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Good afternoon, I welcome you all for today’s discussion on dimensional analysis. In the last 

class we ended the discussion on the classification of Turbo machines by talking about the 

classification based on the direction of flow. Imagine yourself to be turbomachinery person, 

an engineer working in real-life situation, a customer comes to you and says that he or she 

has some operating conditions and you have to provide a pump or a turbine. Should you go 

for radial flow, mixed flow or axial flow or should you start from the scratch and start 

designing it?  

More often than not what the practising engineer will do, you will do as a practising engineer 

is to get a type of Turbo machine which is suitable for that application and then fine tune it, 

which means you should know a priory based on the operating conditions given whether to 

go for radial, mixed and axial. And the way of doing it is by using some nondimensional 

number, which brings us to the discussion on dimensionally analysis. First, whenever you 

take up something, the obvious question that comes to mind is why should we do this. 
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So when we talk about dimensional analysis or non-dimensionalizing, we need to ask 

ourselves what is the need to do non-dimensionalizing of the variables, why cannot we be 

happy with dimensional variable? To get to know let us see what are the reasons in brief. So 

it helps us to conduct experiments at laboratory scale called the model scale and to gather 

information about the performance of a prototype before making a prototype. Now let us take 

an example to understand what do you mean by laboratory scale. 

Let us say you have come up with a very novel design of an aeroplane which you want to 

build but when you are trying to build that aeroplane you do not build a big size prototype 

which involves several manufacturing, designing and intellectual inputs which makes it very 

expensive and then find it is not working that well or it satisfies your requirement. There is an 

easier way of doing it and that is you make a miniaturisation of that prototype of that 

aeroplane, test it in a laboratory, often called the wind tunnel tests and then see whether the 

new design is superior or inferior to the existing design, right. 

So you can make a model which is smaller in size but do not have an impression that the 

models are always smaller in size. For example, if we talk about an injector nozzle which is 

very small and used in IC engines, we would like to do a laboratory scale experiment when 

the model will be scaled up or the model will actually be larger than the prototype. So we do 

say sizes which are convenient to us and to perform experiments in the laboratory. The next 

question that comes to my mind is how do I extrapolate the results from my laboratory to the 

prototype. 

A related question that comes to my mind is that if I am doing an experiment on a very 

complicated phenomenon, it is quite likely that I am not the only one doing this experiment. 

Maybe you are doing this experiment in some other facility. So how do we exchange 

information, how do I say that how my results are different or same as yours? Let us take an 

example to make it more clear. Let us say that I want to find out the drag force experienced 

by an object as there is a fluid flow past it and I know that the geometric parameters that I can 

vary is the size of the object, I can vary the speed at which the fluid flow takes place, I can 

also vary the fluid properties like density and viscosity. 

So now if I have to do an experiment at my facility, let us say I do the experiment in my 

facility where I am using air at room temperature which is 30 degrees centigrade. You may 

be doing this experiment in air with some other, in some other place at some other 

temperature. So what will happen, the fluid properties density and viscosity will not be the 



same. So is it possible for us to directly compare the drag force, no. Then we have to take into 

consideration the contributions made by the changes in these new properties. 

I can even do the experiment in water, in a facility called water tunnel. Then the density 

becomes several times different, viscosity is also very different. So instead of this drag force 

if we had done the experiment and made it and expressed in some other form such that the 

changes are automatically taken care of, it is much more beneficial for comparing. Another 

advantage comes in the, it reduces the number of experiments needed to gather sufficient 

information about any phenomenon. Let us take the same example that I gave you, that is the 

drag force experienced by an object. 

Now if I want to gather enough data, let us say I will vary each of these 2 parameters, the size 

given by the characteristic length L, velocity given by the velocity scale V, the viscosity, 

dynamic viscosity mu and the density rho. So what I should do, I will repeat this experiment 

several times. What I can do, I can say that I will use 10 sizes, 10 different sizes and for each 

of these different sizes I will use 10 different velocities and for each combination of a 

different size of a specific size and a velocity, I will use 10 different fluids with 10 different 

viscosities and 10 different densities. 

So if I have to do this complete set of experiments I need 10 to the power 4 experiments to 

do. And experiments of this nature will require time, is expensive, whereas if I could have 

done, I am not showing you how to do it, I will talk about it later, if I could have done, I 

could have normalised it and say that the drag force divided by rho V square L square is some 

function of a parameter rho VL by mu. You look at it that by expressing in this way, I have 

used all the variables FD, L, V, mu and rho. But instead of having separate parameters in the 

form of length, velocity, etc. now we have one single parameter which is given by rho VL by 

mu. 

And yes you are right, you have already been taught in fluid dynamics that rho VL, where L 

is the characteristic length by mu is nothing but the Reynolds number. So that means this 10 

to the power 4 experiments could have been reduced to doing 10 different Reynolds number 

experiments. And hence we get a very significant advantage both in the time in which the 

experiment needs to be done as well as the cost. And finally one subtle point that whenever 

we have some governing equations like you have studied in fluid dynamics, the governing 

mass and momentum conservation equation, let us say momentum conservation equation. 



If we non-dimensionalize it, then we can find out which variables which terms are more 

important or less important compared to the other terms in the equation. What is the 

advantage, if the terms are less important, we can drop those terms and simplify the equation 

and solve it easily. So these are the different reasons for which a theoretician and an 

experimentalist would like to non-dimensionalize variables. And this is not just restricted to 

fluid mechanics, it is just not restricted to Turbo machines but it is for any application. 
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So we, next we come to the principles of similarity. See, as an English saying goes, I cannot 

compare apples with oranges, that is not possible. What does it mean, I can only compare 

similar item. So in engineering we talk about different types of similarities, the simplest and 

the first type of similarity is called the geometric similarity. Let us say I have a car and I want 

to find out the drag force experienced by the car so that I can offer a new design and hence 

there will be less fuel consumption. So I want to study geometric similar car… So can I take 

a car of this type which is a racing car? No. I should take a car which is identical but only 

scaling up or down. 

And hence we can say that the characteristic length of a model is related with the 

characteristic length of a prototype by a constant, it differs by a constant factor. We have to 

note that the angles remain same. The moment you change angle the shape actually changes 

and it is no longer geometrically similar. For example, these 2 triangles, let us say they are 

equilateral triangles, each angle is 60 degree, they are only differing in size but they are both 

equilateral triangles. 



Now if you make one of the angles instead of 60 degree to 30 degree and adjust the other 

angles, the shape will be different, we cannot talk about geometric similarity. So by 

geometric similarity I mean that the length scales but the angles remain unchanged. Next we 

can talk about kinematic similarity. Kinematic similarity is the similarity that we get in 

motion, which means that the velocities will scale. I have drawn some vector triangles or 

velocity triangles, this is essentially from Turbo machine applications, you will appreciate it 

better. 

But right now if I say that M subscript M stands for model and subscript P stands for 

prototype, then we have a velocity W1M, V1 M and U 1M and the corresponding velocities 

W1P, V1 P and U1P these 2 triangles are similar, the angles are same. So we can say that its 

velocity is nothing but length per unit time, in dimensional analysis I must say that this point 

that we are not worried about exact thing, we are talking about the scaling so we say the 

length per unit time, length is a characteristic length and T is a characteristic time.  

So then we say that the V of the model, the velocity in the model is nothing but the length of 

the model by the time and V in the prototype is length of the prototype by that time. And thus 

we say that if velocity of the model is KV times the velocity of the prototype, we can say that 

kinematic similarity leads to a temporal or time similarities and we can say that I am scaling 

is T model is Kt times the T prototype where Kt is of course related by KL and KV, this is the 

3
rd

 category of similarity and perhaps the most stringent one, that is called dynamic 

similarity. 
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Dynamics as you know deals with not just the motion but the causes of the motion. So in this 

case we are talking about similarity of the forces between the model and the prototype. In 

case of fluid mechanics we encountered different types of forces like viscous forces due to 

the fluid viscosity, pressure force because of the pressure difference, inertial force because of 

inertia, capillary force due to surface tension, the gravity force because of the acceleration 

due to gravity, elastic force because of fluid compressibility. 

Let us look at each of these expressions from the dimensional argument. If I say the viscous 

force, then we know from fluid dynamics, we have already studied that viscous force is 

nothing but shear stress multiplied by the area and then this is given as mu times V times L. 

V is the velocity and L is the characteristic length, how do I get this expression? We can say 

that now is equal to mu Dell U Dell Y, you already know this. So in dimensional arguments I 

will say that it goes as mu times V by L, V is the characteristic velocity, L is the 

characteristic length. 
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For example in case of a pipe, we talk about the diameter of the pipe as the characteristics 

length and area goes with L square. So now if I multiply tao which area, and then we get mu 

VL. Similarly we can talk about pressure difference. In case of pressure difference were 

talking about the pressure difference Delta P multiplied by the area to get the force and hence 

it is Delta P times L square. Fluid inertia, when we write an equation, let us say we are 

talking about Lagrangian tracking, we can write the fluid resultant acceleration because of the 



summation of different forces. So many times we will come across the terms like M dV dt, so 

now that goes as rho L square and multiplied by V square in this fashion.  

M is nothing but row L cube, L cube being related with the volume and rho times L cube 

gives you the mass, dV dt will be simply written as V by t and t is the time is nothing but as 

we have discussed already length by velocity and hence if we couple all of this we get that 

the fluid force inertia terms is rho L square V square. 
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Surface tension will become, contribute to the capillary force in the fashion that F capillary 

goes with Sigma times L where Sigma is the surface tension term. The gravity force which is 

acceleration due to gravity is given as rho L cube times g, this is because of the mass is rho L 

cube as we have talked times g the acceleration due to gravity. And finally we are talking 

about the elastic force because of fluid compressibility which is K or kappa, many times it is 

used K, many a times it is kappa which is the bulk modulus or modulus of elasticity times L 

square. How do I get it, kappa is nothing but - Delta P by Delta V by V and hence the force 

will be related with we know, Delta P times A and hence were talking from the dimensional 

argument as KL square.  
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Here we have to note that we are talking about different fluid properties which are mu is a 

dynamic viscosity, rho is the fluid density, Sigma is surface tension term and K or kappa is 

the bulk modulus of elasticity. Many times, particularly where, in fluid flows where there are 

multiple forces present, we have to talk about which force or which of the forces are more 

important or more dominant than others. So we try to find out the ratio of the forces.  
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When we talk about the ratio of the forces we can say that for example in applied flow I want 

to find out how important is viscous force related to the inertial forces. Then I can find out 

the ratio of the 2 forces and I get mu by rho LV, this is of course more popularly and widely 



known as Reynolds number which is rho LV by mu. So if we have a flow in which Reynolds 

number is much much greater than 1, then what can we say, that the numerator is much much 

larger than the denominator, which means the inertial effect dominates in comparison to the 

viscous effects, whereas if Reynolds number is much much less the 1, a flow we get called 

the Stokes flow, in that case we have the viscous effect to be dominant. 

Similar analysis can be done for the ratio for the gravity force to the inertial force, in this case 

we connect the rho L cube g by rho L square V square and we get g L by V square. This is 

given in terms of fluid number, fluid number most commonly used is V by root gL, it is 

sometimes also talked about in terms of V square by g L but I will stick to V by root g L, that 

is the most commonly used form of the fluid number. Now you have to note that this L in 

Reynolds number or the L that is given in fluid number, these are not just the length, these are 

the characteristic lengths, which means in case of a pipe flow, in the definition of Reynolds 

number which just talked about this L becomes the diameter of the pipe. 

In case of the fluid number, the commonly seen is in an open channel flow we talk about the 

depth of submergence. We can talk about the importance of surface tension effect with 

respect to the inertial force and this gives rise to another non-dimensional number widely 

used called Webber number which is nothing but the ratio of the inertial forces to the surface 

tension forces. We can talk about pressure force to the inertial force which gives rise to Euler 

number which is Delta P by rho V square.  

And we can also talk about the elastic forces to the inertial forces and if we readjust the term 

KL square by rho L square V square, we readjust the term, we get in the numerator K by rho 

by V square, this leads to the Mach number definition which is V by square root of K by rho 

and we know that square root of K by rho is related with the sound in the medium CS and 

then V by CS is the Mach number definition which you have already come across in fluid 

dynamics. 
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The next part that you have to keep in mind is the principal of dimensional homogeneity. It 

states that if an equation truly expresses a proper relationship between variables in a physical 

process, it must be dimensionally homogeneous. I want to digress here a little from today’s 

topic of dimensional analysis. Whenever you are doing any work, if you are coming up with 

an equation which you are deriving from the first principles and we have got it, please check 

that with all the terms have the same dimensional relationship, that is same dimensions, it 

should be dimensionally homogeneity. 

And once we satisfy it, then we know that the relationship is properly established. This gives 

rise to the very famous theorem known as Buckingham’s pie theorem. Let us consider a 

physical process that satisfies the principal of dimensional homogeneity and involves m 

dimensional variables. Then we can express this phenomenon relationship as some function f 

of X1, X2 to Xm variables which is equal to 0. Now we can also say that these m 

dimensional variables have n number of fundamental dimensions like mass, length, time, 

temperature, etc.  

So we are talking about m dimensional variables involved in a physical process on which 

involves n fundamental dimensions. Then Buckingham’s pie theorem states that the 

phenomenon can be described in terms of m - n non-dimensional groups, that is the previous 

functional relationship of small f of X1, X2 to Xm equal to 0 reduces to another function, let 

us say F of pie 1, pie 2 to pie m - n equal to 0. Where each of these pie terms are nothing but 



non-dimensional groups. How do we proceed here? I will take you through this with the help 

of 2 examples which I hope will clarify our understanding on this topic. 
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So the first example is about a pipe flow. Let us consider a fully developed flow inside a pipe, 

the diameter of the pipe is d small d and its length is given as LP, P for the pipe. The 

roughness of the pipe wall he has Epsilon P, average velocity inside the pipe is V, fluid 

property that we required to solve this problem are density, rho and dynamic viscosity or 

simply speaking viscosity mu. We need to find out what is the pressure drop that takes place 

because of the flow over a length of LP. So we know if we count these red notation symbols 

which are given, then there and our variables which are m equal to 7. 

And we also have the number of fundamental dimensions n equal to 3. How, let us quickly 

check it. For example diameter has the length, then velocity has length and time and density 

has mass and length. So among these variables we have all the 3 fundamental dimensions. 

Then Buckingham’s pie theorem states that we should have n - m, that is 7-3 or 4 

nondimensional groups. We will come these groups as pie 1, pie 2 to pie 4. So let us say we 

form the first group pie 1, to do that we have to choose the repeating variables. 

The choice of repeating variables is based on the fact that it should involve all the 

fundamental dimensions, in this case all 3 fundamental dimensions and it should not be 

independent variable. For example, pressure or pressure drop in this case is what we want to 

find out, it depends on the pipe dimensions, it depends on the velocity, it depends on the fluid 

properties, so that is a dependent variable. We are not going to use these as a repeating 



variable. So if I write pie 1 as Delta P as my variable choice along with then we can write rho 

to the power A1, V to the power B1 and D to the power C1. 

These indices are actually taken 1 stands for this pie 1 and A, B, C are assigned. What we are 

trying to find out is the values of A1, B1 and C1 and we know that pie being a 

nondimensional number, it does not have any MLT and pressure is nothing but force per unit 

area and hence we can establish it as mass but unit length per unit time square. So how do 

you say that? For example the common unit of pressure is Pascal, Pascal is nothing but 

Newton per metre square and what is Newton, nothing but kg metre per second square. So we 

get kg per metre per seconds square and this is established as ML to the -1 T to the power -2. 

Then density is kg per cubic meter but we do not know what power goes to make it satisfied, 

so we write M to the power A1 multiplied by L to the power -3 A1. Similarly we have 

velocity term and the diameter term. Now what we are going to do is we are trying to find out 

a set of equations connecting the indices for the powers of M, L and T separately. When we 

do it for M, we see that 1+ A1 equal to 0 which gives me A1 equal to -1.  

L gives me the -1 for the from the first delta P term, then -3 A1 + B1 + C1 = 0 which gives 

me B1 + C1 equal to -2. And P gives me -2 and - B1 equal to 0 which means B1 equal to -2. 

Thus we have C1 to be equal to 0 because B1 + C1 equal to -2 and hence we can write pie 1 

as Delta P by rho V square. Please note that this Delta P is the pressure drop because of fluid 

viscosity of fluid friction. 
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Then we can do the 2
nd

 variable by 2 where I choose the length of the pipe as LP and then LP 

we write rho to the power A2, V to the power B2 and D to the power C 2. We follow the 

same argument and then we can write for M, that is zero, there is no other term here + A2 

equal to 0 which means A2 equal to 0. For length we have 1-3 A2 + B2 + C2 equal to 0 

which gives me B2 + C2 equal to -1 and finally for T also we get 0 - B2 equal to 0 which 

means B2 equal to 0, and then we get C2 equal to -1. 

+ we get pie 2 as LP by D. Of course you could have got this pie 2 directly by Inspection 

since length is involved, so the corresponding term would have been directly diameter. Pie 3 

relates with pipe wall friction Epsilon P and I am not going to do it, it will directly give you, 

similar to pie 2 as Epsilon P by D and pie 4 involves the viscosity, the last term and we can 

set it up and we get that for M, it is 1+ A4 equal to 0 which means A4 equal to -1, for L it is -

1 -3 A4 + B4 + C 4 equal to 0 which means B 4+ C 4 equal to -2 and for T it is -1 - B 4 equal 

to 0 which means B 4 equal to -1 which gives C4 equal to -1. 

And hence we can write pie 4 as mu by rho VD or the reciprocal of it rho VD by mu. See if 

we have a nondimensional group as pie 1 then one over pie 1 is also a nondimensional group 

or pie 1 raised to the power any constant is a nondimensional group, pie 1 multiplied by any 

of the other pies is also nondimensional group. We should see which way is best for us to 

establish. Summing all these things we can say that Delta P by rho V square is nothing but 

the function F of LP by D Epsilon P by D and rho VD by mu, of course the last term is 

Reynolds number. 

Now from fluid dynamics you have studied the pressure drop inside the pipe and you are 

familiar with Darcy-Weisbach’s relationship. What does Darcy-Weisbach’s relationship give 

you? The friction of head drop HF is nothing but F LP by D V square by 2g and since Delta P 

is nothing but rho g HF, we can write the Delta P by rho V square is nothing but F times Dell 

P by D. Compare it with the nondimensional groups we got, Delta P by rho V square is a 

function of LP by D along with Epsilon by P by D and Reynolds number. So these 2 can be 

compared only if we know that friction factor is a function of Reynolds number and Epsilon 

P by D. 

So if you come across Moody diagram you will know that Moody diagram essentially has a 

characteristic like this. Epsilon P by D by the way is called the relative roughness. So this is 

for your laminar flow, then there is a transition and then there are flows which are in the 

turbulent flows. So you see that in case of laminar flow of course the roughness is not 



important and in case of laminar flow you get F equal to 64 by RE but in case of a turbulent 

flow F is a function of both relative roughness Epsilon P by D and RE. This is called the 

Moody diagram or Moody chart. So this is what we get even from the dimensional argument. 
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So you see how powerful it is, without solving it we get an expression which matches with 

our detailed derivations. The 2
nd

 example is for an external flow, in this case we talk about an 

aerofoil at different angles of attack. The characteristics length of an aerofoil is its chord 

length LC, that is if I say I have an aerofoil, so you can see that this is the aerofoil, the fluid 

flow takes place in this direction, then we are talking about an angle of attack which is Alpha 

which is the angle between the free stream direction and the cord and the cord is given by 

LC. So the free stream air velocity is V, the fluid properties required are density rho and 

viscosity mu. 

The speed of sound in the medium is CS and we need to find out the lift force experienced by 

the aerofoil. So the number of variables m is 7 here again, number of fundamental 

dimensions can be shown to be 3 and hence Buckingham’s pie theorem says that there are m 

- n or 4 nondimensional groups. So let us choose rho V and LC, the cord length as repeating 

variables and we can follow the relationship like we did last time, we can say pie 1 as FL rho 

to the power A1, V to the power B1 and D to the power C1. And hence we get following the 

similar arguments as we have done so far for M, we get A1 equal to -1, for L we get B1 less 

C1 equal to -4 and for T we get B1 equal to -2. Which means C1 equal to -2 and hence we get 



that pie 1 is nothing but FL by rho V square LC square. This pie 1 is called the lift 

coefficient. 
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We can similarly do pie 2 with viscosity which we have already done, I am not doing it once 

again and we get pie 2 is nothing but Reynolds number, strictly speaking you will get mu by 

rho V LC but as I told you that you can always write and in, reciprocal of the nondimensional 

group as a nondimensional group itself and hence pie 2 is nothing but Reynolds number. We 

can talk about pie 3 as CS and here you can do it by Inspection also because CS is velocity 

and hence you have a velocity term, so it is quite obvious that pie 3 will be nothing but V by 

CS which is Mach number, we have already defined and finally pie 4 which is Alpha, Alpha 

is in radians is itself a nondimensional number. 

So we can say that the lift coefficient CL is a function of Reynolds number, Mach number 

and Alpha. So you see that we can get the essential relationships what are the important 

parameters that affects the variable of our interest, for example lift or the lift coefficient in 

this example. So if I say that I am talking about a low Mach number, so the Mach number 

effects are not significant and let say I have fixed the alpha value and I want to compare the 

experiments that you are doing in your laboratory and I am doing in my laboratory. Then 

what happens, I find that CL is only a function of Reynolds number. 

Now Reynolds number means it has rho V, L and U, so I really do not need to bother about 

what size of the aerofoil you have used, what is the velocity you have used or what is the 

fluid medium you have used. As long as you keep Reynolds number same as mine I will get 



the same lift coefficient, I should get the same lift coefficient as you have got, of course 

within the experimental uncertainties. So what does it mean that instead of getting, I have 

told you earlier that 10 to the power 4, there of course we talked about in terms of drag, we 

talk about lift, we get 10 to the power 4 variables if I have to match your experiments.  

But when we talk in terms of lift coefficient or the drag coefficient in the earlier case, we are 

talking about a function of Reynolds number only. Of course in the limits of low Mach 

number and for a given alpha.  
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Now how does it relate with incompressible flow Turbo machines? So I will give an example 

for the similar dimensional analysis for incompressible flow Turbo machines. The important 

variables in terms of Turbo machines are the flow rate, the specific work already we have 

defined, what is the definition of specific work? Specific work is the difference in the useful 

energy per unit mass of course across the Turbo machine. And sometimes as I told you that 

for, particularly for the Hydro Turbo machines the specific work is related with the head by a 

constant g acceleration due to gravity. 

Then we can have the power N is a rotational speed of the blades, D is the typical 

characteristic diameter of the blades, fluid density rho and viscosity mu. We have basic 

dimensions M, L and T and we have 7 variables. So which means here also we get 4 

nondimensional groups and we select the fluid properties rho, kinematic variable N which is 

the rotational speed and geometric variable D and combine these with the other variables to 

get the nondimensional parameters. 
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I will not go into the details but if I write like this pie 1, pie 1 is nothing but volume flow rate 

V dot is the volume flow rate, please do not get confused with velocity, V dot is the volume 

flow rate times rho to the power A, D to the power B and N to the power C, following the 

same argument we have done for the previous 2 examples, we can find that pie 1 is V dot I 

ND cube. Similarly we can find out pie 2 as W by N square D square or alternately we can 

write it in terms of g H by N Square D square. We can write pie 3 as P by rho N cube D to the 

power 5 and pie 4 as rho ND square by mu. Let us look at these terms once again. 
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So the first term pie 1 is called the capacity of the flow coefficient. It is V dot by ND cube, 

now what is volume flow rate? It is nothing but the characteristics velocity times the area. So 

we can write V dot as Cm times A, I will talk about this Cm when we talk about velocity 

triangles later on. And ND cube can be written as ND times D square. Now if we have a 

blade which is rotating at an rpm of N and has a diameter D, then ND is proportional to the 

blade peripheral velocity and we can write area in terms of D square and hence we get pie 1 

as can be written either in terms of volume flow which is called the capacity coefficient V dot 

by ND cube or in terms of the velocities as called Cm by U. 

The energy coefficient or the head and efficient or pressure coefficient can be related with pie 

2, pie 2 is called W, it is given by W by N Square D square and ND is related with U, just 

now I am told, so you get pie 2 as W by U square. And it can be related with the head, this is 

called head coefficient often g H by U square or it can be related with the pressure rise or 

decrease and hence we can call it by 2 as pressure coefficient as well.  
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The 3
rd

 one pie 3 can be obtained either directly as we have done or it can be obtained in 

terms of products of the pie 1 and pie 2. I have already told you that any nondimensional 

group like pie can be multiplied by another nondimensional group to give you a 

nondimensional group. So here I will show you that example. So we got directly that by 3 is 

nothing but P by rho N cube D to the power 5 and we know that we can establish this in 



terms of V by ND cube and W by N square D square which will give me pie 1 multiplied by 

pie 2. And hence it is called the power coefficient. 

And the 4
th

 one is our well-known Reynolds number written slightly differently but we can 

always get back the Reynolds number. Pie 4 is rho ND square by mu, now ND is related with 

the blade peripheral velocity and hence I can write rho U times D by mu which is our 

Reynolds number. In most of the Turbo machine applications the Reynolds number is in the 

turbulent flow range and the effect of Reynolds number is not very significant. 
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So we will now talk about affinity laws. What are affinity laws? If I say that I have a same 

Turbo machine which works with the same fluid but under different conditions. Whenever I 

am saying the same Turbo machine, that means my size is fixed, so diameter D or the 

characteristic length D is fixed and it works with the same fluid so density, viscosity are 

same. What happens is if I turn this Turbo machine and run it at a different speed? If I run it 

at a different speed, then I get pie 1 is proportional to V dot by N, pie 2 is proportional to W 

by N square and pie 3 is P by N cube.  

What does it mean, it means that if I increase the rotational rpm of a Turbo machine, let us 

say a pump, then the volume flow rate will increase. If the head developed will also increase 

as N square and power requirement will increase with N cube. But please note that these are 

not dimensionless numbers. Thus the performance variables V dot, P and W of a given 

machine depends on the speed at which this Turbo machine is run. 
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This brings us to a very important concept of shape number. Shape number as the name 

suggests you it has to do something with the shape of a Turbo machine. So in the next one or 

2 slides we are going to take you through this shape number, concept of shape number and 

how it is related with the shape of a Turbo machines. So we understand that for a given blade 

angle, see earlier also I have told that angles cannot be changed. So if I talk about an 

impeller, if its angle is not changed, then the shape of the impeller is a function of the speed, 

the volume flow rate and the specific work. 

So we can derive another nondimensional based on these and we could have also combined 

the previously obtained nondimensional groups, that is instead of doing it from the scratch 

using N V dot N W, we can combine the previously obtained nondimensional numbers to get 

a new nondimensional number, how, let us look at it. So we say that pie 5 can be written as 

pie 1 to the power half divided by pie 2 to the power three fourth and this gives me the pie 5 

which is given a name called the shape number Nsh which is nothing but N V dot by W to the 

power three fourth. So this quantity which we obtained by manipulation of the other 2 pie 

groups give me a 3
rd

 or the 5
th

 pie, pie 5 and we get this is called as shape number. 

In this case please note that the small n is in revolutions per second as opposed to the capital 

N which is given in rpm. And V dot is in metre cube per second and W is in metre square per 

second square. And we say that shape number can be related with the rpm by N by 60 V dot 

and multiplied divided by g H to the power three fourth. So we have defined the shape 

number, next we will try to talk about 2 more quantities which are related with shape number 



and all these 3 together will give you the shape of the Turbo machines. Note that when I write 

N by 60, the N should be in rpm. Of course we could have derived these shape numbers or 

the pie group independently by starting from scratch. 
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And there is, there are many times particularly in Hydro Turbo machines since g or the 

acceleration due to gravity is fixed, so we write it in terms, instead of specific work we write 

it in terms of the head and then we get instead of the shape number we define it in terms of 

specific speed. The specific speed of a pump is defined as the speed of a geometrically 

similar pump having such dimensions that it delivers a volume flow rate V dot of 1 metre 

cube per second while producing a head of 1 metre. And specific speed of turbine is defined 

as the speed of a geometrically similar turbine having such dimensions that it produces an 

output of one metric horsepower when working under a head of 1 metre. 

Many times I find that there is a confusion among the students about what to write for 

specific speed, should it involve the volume flow rate and the head or should it involve the 

power and the head, I suggest a way of remembering it. When you think about a pump, you 

think what is the most important thing you are looking for. You want to take bath, so the 

water should have gone to the top of the tank in your building and it should have a sufficient 

volume to come out. So what you can think it, in case of pump relate it yourself with the 

volume flow rate that the pump gives because you have to take bath and also you need a 

sufficient head so that the pump can take the water from the ground to the top of your 

building. 



So specific speed can be related with the volume flow rate with the head. In case of turbine 

what you are interested in is that for a given head difference, what is the power output. You 

are not really interested in the volume flow rate as user. So you can say the specific speed 

should be related with the head as well as the power and in these 2 cases Nq and Ns can be 

given by the following relationships. 
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Nq can be given as N square root of V dot by H to the power three fourth and Ns which is for 

the turbine is given as N square root of Pc, coupling power, diverted by H to the power 5 by 

4. But please be careful that for these pumps and turbines, the specific speed relationships are 

not free from dimensions. So you have to be very careful while using these relationships, 

particularly if you are a designer of a pump or a turbine. So most commonly used are for the 

design industries is, of the pumps and turbines is in, is in revolutions per minute rpm V dot is 

in metre cube per second, H is in metres and Pc is in metric horsepower. And this is not a 

dimensionless number. So you have to keep the units properly managed. 
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And we can say that the shape number, if the impeller speed is increased further, then what 

happens, if the speed is increased, then the diameter has to be decreased, why, because we 

want N times D which is U to be constant because we are talking about the same volume flow 

rate and what happens as we increase the specific speed, the diameter goes on reducing. First 

you see at low specific speed the flow is coming here and we get a nearly radial flow, we get 

a radial flow. You see that the flow is perpendicular to the axis, you increase the speed 

further, the specific speed increases, you still try to work with the radial flow, you say that I 

know only radial flow, I will work with radial flow, you try to reduce it. 

But you cannot reduce it further because the length of the blade reduces and then what you 

try to do, you try to make the inlet edge curve so that the effectively you get slightly longer 

length. But if it increases further, such manipulation is not possible and you end up getting a 

flow which makes an angle Theta with the axis, in this case of course the axis if I show it is 

90 degree, in any one of these cases it is 90 degree and finally we come to a stage that even 

flow is not possible and we get an axial flow where it is parallel to the axis. 

Thus we can see that with change of specific speed, I am saying specific speed, I am not 

saying individually the speed or or any one of these quantities because if you look at the 

definition of specific speed, it is N root V by H to the power three fourth. So you can increase 

the shape number by either increasing the impeller speed as I told you here or by increasing 

the volume flow rate or by reducing the head. So it brings to a very important conclusion for 

us which we will again revisit when we talk about the pumps and turbines. 



See if you say that you are handling a machine in which the volume flow rate is high for a 

given speed, then you need to have an axial flow pump. If your, on the contrary your head 

requirement, head to be developed is much high for the same speed, then we can go for a 

radial flow pump, the same with turbine. In case of low head turbine, we will see that if the H 

is low, that is in the denominator, then shape number which is given as… So if you have a 

very low value of H, then what happens is you are essentially get a very large value of shape 

number.  

The same way you will get if you increase the speed or if you increase the volume flow rate. 

And hence we can say that the overall effect is one of increasing the shape number is the 

change in the shape and from the radial through the mixed to the axial flow Turbo machine.  
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So we come to the summary of today’s discussion on the dimensional analysis and its 

influence on the choice of Turbo machines as follows. We learnt about the need for the 

nondimensionalisation, we talked about the geometry kinematic and dynamic similarities that 

are required for any scaling. The Buckingham’s pie theorem states that if there are m 

dimensional variables involving n fundamental dimensions, then it can be reduced to m - n 

nondimensional groups. This nondimensionalisation was carried out and extended for an 

incompressible flow Turbo machine. 

And this nondimensionalisation for incompressible fluid Turbo machines leads to the 

definition of shape number which is another means of classification of Turbo machines and 

leads to change in shape of impellers or the rotating blades. Thank you.  



 

 

 


