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Good  morning  and  today  we  will  start  a  new  topic,  which  is  the  statistical

thermodynamics. Statistical thermodynamics is actually the bridge; you can say between

the micro states that we had been dealing with so far the last so many classes, where we

understand  that  in  quantum mechanics,  depending  on  whether  you  are  looking  at  a

simple particle in a quantum well or a potential constrained or, you are talking about

electrons in a real crystal  structure.  You have several quantum states, which are also

called  as  micro  states.  When  I  say  micro  states,  these  are  corresponding  to  the

discontinuous wave vector.

They can either be something like the N pi by D kind of quantization, where you put a

particle in a potential energy constrained and get this or it can be in a real crystal where

you  are  K  can  be  2  pi  N  by  L.  Never  the  less,  what  it  means  is  you  are  having

discontinuous values of K, which gives raise to discontinuous values of energy. These are

called micro states. You have so many micro states and this are possible states where you

know you can fill electrons and now in the macro scale picture in the continue picture,



you have 1 big you know macro state and what are the macro state that we are concerned

with for example, internal energy, as a consequence you will have temperature.

Therefore, now we have to somehow link this information on so many micro states and

we have to arrive at away of clearly defining the macro state or macro scale property for

the system with so many numbers of micro states. This is where the role of statistical

thermodynamics comes into picture. We are actually building what we called a bottom

sub approach. We are  now starting from the fundamental building blocks of individual

energy carriers looking at the discrete nature of the energy states and now from there, we

are trying to go to the continuum picture and trying to represent these micro states with

some macro scale variables.

Then how do we do that? Statistical thermodynamic we cannot simply you know fill the

electrons the way we want or fill phonons the way we want. There is a certain way that

these electrons or phonons can occupy these energy states and these are represented by

the  distribution  functions.  Therefore,  we  have  to  respect  the  nature  of  these  energy

carriers and how they are supposed to occupy these energy states. Unless we do that, we

cannot simply assume, the electrons and phonons to fill the micro states in a manner that

we want to do. Therefore, statistical thermodynamics just 2 things, 1 it gives you the

order in which these states are filled by the energy carriers number 1, number 2 then how

do we transfer all these information from the micro scale to the macro scale.
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Eventually that is what we will do. Therefore, the first part is therefore, to look at the

distribution of energy carriers. We have to understand, it is like some builder has built

certain apartment complex say 100 apartments within the complex, each different size,

you know different requirements, some 1 B H K 1 2 B H K, some 3 B H K and we do

not  know how people  will  fit  in  these  apartments.  Somebody  may prefer  1  B H K

somebody a 2 B H K. That is basically the distribution function and then finally, when

you have you know find the right people, who can fit in this particular house, then you

have known exactly how these apartments can be filled and this filled apartment now can

be used to describe what we call the macro scale the aggregate of all these.

But to fill this, we have to look at all the micro states that are each and every apartment

what kind of people can fit in this particular apartment and this is exactly how at the

small scales, the energy carriers also preferred to occupy certain energy states and these

are given by these distribution functions. Too quickly I mean I am sure many of you

already took courses and probability and statistic. I am just going to directly go into the

part of the matter and I will just assume that you know how to calculate the probability

distribution function and so on. Now the question will be now for example, let us take 3

distinguishable particles.

I am just giving an example, you have 3 distinguishable particles and you have 4 energy

states or four micro states. Let us say you have epsilon knot is a ground state. You have

epsilon 1, epsilon 2 and epsilon 3 and now I am going to represent 3 scenarios, how these

3  distinguishable  particles  can  possibly  occupy  these  energy  states.  These  are  just

examples. In scenario A, you have all the 3 particles occupying epsilon 1, like this. The

other states are completely vacant and you can have a second scenario, where 2 particles

or occupying epsilon knot and the third particle is occupying the highest state epsilon 3.

How can you represent that?

The middle 2 are completely vacant. If 2 particles are occupying the lowest 1, they can

occupy something like this, middle and the end of this energy state and you can have 1

particle which is like this. This is 1 combination. The other combination is you can have

1 on this end, 1 on this end. These 2 are vacant and here you can have the third particle

occupying  the  middle.  You  have  another  possibility,  where  you  can  have  these  2

occupying  the  left  and  the  middle  and  the  third  particle  occupying  the  right  hand.



Therefore,  when  you  have  2  particles  occupying  epsilon  knot,  1  particle  occupying

epsilon 3, how many possibilities are there?

You have  3  possible  combinations.  If  you  are  having  only  all  the  3  distinguishable

particles  occupying  only  1  energy level  together,  that  means,  only  1  combination  is

possible. Now you can go further and you can say you have 1 particle occupying epsilon

knot,  second occupying epsilon 1, third occupying epsilon 2. In that case how many

different combinations are possible? You can have a scenario C. In which the highest

energy state is not occupied, for example, the lower 3 once. You can have combination

where 1 is occupying the left hand here the other is in the middle, third 1 is like this. Like

this you can represent more states, you can all of you do that? 1 here, the other can be

here, the other can be here.

How many such combinations are possible?

Student: (Refer Time: 10:30).

You freeze, you can first draw and check for yourself. You have 1 here, 1 here, 1 here

then you have 1 here. So, you freeze these 2 positions, you move this.

Student: (Refer Time: 10:30) 37.

Let us draw all of them. Then you can have 1 here, the middle 1 towards this and 1

towards this. You should have 1 in the center now and 1 in right 1 towards left. If you

want to calculate the probabilities, therefore, you can therefore, 1 2 3 4 5 6.
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Now, let us see how we can calculate the number of states or the number of arrangements

possible. In case of scenario A, the number of arrangements, this is in the micro states.

What we call as quantum states. These are representing the quantum states and you want

to distribute particles into these quantum states.

The number of arrangements possible in scenario A is given by. You have 3 particles

Therefore, 3 factorial divided by; in the first energy level you have 0 particles. 0 factorial

second energy levels you have 3 particles,  third energy level,  you have 0 and fourth

energy level 0. The general distribution is that you have N factorial  divided by N 1,

factorial  N  2,  factorial  and  so  on.  This  gives  you  the  distribution  or  number  of

arrangements totally that are possible for each scenario. In this case therefore, how many

numbers of arrangements are possible? 3 factorial by?

Student: 2 1.

You have  1.  This  is  what  is  given  by  this  particular  arrangement  to  all  3  basically

occupying only 1 state, 1 micro state. That means, you can put them in only just 1 way.

Now if you apply this to the second case. You have 3 factorial divided by number of

particles occupying the first level 2, 2 factorial second level.

Student: 0.



0, third level.

Student: 0.

0, fourth level 1. Therefore, this will be?

Student: 3

3.  You have therefore, 1 micro state here. What we call  and these are 3 micro states

possible. That means, there are 3 possible combinations of these filling. Similarly, if you

extended to the third scenario you have 3 factorial by 1 factorial 1 factorial 1 factorial

and  0  factorial  therefore,  how  many  arrangements?  6.  Now, this  is  giving  you  the

probability. Therefore, usually what happens is the arrangements will always go towards

the scenario of maximum probability.

The maximum probable distribution will be the most likely distribution. Therefore, the

most probable distribution what you are talking about should correspond to the largest

value  of  omega that  means,  we have  to  find  the  possible  value  of  omega,  which  is

highest that will give you the most probable distribution because the more number of

states that you have more likely that, this will be the states occupied by these particles.

These are actually not constraining like the way, we are constraining in scenario A B C.

They try to occupy you know as freely as possible.
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That means, you have to find the most probable distribution at corresponds to the largest

value  of  omega.  This  is  basically  the  starting  point  of  deriving  these  statistical

distributions. What we will do first is just use the generic formula. In general if you have

therefore, N number of particles and you have N subscript I particles in each energy state

corresponding to the energy state epsilon I.

This  is  the more generic  1.  Therefore,  the probability  for this  distribution will  be N

factorial divided by N knot factorial N 1 factorial N 2 factorial till what we called N

subscript R factorial. This R will be the maximum number of energy levels. There are

totally R energy levels and you have a distribution N knot may be occupying the base

level N 1, N 2, N 3, so on till the final energy level and you have totally N number of

these particles. For any given scenario therefore, you can calculate the number of states

micro  states  possible  using  this  particular  probability  distribution.  This  can  be  also

written as N factorial  by product N I factorial  ranging from I equal  to  0 to R. This

symbol is mean product.

And now what we will do is we have to find the most probable distribution. The most

probable distribution is found out by maximizing omega. Corresponding occupancy will

be determined. Now, what we will do is take log, natural log and both sides. You will

have ln of N factorial minus ln of 0 to R N I factorial and since typically we are talking

about I mean in a real case these particles are so large we are talking about so many

number of electrons  and phonons,  there typically  quite  large  and therefore,  for  large

numbers of N Is, you can use the sterling’s approximation, which states that your ln of

some X factorial is equal to X ln X minus X. This is the sterling’s approximation for

large values of X.

Typically  these  particles  are  also  too  many.  Therefore,  we  can  apply  the  sterling’s

approximation. If you do that and you substitute into let us say this is equation 1. You

have ln omega is equal to N ln N minus N. I applied sterling’s approximation to this and

similarly you can also apply the sterling’s approximation. You can expand this and you

can apply the sterling’s approximation. How will you expand this? This is nothing, but ln

of N N knot plus ln of N 1 plus ln of N 2 and so on and then you apply that.
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You can actually write this a summation. I equal to 0 to R N I ln of N I minus N I is that

ok? This will  be equation number 2.  Now, there is  a constraint  on the system. Now

suppose you assume that this is a close system, consisting of N particles and you have

several of these micro states and these particles are now according to these combinations,

there occupying the energy states.

They can occupy all these energy states under with following constrains, number 1 the

total number of particles cannot change. Therefore, your N will be equal to a constant.

You can do all these combinations, but you cannot alter the total number of particles That

means,  your  N knot  plus  N 1 plus  till  N R should some up to  always N,  whatever

combination you make or in other words summation I equal to 0 to R and I should be

equal to N which will be equal to a constant. Therefore, the change in N which is equal

to summation I equal to 0 to R. We can say that the change in N should be equal to 0,

over  all  for the entire  system and similarly if  you look at  the total  system, the total

internal energy should also be equal to a constant. If you are assuming this is a closed

system, that means, it is not transferring any energy 2 and from this surrounding. The

total internal energy as to be a constant, these particles can occupy any energy states, but

it should also stratify this constraint.

In such a case you will have N knot epsilon knot plus N knot N 1 epsilon 1 and so on till

you have N R epsilon R. This gives you basically the energy for particular micro state



number of particles occupying this particular energy level. Like the difference some all

of them, you get the total internal energy. 

(Refer Slide Time: 23:52)

Also the condition now states therefore, this is equal to summation I equal to 0 to R N R

N I epsilon I. This condition states that any inter change of particles can happen which

conform to the fact that delta U is equal to 0. This also means, we can write this as

summation I equal to 0 to R delta N I equal to 0 because of the fact that the total number

of particles cannot change.

You  can  basically  rearrange  the  particles  within  a  given  energy  level,  but  the  total

number of particles cannot change and also the, at each and every energy level you know

you can have a certain change in the number of particles, but when they all some these

changes it should be equal to 0. Same way with this, we can write it as I epsilon I delta N

I should be equal to 0 because of the fact that the internal energy cannot change. Let us

call this as constrains 3 and 4. 

If you are now going to find out the distribution, which is most probable distribution that

is trying to maximize omega; that means, even if you inter change some particles among

the energy levels, that is you allowing some delta N I, the value of omega should not

change much because it is already close to the maximum probability.



You are  looking  at  maximum probable  distribution  and  you are  also  looking  at  the

corresponding distribution of N at each energy level. Even amongst the energy levels you

change. 2 particles here, 1 particle there and then you re arrange it that should not change

the value of omega too much because this is already close to the maximum. Therefore,

we  can  make  an  assumption  that  when  we  are  looking  at  the  maximum  probable

distribution even some small rearrangement should not affect your over all omega.

(Refer Slide Time: 26:44)

Therefore,  your  delta  ln  of  omega should  be what,  0.  Already you are  going to  the

maxima. So, the condition therefore, that will ensure is that around this maxima your

change will be negligible. You can there therefore, find the maxima by equating this to 0.

And therefore, what it means from equation number 2, say if you therefore, apply delta

of this  to equation number 2 and all  of you please write  it.  Find delta  of this  entire

equation. We are now maximizing value of omega to find the most probable distribution

say if you take the delta of this entire equation now, what you will get on the right hand

side first term? You will have delta N into ln of N correct. Now, delta N should be what,

0. Similarly you have delta N here. You have the first term on the right hand side going

completely to 0. All of you please try it and I will just write the solution you check the

later on. The second term on the right hand side, the delta of this will expand to this.

You have delta of N I ln of N I. Basically you can write this off, write this as delta N I ln

of N I plus you have N I into delta ln of N I. If you differentiate ln of I, that is basically



D N I by N I minus delta N I. Therefore, again if you are applying this constraint, where

the number of particles, total number of particles cannot change; that means, summation

of delta N I should be equal to 0. What happens? This term and the summation of that

you are going to 0. Therefore, essentially you are left with the fact that summation delta

N I ln of N I should be equal to 0. This should give you the arrangements or distribution

of  particles  which  maximizes  the  probability,  omega  and  which  also  satisfies  the

condition that the total  number of particles  cannot  change during this  rearrangement.

From this we will introduce the concept of Lagrange multipliers.

So, the Lagrange multipliers, what we will introduce here? 1 we will introduce for the

energy. We will introduce a constant which is having the units of reciprocal energy. We

will apply this to our equation number 4, which is the constraint epsilon I summation of

epsilon  I  delta  N I  equal  to  0.  What  we will  do  is  will  multiply  this  by  Lagrange

multiplier beta, such that summation you have epsilon I delta N I equal to 0. This is just a

constant. We can carry it inside the summation and we can simply multiply to equation 3.

These now, let us call this as you know let us do we have a 4? Yes we have a 4. We are

multiplying it to equation number 4. Let us call this as 5 now and 6.

(Refer Slide Time: 32:38)

Similarly, we will introduce another Lagrange multiplier alpha, so that we will multiply

equation number 3. We have alpha into delta N I equal to 0. This is equation number 7.

This is just a constant no units. You do not have to worry about why we are doing this,



but  later  on we will  see  that  for  certain  particle  or  a  certain  system these Lagrange

multipliers can take certain parameters. We will just introduce that later on, but you can

now assume. We are multiplying equation number 4 with the Lagrange multiplier which

has 1 over the units of energy and the other 1 with equation number 3, which is just a

constant without any dimensions. We have therefore, 5 6 7, will add all these together

adding 5 6 and 7 summation I equal to 0 to R have ln of N I plus alpha plus beta epsilon

I. Your delta N I is common. I am pulling this out. So, this should be equal to 0. Is that

ok?

Now if you expand this, what it means? You have for example, ln of N knot plus alpha

plus beta epsilon knot delta N knot plus you have ln of N 1 plus alpha plus beta epsilon 1

delta N 1 and so on and so forth. This all sum to be should be equal to 0 and now as we

can see that your delta N knot delta N 1 by itself cannot be 0 because you have a certain

change in the distribution. The sum of all these can be equal to 0, sum of delta N I can be

equal to 0, but individually delta N 0 and delta N 1 delta N 2 their not 0. Therefore, in

order to satisfy this, what should be the condition?

(Refer Slide Time: 35:20)

Each of this should be equal to 0. Therefore, ln of N I plus alpha plus beta epsilon I

individually should be equal to 0.

From this,  we can  write  now, what  is  the  distribution,  the  actual  distribution  which

maximizes omega? This is distribution which is 1 by exponential alpha exponential beta



epsilon I. Is that ok? This is nothing, but exponential minus alpha plus beta epsilon I.

This gives you the how they particles can be distributed at each energy level epsilon I

corresponding to maximizing omega corresponding to satisfying the constraints that N

should  be  constant  and  your  U  should  also  be  constant.  This  is  the  most  probable

distribution most probable distribution of particles that maximizes omega, is it clear?

Till here whatever we did was purely you know statistics probability and statistics. For

we have not really identified what kind of particles these are, but now what it tells is

there is an exponential distribution of the particles, starting from the lowest energy level

upwards.  As  and  when  your  epsilon  keeps  increasing  what  happens  to  the  number

density? Decreases; more particles will occupy the lower energy states and then they will

taper  off  as  you go out  to  the  higher  energy  states.  How do we now apply  this  to

particular particle? Whether it there electrons or phonons or photons or molecules. That

is determined by the Lagrange multipliers alpha and beta. I am going to introduce some

quick terminology here, let us not spent too much investigating them, but I am going to

therefore,  introduce  3  kinds  of  systems  1  is  called  micro  canonical  system  micro

canonical ensemble.

(Refer Slide Time: 38:24)

We will see what is this? This ensemble is nothing a statistical agglomeration of these

distribution functions. We can use these ensembles to define the macro scale properties.

We can how 3 different kinds of system, 1 is a micro canonical 1; the other is a canonical



ensemble. These are just terminologies the other is called the grand canonical ensemble.

So in this case the question is what kind of particles fit where? For example, in the micro

canonical  and  ensemble  the  probability  will  be  or  the  distribution  will  be  of  equal

probability. It is just given as 1 over omega, now this is a very simplistic approach and in

this case, this is applied to an isolated system, in which your internal energy is a constant

your volume is a constant and the number of particles are constants.

These are all fixed. Right now there is 1 more step I want to do. Now let us call this as

equation number 8,  this  number distribution here.  From this how can I  calculate  the

probability distribution function? So, I have the number distribution 8. So, from this how

can I calculate probability distribution function that is P corresponding to a particular

energy?

Student: (Refer Time: 40:56).

N I divided by.

Student: (Refer Time: 40:56). This will give you the probability distribution function. In

the case of micro canonical ensemble, it is say, that the probability to distribute particles

is  very simple.  It  is  equally  probable  that  all  energy states  can be filled  whereas  in

canonical ensemble and grant canonical ensemble,  it  goes by the maximizing omega.

Whatever we have derived here as equation 8, your P therefore, follows from equation 8.

Both here as  well  as the grand canonical  ensemble,  what  kind of systems therefore,

canonical ensemble can be applied? You have system where volume is a constant, the

number of particles is fixed and it is also isothermal. Temperature is also constant. These

are fixed. Typically this is a closed system. Therefore, your volume is fixed, number of

particles is fixed, and temperature is also fixed. Now the difference between canonical

and grant canonical is that this becomes and open system. Therefore, your N will no

longer be constant. Your volume will be constant, what we instead of when we call what

is call chemical potential mu will be a constant and if this is isothermal, you can also

have T fixed.
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Now as a consequence, how do you differentiate the canonical and grand canonical? In

both cases you use this particular equation to calculate the probability distribution.

However the values of the Lagrange multipliers will become different. For example, in

the case of canonical ensemble the value of alpha will be equal to 0; beta will be equal to

1  by  K  B T, whereas  the  grand  canonical,  there  alpha  will  be  minus  the  chemical

potential mu N I by K B T and beta will be still 1 by K B T. This is to summarize the

different kinds of systems now for which we can extend our distribution function and

apply the values of alpha and beta according to the kind of systems we are dealing with.
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Therefore, if you write the distribution function in terms of probability distribution, for

canonical ensemble your P probability will be exponential minus E I by K B T because

alpha is 0. If you therefore, substitute into this, this becomes 1. You have exponential

minus 1 by K B T to E I.

Therefore, divided by summation of E power minus E I by K B T, I going from 0 to R for

grant canonical ensemble your probability, will be what? Substitute the alpha and beta

what you get? E power minus.

Student: E I minus.

E I minus mu N I by K B T divided by summation E to the power minus E I mu N I by K

B T. We will apply the canonical ensemble to system of molecules phonons and photons

while the grand canonical ensemble is applied to system of electrons. Therefore, we have

now come to a point, where we understand what is the distribution function? And second

thing,  we  have  also  identified,  what  kinds  of  particles  correspond  to  what  kind  of

distribution function?

For  example  molecules  phonons  photons  will  correspond  to  the  canonical  ensemble

electrons to the grant canonical, now the numerator that you have here. E power minus E

I by K B T, this is called the bolds man distribution. The numerator, what we have here is

the bolds man distribution and the denominator, the summation of all these across the



different  energy levels.  This  is  in  statistical  thermodynamics  refer  to  as the partition

function sometimes they use the nomenclature Z instead of writing this summation. This

all the time replaces entire denominator with the nomenclature E Z, which is called the

partition function, which is the summation of the distributions across the different energy

levels.  Based  on  this  distribution  function,  now  we  will  go  ahead  and  derive  the

individual distribution functions for each energy carried.

For example, molecules in the case of molecules, what will happen to the energy? They

are not  discrete, they are continuous and if you are considering only a monatomic gas

molecule. Only translational kinetic energy is there. In 3 dimensions you have 3 degrees

of freedom, half M V X square plus V Y square plus V Z square. We can therefore,

substitute  for  energy  in  terms  of  the  translational kinetic  energy  and  then  we  can

calculate,  what  is  the  distribution  probability  distribution  function  for  a  molecules

similarly for phonons, we can substitute the corresponding value of E I, what will be the

E I for phonons?

Student: H mu.

H mu into N plus half, vibrational energy levels and if you look at electrons, we can also

again substitute the corresponding value of E I. All this we will do in the next 2 or 3

classes you know starting from molecules. And once you derive them for apply them for

molecules; they get the name Maxwell  Boltzmann distribution.  Similarly for phonons

and  photons  they  become the  Bose  Einstein  distribution  function  and electrons  they

become Fermi  Dirac.  We will  derived  these  distribution  functions  for  the  individual

energy carriers and look at the nature, how they look and how they collapse? Actually

even though the  electron  distribution  function  looks quite  different  from the phonon

distribution function. They can actually collapse at some certain conditions and they will

be looking similar. They will become collapse to Boltzmann distribution function.

Will see at what particular values they can do that then from these distribution functions.

The part  is  achieved.  We know how the particles  are  distributed,  the next  step is  to

therefore, calculate the macro scale properties. We are interested in internal energy. How

do we do that? We know the distribution function; we have these corresponding values of

energy, you have to take a cumulative. Therefore, we have to find the ensemble statistical

ensemble of number of particles occupying each energy level based on this distribution



function from which we aggregate everything and calculate the total internal energy and

once you know the internal energy, we can calculate the heat capacity.

From  there,  we  should  be  able  to  now  understand  how  the  micro  states  or  now

transitioning and we get the macro scale properties. In the next, I think 1 or 2 classes we

should finish the distribution followed by calculating the internal energy. About 2 to 3

classes know totally we should be able to complete this exercise and then we will be

knowing you know at equilibrium systems how these particles are distributed, what kind

of energies they posses and what is the contribution and so on. Then we will go on to

cases of non equilibrium that is the transport of heat.

So, will stop here. 


