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So, the wave vector is primarily an indication of you can say the momentum and finally

also the energy. The energy is related to the wave vector. So, we will see that in the say,

case of simple particles you have a very simple relationship. So, h bar into k square. h

bar square k square is what? We have with energy and wave vector. Therefore, if you are

looking at wave vector itself, how do you interpret it? So, we will, when we look at the

real solids then we will understand this more, you know. We will use this concept of

wave vector to define several other quantities such as such as density of sates so on. And

then we will use that in statistical thermodynamics but your question is whether it has a

magnitude. Yes, it has a magnitude. It is also directional.

Student: (Refer Time: 01:41).

I think if, you go back to our single particle system, here. So, we were looking at right

here. So, in this case you have just one single wave vector in a along x and your e is

related to your wave vector. And your wave vector, what it says here is, it is quantised

because  your  n  is  now becoming  discreet.  Whereas  if  you  take  a  particle  which  is

completely free, which is not confined, completely free particle, free standing particle

you have continuous wave vectors. So, whereas now when you put a confinement, you

see this wave vector along the x direction is quantised. It is no more continuous in this

direction.

And  it  is  quantised  such  that  it  takes  discreet  values,  multiples  of  pi  by  d  and

correspondingly the energy is related to the wave vector. Finally, you know what is the

purpose of these waves vector is too finally calculate the energy. So, we are relating the

energy and wave vector and then we are now finding how the wave vector behaves in a

in  a  quantise  system.  Now if  you go to  a  two dimensional  case  the  wave vector  is

quantised in both directions, both x and y. So, this is what we are getting here and finally,



when you substitute this k square k x square plus k y square into h bar square by 2 m. So,

for k x and k y you substitute as pi into l by d.

(Refer Slide Time: 03:38)

And similarly, k y is now pi into n by d. That means, wave vector is now quantised in

both the, you know x and y directions because of this confinement in both directions. So,

what it means physically is that now the energy levels are also becoming discreet. So,

when you have  continuous  waves,  you have  continuous  values  of  wave vector.  The

energy values are also continuous, now, because of the quantum confinement, the wave

vectors become discreet and also the corresponding energy values.

Whereas if you don t confined net in the z direction, still there it will be continues. So,

and then in the quantum mechanics, we describe the wave function. Why we describe

wave function is from this way, you get the probability of deriving other quantities. The

expected  values  of  position,  momentum,  and  energy  all  this  comes  from this  wave

function. So, correspondingly, we have to know the wave function in order to solve the

other quantities but primarily the energy is directly obtained here from the wave vector.

Is it clear?

So, now as we proceed, you will understand more and more, what is the function of this

wave vector? So, but right now, you should understand that wave vector is basically

deciding energy and if you are confining it, it becomes discreet. If you do not confine it,

it is continuous. So, so far the last class we did all this. Then we started looking at the



quantum vibrational energies. So, we looked at translational energy that is particle in

quantum well and then particle in a box. So, they are all infinite wells that are one step

particle is strapped that cannot come out.

So,  you  can  also  have  finite  wells  with  the  finite  potential  height,  potential  energy

constraint. So, in that case what happens is up to certain energy levels, the particle is

confined beyond that it becomes continuous. Once it comes out, once the particle can

escape  this  potential  energy  constraint  then  it  becomes  continuous.  So,  within  the

potential  energy  constraint,  it  becomes  quantised.  So,  I  will  give  some  one  or  two

problems related to this kind of finite quantum wells in the assignment. You should be

able to do it.

So,  now the other  mode is  the  vibrational  mode.  In  the  case of  classical,  you know

vibrational energies, we have already taken the example of the spring mass system and

we have derived theses vibrational energies, is the sum of kinetic plus potential energy.

So, in the case of quantum microscope, microscopic modal, so, how do we account for

the vibrational energy? So, once again, so, as I said, you know you have a very complex

representation of the forces of attraction between two atoms, if, you consider two atoms

and  you know the  force  between  them to  be  approximated  by a  spring  with  spring

constant k. So, you can talk about forces of repulsion when they come close to each other

and when they are separated they there is an attractive force. So, this is actually your

Lenard Johns potential which includes both the repulsive and attractive forces.

Now, this is more difficult to directly plug in this kind of potential into the Schrodinger’s

wave equation and solve. So, therefore, we are going to use an approximation. So, we

use what is called as a simple Harmonic modal.
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A simple harmonic modal assumes a parabolic kind of a potential, about a mean or about

an equilibrium location.  So, let  this  equilibrium location  be x naught.  So,  about  this

equilibrium location, you have a parabolic potential which says that if you are distance is

more than this equilibrium value, now there is going to be an attractive force what is less.

There is going to be repulsive force and that is it is very simple approximation which is

fairly accurate.

So, now, so this  is your potential  energy constraint  that has to be plugged into your

Schrodinge’s wave equation.
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So, therefore, so, in this case the Schrodinger’s equation will be minus. So, we are going

to write this only in the spatial derivative. So, we have d square psi by d x square. We

have now emotion of these atoms in the x direction. They can either come close or they

can go far. So, we are describing the corresponding motion by means of waves, writing

the Schrodinger’s equation plus. Now, in the original equation, we have potential energy

constraint minus e time’s psi. So, now, we are going to substitute for this potential energy

constraint as half k x square minus e times psi equal to 0.

So, this is your o d in space. We are now interested mostly in this cases, the o d in space

because this is the one which will be give you the Eigen value which in turn, gives your

energy. Whereas  the  one  in  time,  it  is  standard  behaviour, so,  we are  not  too  much

concerned  about  bringing  the  time  behaviour.  Now, we  are  mostly  concerned  about

finding the relationship between energy and the wave vector. So, in this case k is not

wave vector you please do not confuse. This is spring constant.

Now, to solve this again we need two conditions. So, what do we do? Now, this potential

energy constraint says that whatever particle is basically trapped within this potential

well described by this parabolic potential. So, very far away from this, so, x going to

minus infinity or plus infinity. This practical cannot exist there because these partials are

essentially governed by this potential constraint by this particular parabolic potential. So,



we will impose the condition that psi at either x tending to minus infinity or tending to

infinity wave function cease to exist.

So, now we can solve this particular o d but if you look at the structure now, compared to

the particle  in a quantum well.  So, there,  we didn’t have any potential  energy in the

quantum well, we had this directly. You are expressing this in terms of sine and cosine

that was the Eigen function. That is the wave function but now, we have k x square.

Now, this becomes a function of x, so, we have non constant coefficients.

(Refer Slide Time: 11:55)

So, we have an o d with Non constant  coefficients.  So,  we cannot  find very simple

analytical functions in terms of trigonometric functions. So, therefore, we can use some

numerical methods to solve this to solve this o d which is giving straight forward results.

So, originally this was attempted to be solved using series expansion by Landau and

Lifshitz in 1997. This is not so old.

So, there were the first two attempts, this though series expansion technique and I will

directly give you what is the corresponding Eigen value that they obtained. They get e

subscript and because now it becomes quantised, we can write this in function of this

number. This can be you know 0 1 2 or whatever. So, we have h nu time’s n plus half

where your frequency nu is 1 by 2 pi square root of k by m. So, this is the solution after

applying the series expansion and solving, let us say this equation 1. Kind of this looks

little bit familiar but not so much.



So, if you put for example, if you do not have this n plus half. So, E is equal to h nu is a

common expression that is used to relate for a wave frequency with the energy. Now for

the vibrational, quantised vibrational energies, we have this factor n plus half coming

into picture. And n, now can take the values from 0 1 to till infinity, the particle which is

basically trapped into this kind of a potential energy constraint, even by this parabolic

potential will have energies quantise, like this.

So, you can imagine this particular potential like this and you can have multiple modes,

multiple wave functions. So, each can take, you know different values of n, so, n equal to

0  1  2  and  so  on.  So,  essentially  this  potential  energy constraint  is  quantising  these

energies to these discreet values and why, what is the physical significance? 
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If you put n equal to 0, you have the first energy corresponding energy for this wave

function will be half of h nu. Similarly, then this becomes, you have 3 by 2 h nu and so

on. So, what does this half h nu here mean? At n equal to 0, so, this is the ground state.

At the ground state, you still have some value of vibrational energy. That means, even if

you don’t basically disturb, this spring mass system, the quantum mechanics predicts that

still this will have some kind of a vibrational energy given by half h nu. And this has to

be  some  finite  value  because  again  it  has  to  satisfy  the  Heisenberg’s  uncertainty

principle.



So, according to the uncertainty even at your ground state some quantum of energy still

there,  present to satisfy the Heisenbergs uncertainty principle.  So, so this is basically

what we have to understand about the vibrational energy in quantum mechanics. So, I am

not going though all the detailed derivation here. But if somebody is interested, how this

o d is actually solved, you can refer to some text books related to quantum mechanics

and they will be able to provide all the details.

(Refer Slide Time: 17:14)

So, let us move on to the other kind of potentials. So we have covered vibrational energy,

we have covered translation energy, what else is left? 

Rotational  energy, so,  we can  now look  at,  what  quantum mechanics  tells  us  about

applying potential energy constraint with rotation. So, now, let us look at the case where

we again consider two atoms like this. But now, instead of vibrating, they are rotating

because for monatomic system there is no rotational energy, you should have considered

at least diatomic molecule, so, in, if you take two atoms. So, let us represent this in x y z.

So, let us say that you have one atom here, you have another atom. Let us consider this

as a rigid body rotation.

So, we are linking this to two atoms, like they are rigid, you know there is no relative

motion while rotating. So, this entire body will be a rigid body which is consisting of two

atoms here and they will be rotating. Now, when they rotate, they rotate in a spherical

coordinate system. That means, they can make an angle of theta with the vertical access.



So, they can rotate like this and they can also rotate in the x z plane above the y access,

above the y access also, they can rotate. So, that is the azimuthal angle. So, there you can

imagine, that the projection of this particular object in the x z plane is now making an

angle - phi. So, this phi can go all the way from 0 to 360 degrees.

So, then this will make a sphere, so, theta going from 0 to 180 and phi going from 0 to

360 will make the rotation completely in a spherical coordination system. So, let the

mass of one atom m1. The other one is m 2, in diatomic molecule, you do not have to

have same equal masses for the 2 atoms. So, accordingly the moment of inertia  will

change, if they are equal masses then you have perfect balance but here, now you can,

the movement of inertia can shift depending on the higher mass. So, the distance of this

from the origin let us say, it is r 1 and from the second atom to the origin let it to be, r 2.

This is basically  the system under consideration and the corresponding movement of

inertia for this rigid body system will be m subscript r in to r naught square, where m r is

called the reduced mass because now you have two masses m 1 and m 2. We have to

write equivalent reduced mass which is kind of a harmonic mean between the 2 masses

m 1 plus m 2.

So, that means we, how do we write harmonic mean? 1 by m r is equal to 1 by m 1 plus 1

by m 2 this  is your harmonic mean. So, it  will  always harmonic mean, will  be bias

towards the smaller value. The lesser mass and the corresponding moment of inertia is

this where what is the r naught r 1 plus r 2. So, this is the moment of inertia. Now, why

do we have this moment of inertia?
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Now let us expand the Schrodinger’s wave equation. Now, Schrodinger’s wave equation

in a generic coordinate system will be what laplacian psi is equal to e psi. So, we will not

put any potential energy constraint on this. It is just rotating just like. We have a free

electron which is translating. This can just simply rotate in space without any potential

energy constraints. So that means u is equal to 0.

So, now if you expand this in a spherical coordinate system. So, the laplacian now has to

be written in a spherical coordinate system. So, your del square will be 1 by r square d by

d r r square d by d r. Plus you have 1 by r square sin theta d by d theta into sin theta d by

d theta. Plus we have variation with respect to the azimuthal angle, phi. So, that should

be d square by d phi square, and you have 1 by r square sin square times theta. So, here I

am going to  use instead of m,  the reduced mass m r because we are considering in

equivalent particle with the mass reduced, mass and m r. 

So, this is my equation and expands the del square. Now, if you look at the variation with

respect to r. So, we are only looking at variation with respect to theta and phi rotation to

describe the sphere. So, therefore, there is no variation with the respect to r, so, this term

can be cancelled. So, essentially we have variation with respect to theta and phi.
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If you write this, you have sin 1 by sin theta. So, I am going to multiply throughout by r

square in fact, here. So, I will multiply throughout by r square; so, have d by d theta sin

theta into d psi by d theta plus 1 by sin square theta d square by d phi square. So, on this

side, so, then I am going to so, multiply throughout by r square. So, you should have we

can write minus 2 into e i by h bar square into psi. So, I am dividing throughout by h, h

bar square and multiplying throughout by 2 times m r into r square 2 m r into r r naught

not square. I am writing as moment of inertia i.

So, if you want you can just do that step, I skipped the step here, so, basically in this

equation, if I multiplied by 2 times m r. So, this becomes del square psi minus e times c

by h time square into 2 times m r psi and then I am also going to multiply throughout by

r naught square. So, I have m r into r naught square, r naught square here, so, this am

writing as my, I and in the expansion of laplacian, I have 1 by r naught square that gets

cancelled. So, here r can be written in terms of r naught. So, we can replace r with the r

naught anyway so that is not varies with r.

So, you can E plus r with the r naught. So, this is your Schrodinger’s equation with the

respect to variation in theta and phi. We have again a partial differential equation in two

dimensions. So, we have to again use separation of variables to separate derivative of

theta and phi, try 2 independent ods and try to solve them.



We will therefore, assume psi of theta comma phi to be something likes p of theta and psi

of phi, you can use whatever variable you want but this is what I am using here. So, this

convention now I suggest you to plug into this p d e. So, let  us call this as 1 try to

separate it into two ods.

(Refer Slide Time: 30:17)

So, if you substitute this, can write this as psi of c 1 by sin theta d by d d theta sin theta

into d p by d theta because psi is constant now. Differentiating with respect to theta, so,

plus you have 1 by sin square theta p of theta you have d square psi by d phi square

because psi is now function of only phi.

On the other side you have minus 2 E I psi by r square. So, let us divide throughout by 

psi. So, this psi here, what I have written here is the function of theta and phi, so, we can 

divide throughout by psi function of theta and phi. Therefore, you will have 1 by p sin 

theta d by d theta sin theta d p by d theta plus 1 by psi which is the function of phi sin 

square theta and we have d square psi by d phi square. This is equal to minus 2 E e I by 

bar square. This is everybody got this? So, just like we have the 2 d quantum well, so, we

have derivative with the respect to x y and you have the Eigen values on the other side. 

So, this is the constant the moment of inertia constant for the system is constants. So, 

therefore, so, you have to have a, so, this is the function of theta, this is the function of 

phi. So, this should be equal to constant that means independently they have to be 

constants.



Student: (Refer Time: 32:30).

But we will assume in this case now, in simplest solution that you can get is if you have

this entire term Constance. This entire term constant then you will have another constant,

so, what we will do is now, just like we did the two quantum well, we will break this into

two Eigen, further Eigen value problem.

(Refer Slide Time: 33:02)

So, one which is 1 by p sin theta d by d theta sin theta d p by d theta which is equal to

some Eigen value which is k theta square minus k theta square, there in the 2 d quantum

well, we used some something like minus l square or minus n square. That means this

has to be again a positive, a negative quantity here. So, this side, so, if you look at it so,

you have a positive value of Eigen function e. So, this two has to be summed up than you

negative sin will cancel off and will have a positive value. So, therefore, this has to be a

negative value.  Here,  similarly which you look at  1 by psi  of phi sin square theta  d

square psi by d phi square will assume this is some other constant minus m square.

Therefore, essence this means minus k theta square minus m square is equal to minus 2 E

I by square. So, you will have positive values of E from this, so, therefore, if you write

the second. So, let us call this as 3 and this as 4. So, we have to solve now d square psi

by d phi square is equal to minus m square sin square theta psi. This let us call this as

equation 5. So, this is the od that we have to solve and from this, once we get these Eigen

values m, we can actually find the solution for 3 also because we can relate.
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We can write this k theta square as basically minus 2 E I plus 2 minus m square. So,

therefore, we can directly substitute for, let me put this view, so, we can directly put this

k theta square into equation 3 in terms of m. So, we can write equation 3 in terms of m.

So, once we solve the equation 5 and get the m square values we can actually find the

solution to the other od as well have d by d theta of sin theta d p by plus. Now, I am

writing my k theta square as 2 E I by h bar square minus m square times p equal to 0. So,

I am just substituting let us say 6 into 3, so, that I can rewrite my 3 in terms of m.

Therefore, I let me call this as 7. So, we can solve first equation 5, obtain m, the Eigen

values m and then put this into equation 7, put this into equation 7 and then what? Solve

for what? E the actual energy E, so, again the way you solve it is not as straight forward

as the one that you did it in Cartesian system. You can do this by series expansion or

numerically. So, I will only give the final solution for E, so, the energy Eigen values, so,

we have multiple Eigen values here.
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We have m which is not an Energy Eigen value, but the actual Energy Eigen value is E.

So, the Energy Eigen value solution will be h bar square by 2 times I, I is the moment is

inertia that we have defined. We have that I here in the equation 7 and multiplied by

numbers l into l plus 1, you hang on to this, I will come back and say what is l. Now l is

the function of m. So, the m that we have Eigen values that we obtain here is actually

rewritten in terms of l and how they are related?

So, your l should be greater than or equal to mod of this number m, the other Eigen value

m is related to this l like this and your l, m can take the values 0 plus or minus 1 plus or

minus 2 and so on and a condition for this l. You can say this wave number these are

again in terms of wave numbers. You can express them. So, you can say wave number l

should be greater than or equal to modules of m. So, this is the constraint and depending

on that you can calculate the energy of this particular wave function.
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So, that means, if you talk about let us say m equal to 0, so, when you solve this equation

number 5. So, you will be constraining.  Now you will  be quantising it  so, will  have

discreet values of m, so, it could be starting from 0 1 2 3 and so on. So, if m equal to 0

what happens? l should be greater than or equal to modal we will see that now m, if m

equal to 0. So, what are the values of l that can take greater than or equal to, so, it can

take 0 and then it can also take 1 2 and so on.

In fact, the way it is written, slightly different. So, let me clarify that the way it is written,

let me, we can just rewrite it as mod m less than or equal to l and l can take the values 0

1 2. So, in this case therefore, if you are l equal to 0. So, the m has to be 0 and if l equal

to 1 the m should be less than or equal to l. So, it can be plus or minus 1 right or 0

understand so, if l equal to 2 so, m can be plus or minus 2 plus or minus 1 0. So, this is

the way it is written. So, you have to start from the lower energy levels and then go to

higher energy level.

So, if you do write it the other way, l is greater than or equal to m. So, for m equal to 0, l

can go all the way up to infinity you know. So, usually we start with the lowest energy

level and then build up on this, so, the way it is the written is mod m less than or equal to

l. So, for l equal to 0, we have m equal to 0 that is the lowest energy level and then for l

equal to 1 m should be equal to plus or minus 1 or 0 and then l equal to. So, this is the



way you basically fill the energy levels in the rotational system right. So, depending on

the value of l so, this, so, you have two numbers here 1 is l the other is m ok.

And now, again we have this concept of degeneracy here, so, what it means is that if you

look at say m equal to 0 l can be 0. So, you have basically in this case two energy levels,

we will having the same value of energy or two wave functions one for m equal to 0 1

for l equal to 0, but energy is dependent to only on l. So, there is a degeneracy coming

again, when you go to m equal to plus or minus 1 0. So, for l equal to 1, you have only

one value of energy, but m can be plus by 1 minus 1 or 0. Again you have degeneracy

there, you understand you can have three different wave functions, one for plus 1 minus

1 0, but all of them having the same value of energy for the rotation system.

Similarly, if you go to l equal to 2 what is the degeneracy there 5. So, in general the

degeneracy as a function of l will be what? 2 l plus 1, so, for l equal to 0 the degeneracy

is 1, l equal to 1, degeneracy is 3, l equal to 2, the degeneracy is 5. That means, for each

of these numbers 0 1 2,  you have different  values  of degenerate  energies states that

means they are different wave functions governed by these numbers but they have the

same value of energy because energy is only a function of l or not m here.

So, this  is  another  good example  of degeneracy the other  one that  we saw in a two

dimensional quantum well. So, there again the energy is l square plus n square, so, for

values of l equal to 1, n equal to 2 and n equal to 2, l equal to 1, you can have the same

energy. Here you have a different way so, here your energy is function of only one wave

number  or  quantum number  that  quantum number  is  only  l,  but  actually  the  o  d  is

governed by two quantum numbers l and m, but it does not the energy does not recognise

that. So, that is why, again there is the degeneracy in this problem. We have although

different wave functions; you have the same value of energy. So, same energy level is

being occupied by multiple wave functions, so, this is another example, good example of

degeneracy in the rotational system understand?

Student: (Refer Time: 45:47) momentum quantum magnetic quantum number.

No,  it  is  somewhat  similar  to  that  but  this  is  only  rotational  system  that  we  are

considering.  In  rotational  system,  you  have  quantum  number  with  respect  to  theta

direction we have one quantum number with respect to phi direction, but the energy is

function of only one quantum number. So, this kind of concept of degeneracy is only



typical  to the quantum mechanical  systems, so,  let  us quickly do the last  part  of the

quantum mechanics which is these are the fundamental quantum mechanics that we are

talking about.

So, these are for what we called as electronic energy levels, so, what whatever we have

done there also for mechanical energies talking about translation, rotation and vibration.

You can talk about filling of electrons that that is what you are asking about the orbital

concept. So, they start with the lowest orbit, go to the highest over. What is basically

causing this to do? So, basically filling of electrons in the lowest energy level to the

highest energy level and that is also predicted by quantum mechanics.

(Refer Slide Time: 47:19)

So, we will therefore, look at this very briefly this is not very important for heat transfer,

but just to also complete it so, Electronic energy levels.

So, here we take a very simple example of hydrogen atoms. So, you have. How many

electrons are there in a hydrogen atom? One so, you have the nucleus and this is the

simple modal where you have n electron orbiting the nucleus. So, we are going to expand

this modal, simplistic modal to other atoms also we will assume even other atoms we can

predict it by assuming. Electrons keep rotating around this particular nucleus as a centre

and therefore, we have to consider the force of attraction between the nucleus and the

electron as the potential energy constraint, in the case of electronic energy level. So, this

is given by your coulombs potential. So, this is your standard potential, the coulombs



force says that if you have an electron separated from the nucleus at a radius r to the

force is 1 by 4 pi times the permittivity of free space into the charge of the electron

square divided by r square.

(Refer Slide Time: 48:54)

So, therefore, the potential energy can be determined as f is equal to d u by d r so, we can

integrate F as a function of r so, therefore, u of r will be what? Minus e square by 4 phi

epsilon  naught  into  r.  This  becomes  your  potential  energy  constraint  so;  you  can

substitute this into the Schrodinger’s equation again as a new potential energy constraint.

Now, this is again a spherical system this electron orbiting, then nucleus. So, therefore,

however, we are not interested in variation with theta and phi now, only with the radial

direction.

So, we are interested in energy quantisation only in the radial direction and therefore,

whereas, in the rotational energies we discarded the derivative of r. Now in the case of

electronic energy, we will discard the other two directions. So, this two can be neglected

and  will  have  only  the  derivative  with  the  respect  to  r  and  you  can  substitute  the

coulombs potential energy as the potential energy constraint and if you solve this once

again by the separation of variables which is not as straight forward.
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So, we will get an expression for the Eigen values of the electron filling so, which is

minus capital m. So, the m now becomes the mass of the electron in the Schrodinger’s

equation that I am writing as M here c 1 square by 2 h bar square n square.

Now, this c 1 is the constant. Basically e square, I think it should be e squares by 4 pi

epsilon naught, so for the case of electron, if you substitute the mass of electron then find

out this constant and therefore, you are modified planes constant. Then, this becomes

minus 13.6 electron volts divided by n square and what is n? So, n is greater than or

equal to 1 and we have other quantum numbers coming into picture which is not in the

energy but while you solve the equation, you will have quantum numbers.

So, that is l plus 1 and modulus of m should be less than or equal to l and your l can be 0

1 2 and so on. So, the energy is a function of only n but n is dependent on the quantum

number l and again you have another quantum number m, for which know you can take

the values depending on l is equal to 0 1 2 and so on . So, you have multiple quantum

numbers, but finally, we energy is the function of only one quantum number n ok.

So, again you have degeneracy here so, therefore, now depending on the value of n you

can start filling the electrons in an atom. So, for n equal to 1 so, this is the first electron

occupying the in - our first orbital. So, the corresponding energy of this electron is minus

13.6 electron volts.



Student: Sir if.

And as you keep increasing your n, so, let us this value keeps reducing.

Student: (Refer Time: 53:01).

That is a good question I think when you are solving them. So, I think we should also use

the  so,  it  should  also  be  a  function  of  theta  and phi  you are  right  because  we also

consider the rotation of this electron around the nucleus. So, finally, you are right so, I

think we cannot neglect the theta and phi dependent. So, when we do the separation of

variables,  I  think we should have psi,  should be something like some r which is  the

function of r and will have another y which is the function of theta and phi. Now, this

will have the quantum numbers l and m and this r will have the quantum number n you

are absolutely right.

So, that the wave function now become function of both, of all the three wave number,

quantum numbers n l n. You are right. In the case of rotation system, you have only two

wave numbers,  two quantum numbers.  In the case of electronic energy, you have to

consider it is a three dimensional system now. We cannot therefore neglect the variation

with respect to theta and phi so, the separation of variables therefore, will have quantum

numbers appearing for theta and phi which are l and m and for r, and you have quantum

number n, so that that is why, now you have additional level of degeneracy coming.

So, we will stop here. Tomorrow, I will just talk little bit about this filling of the electrons

and how these orbital have come. So, very briefly and then we will slowly conclude the

quantum mechanics, and then go to the next topic.


