, the way to interpret this is for a particular energy level, if these were discreet energy

levels. So, this will tell you how many molecules can occupy that particular energy level.

So,  that  will  be  the  number  density  of  molecules  occupying  that,  and  finally  the

distribution function will be an ensemble of this so; that means, you just sum over all

these  different  energy  levels  and  you  allot  the  particular  number  to  that  particular

probability and so on. 

So, that will give you the total number distribution function for the entire system. So, in

the case of molecules, these are anyway continuous and therefore, the number itself is

just a constant value, it is not going to fit into one particular in a discreet energy level Ei,

the way molecules and phonons are going to occupy. So, simply we can multiply this

number of molecules or number density of molecules with the probability.

So, if you do that therefore, you will be just simply extending this as f is equal to n into

m by 2 pi, K B T, whole power 3 by 2 e power minus this is again m by 2, v x square

plus, v y square plus, v z square by 2 K B T. So, this gives you a number distribution

function or this is your number distribution function for molecules. So, this distribution

function is also called the Maxwell Boltzmann distribution function, so is that clear. 

So, we started with therefore, the distribution of electrons at each energy level or each

distribution of molecules, but now then we denote in terms of probability and now we

are coming back to the distribution function, but now this are per unit volume. So, it is a

number density function. So, therefore, we multiplied by the number of molecule per



unit volume of the system. So, this n is nothing, but number density of molecule or this is

you can interpret as number of molecules per unit value. 

So this resulting distribution of molecule this will tell you; therefore for a system with

volume v with n number of molecules. So, at what velocity levels like you have, p x

particular  value  of  v  x,  v  y, v  z,  what  will  be  the  distribution  of  molecules  in  this

particular band of v x, v y ,v z, these are continuous here. So, so continuous values of v

x, v y, v z, it will tell you what will be the corresponding number of molecules that can

occupy per unit volume of the system. 

So, this is the classical distribution function, why because we do not have discreet values

of  energy  levels  here,  ever  thing  is  continuous.  So,  this  is  usually  referred  to  as  a

classical distribution, because we do not have to start with any quantum mechanics to

this derive distribution function, everything is continuous starting from the energies. So,

all we did was put it into the Boltzmann distribution function, calculate partition function

and that is it. So, there was there was no quantum mechanics into this, that is why this is

called the Classical distribution function.

Now, if  you apply this  to the next  energy carrier. So,  we will  do this  for  electrons,

therefore in the case of electrons they obey the grand canonical ensemble.

(Refer Slide Time: 16:06)



So, the probability of distribution of electrons will be e power minus E i minus mu n i by

K B T by you have the partition function Z which is nothing, but summation of the

numerator. So, for as the electron is concerned, were you are Z is equal to summation e

power minus E i minus mu N i by K B T. So, when you look at the occupation of these

energy  levels  by  electrons.  So,  you have  only  2  possibilities,  you  have  a  particular

number for example, if you are talking about an energy level which is empty, so that

means, this is equal to 0, if you are talking about an empty energy level. 

(Refer Slide Time: 17:38)

If your energy level is occupied this number will be just 1. So, only one electron can

occupy an  energy level.  So,  this  will  be a  filled  energy level,  we cannot  talk  about

multiple electrons occupying the same energy level. So, each energy level is occupied by

one single electron therefore, you have 2 possibilities, one you have an empty energy

level where you do not have any electrons and you have an energy level which is filled

by only one electron. 

So, therefore,  in this  case the calculation of z becomes relatively easy. So you have

summation, this summation will run over the empty energy level and the filled energy

level. So for the empty energy level, this particular portion will be 0. So, therefore, in

this case the corresponding value of E i will also be 0. So, we can just write this as (Refer

Time: 18:48) for the empty case minus 0, plus the filled case you have e power minus E

i, this is the value of the filled energy level which is non0 minus mu N i by K B T. So, in



this case N i will be equal to 1. So, essentially the value of Z becomes one plus e power

minus E i minus mu by K B T. So, the way you have to interpret is, if there are no

electrons basically there is no energy for that particular level. So, the energy possessed

by the electron if there is no electrons it is 0.

Similarly if you are talking about a filled energy level, you have a particular value which

is E i for the filled energy level, so, there are two possibilities, you have an empty energy

level or you have a filled energy level. In the empty energy level there are no electrons,

so, there is no energy in that case. So, if you substitute this you get the partition function

which is now just 2 values, either you have an empty one or you have a filled one. So, it

is  a  summation  becomes  pretty  easy  now. So after  this  we  substitute  back  into  the

probability P of E will be, e power minus E i minus mu N i by K B T divided by you

have one plus e minus E i minus mu by K B T. So, the next step would be to therefore,

calculate the number distribution function.

Student: (Refer Time: 21:18).

Correct. So, this is just you are looking at one particular energy level. So, where only one

electron  can occupy this,  unlike  molecules,  or  phonons for  examples  Phonons many

phonons can occupy an energy level whereas, in case of electrons your policy exclusion

principle states that, depending on the spin again so spin will give you degeneracy, but if

you have a plus half or minus half spin. So, this can occupy only one energy level. 

So, therefore, it is like saying an electron with the spin of say either plus half or minus

half, will occupy this. If there is nothing occupied there is nothing there. So, you have

only two possibilities, either it is occupied or it is empty. So, depending on that we only

get 2 terms in to the summation.

Student:  Sir when the w function (Refer Time:  22:36) for a same time (Refer Time:

22:36) for different (Refer Time: 22:37) we get the same elegy even for the energy level

for a (Refer Time: 22:37).

Right, but. So, for which concept you are talking about.

Student: wave function did for.

Wave function for.



Student: Electron for the entire.

For the electronic energy levels.

Student: If we consider that n point 2 value and l as a 2 different value 0 1 or minis 1 and

r the base, that n value of plus or minus one is 0 and we get the same for energy given for

a.

See, but that only the quantum mechanics will be tell you. I mean from that state. How

the electrons can actually have these discreet energy levels, but suppose you want to fill

these electrons into the spaces, you had only two possibilities, either you put one electron

into one space or there is no electron filling one space. So, here what we are doing is we

are allotting we have certain energy levels, from the quantum mechanics, but we are now

putting the electrons into those fitting into those energy level. So, there are what it says

now according to (Refer Time: 23:23) principle one electron has to go and occupy one

energy level. So, there are only two chances. So, one it can be occupied or it cannot be

occupied. So, only for those 2 discreet stats we can do the summation here, so therefore.

Student: (Refer Time: 23:44) piece of paper belonging to as sigma (Refer Time: 23:47).

Yeah, but we are summing in this case only the filled and empty once, the summation is

only over the filled and empty once and the filled one will  have particular  value of

energy e. So, what we will do is, will complete this exercise and then we will understand

how it is going. So, now we have P of E, the next step is to therefore calculate what f is

and how will be get f.
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So, we will be having the number density occupying a particular energy level multiplied

by P E of i. So, therefore, based on this again you can take about 2 cases, one in which

you have no occupancy 0. So, this will be 0 times P of E i, the other is fully occupied 1

times P of i. 

So, therefore this f now becomes, this is completely 0. So, you have same as what we

have written here E of i minus mu N i by K B T divided by plus e power minus i mu by

K B T. So therefore if you multiply throughout by e power E i minus mu N i by K B T,

the numerator and denominator, so the numerator becomes 1 and denominator will have

e power E i minus mu by K B T plus 1. So, this resulting distribution function is called

the Fermi Dirac distribution function.



(Refer Slide Time: 26:28)

See I think your point is correct, but however, in the case of deriving the Fermi Dirac

distribution it is however, I was also checking in a couple of texts and literature, they do

not submit over the discreet energy levels of all the possible states. So, they only look at

either an occupied state or unoccupied state and then they only summit over those two

states. So, this is the characteristic of the Fermi Dirac distribution function. 

So, unlike the case of Phonons, now when we do phonons, you will find that again we

will be able to summit over the all the possible states, but in the case of electrons, to

derive the Fermi Dirac, the summation is carried over only though either empty or filled

state.

Student: (Refer Time: 27:25).

Correct. So, this is the grand this is the characteristic of grand canonical ensembles. So, I

am not going in to all the details. So, I am only giving you the principle of now how

these distributions functions are derived, but that is true.  So, this  is the basically the

principle  behind the (Refer  Time:  27:52) canonical  ensembles  correct.  So,  ultimately

now we are arrived at a distribution function for electrons, which looks quite different

from the Boltzmann distribution function, now if you want to plot this because this is the

very important distribution function. So, on the vertical access I have this number density

distribution corresponding to particular energy E i and on the denominator I can plot for

example, E of i, so that means, you have these discreet energy levels, for particular value



of E i you should know what is the number density that is occupying this energy level E

i. So, that is given by this Fermi Dirac. So if you plot this for given temperature, because

you see that this is also a function of K B T, so for a given value of temperature, let us

say will start with 100 Kelvin, so this will look like this. So, this can be some value 0 and

it can go up to say one.

So, now this is at temperature of 100 Kelvin and if you look at the distribution it should

be  kind  of  anti  symmetric  about  the  value  of  the  chemical  potential  mu.  Now this

chemical  potential  will  be  equal  to  the  Fermi  level,  if  you are  floating  this  for  100

Kelvin.  So,  at  100  Kelvin  you  would  probably  get  something  like  this  and  at  that

particular value this will be equal to mu will be equal to E f at 0 Kelvin. So, this will be z

equal to 0 Kelvin. 

So that means, about the central, line central line here is given by the chemical potential.

So, at 0 Kelvin this chemical potential will be equal to the Fermi energy level, so this

distribution will be anti symmetric. If you continue plotting this for higher and higher

temperatures,  you will  see that.  For example,  go to  300 Kelvin,  you will  be getting

something like this. So, this will be at 300 Kelvin and it tends to become a straight line

from the  characteristic  distribution  like  this  at  lower  temperatures,  it  tends  to  go  to

straight line and finally, at when you say1000 Kelvin, it will be just straight line like this.

So, this is your typical Fermi Dirac distribution function. And for the case when you are

E minus mu in the numerator for the limiting case, we can say when your E minus mu is

much, much greater than K B T. So, what happens to the term compare to 1, exponential

of this term will be very large and therefore, you can simply write this as e power minus

E minus mu by K B T. 

So, what is this? This is your Boltzmann distribution function. So, for the limiting case

of E minus mu much greater than K B T, your Fermi Dirac distribution reduces to the

Boltzmann distribution function. So, this is the typical nature of all though the Fermi

Dirac looks like unique distribution function,  we should also be aware that for large

values of these energy, E which are much greater than your K B T. So, this can actually

collapse into the normal Boltzmann distribution function. 



(Refer Slide Time: 33:35)

So, therefore, this is an important point, what we will do now is look at the final energy

carrier, which is in the case of phonon. So now on similar lines, so we have to start with

the corresponding probability distribution function for phonons and evaluate the partition

function z by substituting the phonon energy that is the vibrational energy that we had

derived.

 So, you please start it, you try to evaluate what should be z because there are some

mathematical steps involved in that, I will help you with that one. So, I will also once

again give you what are your phonon energy levels, that h v times n plus half where n

can be 0, 1, 2 till infinity. So, these are the discreet values of energy levels. So, this is

your partition function. 

So, we are now looking at canonical ensembles. So, it will be just e power minus E i by

K B T and just e we have substituted into this. So, how do we evaluate this particular

summation? So, we can just split this up into e power minus h nu by 2 K B T e power

minus n h v by K B T. Am just splitting this into two terms.



(Refer Slide Time: 36:49)

And therefore, you can write this as you can take out minus h nu by 2K B T, because this

is independent of n, and then the summation can be apply to this other term and we can

expand this summation. So, therefore, if you put n equal to 0, this will be 1, and then for

n equal to one. So, you have e power minus h nu by K B T plus n equal to 2, you have e

power minus h nu by K B T the whole square. So, basically e power minus 2 h nu by K

B T can be written as e power minus h nu by K B T the whole square so on and so forth.

So, you have all the other higher order terms till  infinity. So, you have a now series

expansion. 

So, you can compare this to the Maclaunn series. So, you have 1 minus x inverse; can be

expanded as 1 plus x,  plus x square,  plus  x cube and so on.  So,  you can therefore,

compare  this  series  expansion  to  the  Maclaunn's  series  and  just  hold  on  there.  So,

therefore,  we  can  write  z  in  terms  of  e  power  minus  h  nu  by  2  K B T and  from

Maclaunn's series. So, therefore, this entire right hand side is equal to this. So, therefore,

we can replace this with what 1 minus. So, x will stands for e power minus h nu by K B

T. So, e powers minus h nu by K B T the whole inverse. So, this is the way we can

evaluate the summation.



(Refer Slide Time: 39:05)

Now you have the partition function. So, therefore, P E of i will be, e power minus h nu

into n plus half by K B T divided by the partition function. Therefore if you knock of the

common terms, you simplify what you get. So, minus e power minus h nu by 2 K B T

can be cancelled off numerator and denominator. Therefore you will have e power minus

h nu, n h nu by K B T in the numerator and this term we can take it to the numerator

minus h nu by K B T is that clear.

(Refer Slide Time: 40:13)



So, therefore, we need now the number density function f, which can be therefore written

as your ensemble of your n which is nothing but summation n equal to 0 to infinity. This

is your number density at each energy level corresponding value of probability you have

to multiply and sum this over all the discreet energy states, from n equal to 0 to infinity.

In the case of electron we did this only for the occupied and the empty state. Now for the

case of pronouns we are summing it over it is a canonical ensemble, will summit over all

the discreet energy states possible. So, now therefore, if you put it into this you have

again another summation coming up. 

So, you have 1 minus e power minus h nu by K B T and the corresponding value of n is n

i is nothing but, So you have, n e power minus n h nu by k b t. So, what we will do now

is to again use the Maclaunn's theorem (Refer Time: 41:41) So, this should be written as

1 minus e power minus h nu by K B T you can take it out again this is independent of n,

you have n equal to 0 to infinity in the summation and the summation is apply to this

term right here.

(Refer Slide Time: 42:33)

So, now we will just use a differentiation rule here. If you are talking about minus d by d

x of summation n equal to 0 to infinity, e power minus n x let us say, where x can be h nu

by K B T. So, I am just giving a differentiation rule, so if you differentiate this, what you

should get;  summation  n equal  to  0 to infinity, you have n e  power minus n x.  So,

therefore, this term here is similar to the right hand side of this rule. So, therefore, we can



replace this with minus d by d x of this. So, therefore, your f now is, 1 minus e power

minus h nu by K B T into minus d by d x of some root infinity minus n h nu by K B T.

So, now this summation of this 0 to infinity, e power minus h nu again coming back to

how we did with this Maclaunn series, this entire summation of these terms 1 minus 1

plus  e  power  minus  h  nu  by K B T plus  this  square  plus  this,  this  is  nothing,  but

Maclaunn series, 1 minus x to the power minus 1. So, therefore the same thing can be

applied again to this term here, summation term we can apply the Maclaunn series again

reduce it to.

(Refer Slide Time: 44:39)

So, 1minus e power minus h nu by K B t times, you have minus d by d x and you have

one minus e power minus h nu by K B t in the whole inverse, is that ok.

So, therefore if you differentiate this, can you complete it what you will get. So, this x is

nothing but h nu by K B T. So, you can rewrite this as x, because I have written this as d

by d x. So, it will be easy for you to differentiate in terms of x, this also you can write it

in terms of x if you want to simplify it. So, therefore, you have 1 minus e power x and

then you have to differentiate the next term. So, this will be e power minus x by 1 minus

e power minus x the whole square. So, this term if you differentiate that will be e power

minus x by 1 minus e power minus x the whole square.

 (Refer Slide Time: 46:45)



So therefore, if you cancel the common terms, Therefore you will be having finally, 1 by

e power x minus 1. So, this will be 1 minus e power minus x. So, this will multiply and

divide by e power x. So, I will be ending up with 1 by e power x minus 1. So, there is

nothing, but 1 by e power h nu by K B T minus 1. So, lot of mathematical manipulations

are required.

So, finally, therefore, we reach this distribution function for pronouns this is called your

“Bose Einstein distribution function”. So, if you want to plot this distribution function

just like the way we plotted the Fermi Dirac, again this is the function of temperature

right.

(Refer Slide Time: 47:53)



So, on the y axis you can have the distribution f, the number distribution. On the x axis

you can have what? In the case of electron we have energy, in this case we have the

frequency, you can write this h nu also in terms of h bar omega; this is also h bar omega

multiply and divide by 2 pi and you have modified plane constant times the angular

frequency. 

So, you can therefore, plot this as function of frequency either nu or omega is up to you

,in terms of hertz for example, and how does it vary with temperature. So, what say 100

Kelvin, you will have a function which is like, this is at 100 Kelvin, say at 300 Kelvin

this will be looking like this, and as your temperature keeps increasing, so the number

distribution will approach 0 for larger values of frequency. So this will be for 100 and if

you are looking at 5000 Kelvin, so this is the way that the distribution function behaves

and plotted as a function of frequency and temperature.

Once again similar to the Fermi Dirac case, for the limiting case was you have a h nu

much greater than K B T. So, this term will be significant over. So, therefore, this will

simply  reduce  to  e  power  minus  h  nu  by  K  B  T, which  will  is  nothing  but  again

Boltzmann distribution. So for these limiting cases very high values of energy. So, that

you are looking at values of nu which are very large or values of temperature which are

very small  like this.  So,  for these cases this  distribution function will  approach your

Boltzmann distribution function.  So, we will stop here, tomorrow we will summarise

these distribution functions that we had derive their most important characteristics.

So, now that we have the number distribution, corresponding to each energy state, now

we can do all these ensemble averaging to calculate the macro scale properties. So, we

know what the number density is therefore, if you multiplied it with the corresponding

energy you will know the energy of each state. And then if you sum them over you will

get the total energy of the system. So, you have basically distribution function which tells

you how many number of energy carriers can occupy particular state and now if you

multiply  it  with that,  energy of  that  state.  So,  it  will  give  you the  energy weighted

average it is a weighted energy of that particular state and if you sum them over all the

state, this will give you the total energy or the internal energy of that entire system.

So therefore, a micro state from the discreet microstate energies, now we can use this

distribution functions to calculate the entire macro scale energies. So, we will do this



exercise  tomorrow, so  will  look  at  how  to  derive  the  internal  energy  for  electrons

phonons molecules.

Thank you.


