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Viscous Flow. 

Good morning and welcome to the 4
th

 lecture in the 4
th

 week of this course. So in the last 3 

lectures we have already introduced and covered some topic on viscous flow. The viscous, 

the last 3 lectures were about viscous flow on top of a flat surface, so flow over a flat surface, 

flow over a plate. Then we dealt with dealt with different aspects of that viscous flow and 

then we moved on to viscous flow on curved surfaces also, on cylindrical surfaces and how it 

changes, in, how the boundary layer growth and the boundary layer characteristic changes 

with a pressure gradient. 
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So we saw the effect of pressure gradient on the boundary layer, that is the viscous region 

where the viscous region forces are important in the flow over a surface. We also looked at 

the drag coefficients and how to correlate drag coefficient with the Reynolds number with 

respect to both laminar and turbulent flows. The 4
th

 lecture concerns with a very important 

aspect of viscous flow which is the pipe flow. This has a lot of engineering application. The 

last topic was more related to aerodynamics, so our 4
th

 lecture, the topic is pipe flow. 



So we look at how the viscous flow or the boundary layer characteristics within an internal 

flow changes as compared to an external flow which we have dealt with in the last 3 lectures. 

So in the pie, this has a lot of engineering applications actually because we need to use pipes 

for transportation of flow rates, from, through different lengths, through different, it is 

household as well as very important engineering applications. So what we are mainly 

concerned with here is to find out the losses, the flow losses like how much power is required 

to pump a fluid from one place to another. 

So naturally this has a lot of engineering application like transportation of liquid from one 

place through pipes and ducts from one place to another, of course pumping of water in 

household supply of water supply system. So a lot of applications are there, there is no end to 

applications and there is, the understanding of pipe flow is also quite developed in the area of 

fluid dynamics, we will look at that and this constitutes of lot of theories and large amount of 

experimental data because the pipe flow calculation, for designing of a pipe which can take 

certain amount of flow or the designing of a pump, more importantly the power of a pump, 

deciding the power of a pump which can transfer the fluid from one place to another at a 

given flow rate. 

So a lot of correlations are also available. So we will start with, we will give an introduction 

to this topic because of its engineering importance. So let us look at the slide now. So let us 

consider a flow through a pipe, this pipe of course continues and there is a velocity U with 

which it approaches and D is the diameter of the pipe. And capital R, it is not shown here but 

capital R is actually the radius of the pipe. So this is a particular symbol, these symbols we 

will use this particular lecture. 

Now let us look at the initial region within the pipe. So let us take a section through the 

central plane of the pipe, how does it look like, so let us look at it in little more details. So we 

have taken it out and we are looking at a sectional view into the fluid. So the incident flow 

into the pipe, again like in the previous example of external flow also, the incident flow is 

uniform. That means the flow velocity does not change in the direction perpendicular to the 

direction of the flow. So it is uniform and as it enters into the pipe of course viscous forces 

becomes important because the pipe surface has to satisfy the no-slip condition. 

So you have a boundary layer growing on the pipe and the boundary layer not only grows on 

one of the surface, in all the surface surrounding the fluid. So we have a viscous boundary 

layer growing on in the pipe from all the surrounding surfaces. That means as the flow comes 



in, because of the growth of the boundary layer you have some region which is viscous which 

is inside the boundary layer and there is an inviscid core or inviscid region at the central part 

of the pipe.  

Of course as you, as the flow continues into the pipe in the direction of the flow so we see 

that the boundary layer actually merges and as it merges, so this has severe, as it merges the 

velocity profile also changes. So from this perspective let us look at the velocity profile, the 

development of the velocity profile as the flow moves through the pipe. Before going into the 

velocity profile it is important to look at the continuity equation because this is the meaning, 

this is the thing which decides the velocity profile inside the pipe. 

So it only says that integral of U dA because we have considered it as an incompressible 

flow. So velocity multiplied by area should be, integral of that should be constant. So 

wherever you take a section, there this quantity is constant. This is basically the flow rate. 

Okay, so so many litres per, so for example if the entry is at 2 litres per minute or anything, 

then it has to remain 2 litres per minute at any section because the flow is incompressible and 

also steady. So everywhere you have that kind of the same flow rate. 
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Now we can talk in terms of flow rate, not mass flow rate but volume flow rate, so we are 

talking in terms of volume flow rate. In case of a compressible flow you have to talk in terms 

of mass flow rate. Anyway we are talking about incompressible flow only, so the volume 

flow rate is constant and at the inlet if you see, you have a flow rate U multiplied by area pie 



by 4 D square, which is constant. So what should be the velocity profile once it comes inside? 

So this will be the velocity profile as it comes inside the flow.  

So what happens here, we see that in the viscous region of course it has a boundary layer kind 

of structure, velocity profile is like a boundary layer kind of structure. In the middle region it 

continues to be an uniform flow and again in this viscous region it has a boundary layer kind 

of structure. So basically the flow decelerates as it comes, the flow near the solid surface 

decelerates, the velocity is zero near the solid surface, naturally the presence of the wall 

retards the flow. 

But what happens more interestingly is that the central part of the flow now has to 

compensate for the lowering of velocity near the wall. Near the wall the velocity is reduced, 

so at the central post on the velocity has to increase because the flow rate, the volume flow 

rate should remain constant. So if this part of the velocity, if you consider the uniform flow 

velocity profile, if this part has suffered a reduction in or retardation in velocity, due to the 

presence of the wall, then the central part velocity should increase so that the volume flow 

rate is same as that of the inlet. 

So that is why the continuity equation is important to consider here. So if you go further, 

what happens? The viscous the viscous region increases, the viscous region because the 

boundary layer is growing, as the boundary layer grows the viscous region is increasing, 

thickness in the volume or whatever it is, so it is increasing. So as it increases, then the 

inviscid region now has to compensate for a large region of viscous flow in terms of the flow 

rate. So the central portion has now even more velocity. 

So as we see this has a more velocity, the central portion of the pipe has more velocity, the 

fluid in the central portion of the pipe has more velocity than the inlet. And as we go forward 

this increases further and further because the viscous effect gradually penetrates towards the 

core of the flow. So you have the centreline velocity, if you measure the velocity along the 

centreline of the pipe, it will gradually increase. Now what happens as the boundary layer 

merges, at this point let say the flow becomes totally viscous, there is no inviscid region or 

inviscid portion which was visible at this region in this region where the flow was entering. 

So and after some point of time or after some point of time in terms of the fluid element, fluid 

particle but after travelling a certain distance from the merging of the boundary layer we get a 

velocity profile which eventually does not change as it travels along the X direction. So if we 



have a velocity in a further downstream location, that means that the location latter than the 

initial location which we are considering, so at a downstream location the velocity profile no 

further it will change, it will not change any further. 

If you can take at different stations, different X values you will see the velocity profile as 

well as the magnitude, the nature of the profile as well as the magnitude remains the same. 

This is called the fully developed region and this region is called the developing flow. So this 

here, see the velocity profile as it moves into the pipe, this velocity profile constantly changes 

with the inviscid core velocity increasing as we go to more further downstream, whereas here 

the velocity will not change with as we move along the X direction. So this is known as fully 

developed flow, this length is known as the entrance length. 

So this is the length through which the flow has to travel to get a fully developed profile and 

in the fully developed profile Dell U and Dell X is equal to 0, that means velocity in the X 

direction, so U means the velocity in the X direction. So velocity in the X direction will not 

change along the X direction any further, same happens to the V velocity. So the V velocity 

also does not change along the X direction, so it almost, it remains constant and this region is 

known as fully developed region. 

The implication of this kind of velocity profile is quite important. Let us see or the 

development of the flow, this is very important to consider with respect to the flow losses 

which the flow suffers as it goes, moves through the pipe. So let us look at now we have 

drawn along with it the X axis and we will plot the centreline velocity, let us plot the 

centreline velocity. 
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So if you plot the centreline velocity, okay so this, it will be characteristically different if we 

look at the entrance region and that is why we draw this line. And then if we plot it, the 

centreline velocity looks something like this. So it constantly increases, goes to a maximum 

velocity and remains constant because after the flow has developed, there is no change in the 

velocity. It is fully developed means there is no change in no further change in velocity as it 

moves through the pipe. 

But in the entrance region there is a constant increase in the velocity. Now, central region is 

actually inviscid, the central portion which we were looking at where the velocity is 

increasing is actually an inviscid region, so what we can do is we can actually apply 

Bernoulli's equation there. Okay, it is an inviscid flow, so we can apply Bernoulli’s equation 

there. And let us say this pipe is straight, like what is shown here, so the height at the initial 

portion and the final portion is also same, height of the pipe from the reference plane frame 

which is fixed to the ground, it is the same, so if we apply Bernoulli’s equation, it means is 

the velocity increases the pressure will drop in this region, so the pressure drops. 

So the pressure drops in this region very significantly because the velocity increases. Now if 

you see there is a significant pressure drop in the entrance length, in the entrance region and 

after that the pressure actually keeps on falling. Even though the central velocity, the 

centreline velocity is constant, the pressure keeps on falling. So this fall in pressure after the 

flow has fully developed is of course expected because this is due to friction, this is coming 



due to friction. So and if you observe it carefully, you will see this drop in velocity is actually 

linear.  

That means this is a straight line, this part of the curve is a straight line. So this is straight line 

and if we extrapolate that straight line to this region into the entrance region then we can have 

a good estimate of what was the frictional pressure loss in the entrance length. So in the 

entrance length you see there are 2 reasons for losses, one is due to the change in the velocity 

profile or during the development of the flow and there is friction loss. So now we can 

actually demarcate these 2 losses, the first part after extrapolating this pressure linear pressure 

curve, we will show later in the next slide that pressure variation, the frictional pressure drop 

is actually linear for laminar flow. 

So and of course so far what we are discussing is only a laminar flow because the the velocity 

profile itself is a representative of that because it changes gradually towards the maximum 

velocity at the Centre if you start from the wall. In the case of a turbulent flow this will be, 

the velocity profile will be quite different, it will rapidly change near the wall and then almost 

remain constant, so it will have, it will be flat profile. So coming back the velocity profile 

here changes slowly and for this kind of flow the frictional loss, the frictional pressure loss is 

actually linear. So it linearly varies with distance. 

So by extrapolating we can estimate this part, that is the frictional pressure loss in the 

entrance region. And A is the entrance pressure loss. This is not due to friction, this is just 

due to the entrance. Loss due to the fact that the flow is accelerated when it through the 

developing region. So of course we can mark the frictional pressure loss after the entrance 

region here, also see which signifies this loss, so this is basically the pressure loss after the 

entrance region. Of course in this particular example this frictional pressure loss looks like 

small but this is because of the fact that the length is also very small. 

When we consider the actual pipe flows, this length will be much much more than the 

entrance lines. So to get an idea about that, let us see if we can get the value of the entrance 

length, how much is the entrance length for a given flow. So we will go to that, basically 

what, in a real example where the length in the after the entrance length is quite significant, 

this pressure loss will be more significant. So basically it depends on the length of the pipe. 

Now, before going into the entrance length let us plot the streamlines within the pipe. 
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So this red curve actually shows the streamline. So this is also demonstrating the fact which 

we discussed in the last few lectures that in the boundary layer, when you have a boundary 

layer flow like this, then the streamlines actually bend. So it bends away from the boundary 

layer. So it comes as a uniform flow and it gradually bends, it moves away from the wall. If 

we draw a similar streamline on the other side we will see it that also bends. So basically as 

the flow takes place through the pipe, the streamlines from both sides, they come closer.  

What it means is that basically the flow is trying to avoid the wall and move towards the 

centre. Why do we say that because we know that streamlines means that this is a boundary 

of the flow, nothing can penetrate, the flow cannot penetrate the streamline because there is 

no velocity component perpendicular to the streamline, so it cannot penetrate the streamline. 

That means between the 2 streamlines the flow rate is always constant, the same flow will 

happen.  

What it actually shows here, the plot of the streamline shows here is that whatever flow was 

taking place through this area, through a large area at the entrance, in the developed length, 

the same flow is taking place through a smaller region which is expected because as the flow 

moves through the pipe, it tries to follow the central region which has less viscous effects and 

moves away from the boundary layer. That is what it is demonstrating, that is what the 

streamline diagram within the pipe flow in the entrance begin is demonstrating. 

So now we got that, some idea about the flow development within the pipe, let us go into the 

estimate of the entrance length. So actually if you look at this entrance length there are 



correlation is available and using dimensionally analysis you can show that it is actually a 

function of the Reynolds number. So if you look at a typical value, so entrance length 

correlation for laminar flow, it will be something like this, so it is given as 0.06 times of 

Reynolds number. For a turbulent flow it is different and this is the correlation which is used 

for estimating the entrance length for a turbulent flow. 
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Now let us look at, by using this correlation let us look at the actual numbers, how much are 

these values? So if we plot that, if we plot entrance length, the non-dimensionalized with 

diameter for a laminar flow we see of course the entrance length increases as the Reynolds 

number, so this X axis or the horizontal axis is actually Reynolds number. So as the Reynolds 

number increases the entrance length also increases and the transition Reynolds number for a 

laminar flow is 2300, around 2300 and at that value of 2300 the entrance length is 140 times 

that of the diameter of the pipe. 

So that is basically an estimate, that gives an estimate of the entrance length. But it is quite 

different if this curve is plotted, the turbulent portion is plotted, we see there is a sudden 

jump, there is a sudden fall in the entrance length. This is because the turbulent flows, there 

the mixing is more and this results in a quick merging of the boundary layer. So this 

phenomena of merging is present even in a turbulent flow but it takes place much faster than 

in the case of a laminar flow and as a result of that the turbulent flow if you see here we can 

see it in a little more details using a different axis.  



So if you see here, for a turbulent flow which is, which starts from around Reynolds number 

4000, so for that kind of a flow the entrance length is about let us say 15 times to 30 times the 

diameter of the pipe, much less than the that of a laminar flow. So this is the this is the region 

where this first entrance loss due to the acceleration of the flow is present. Afterwards you 

have the pressure loss due to friction. Now one thing we mentioned here the transition to 

turbulence in the case of a laminar flow, so the laminar flow of course the Reynolds number 

in case of a pipe flow like we defined before is find as rho into velocity, the density into 

velocity into diameter of the pipe divided by mu, the viscosity, the dynamic viscosity. 

Now this value of 2300 is for a smooth pipe, this could change if you have a rough pipe and it 

is also possible that you use a very smooth pipe and use a lot of control mechanism so that 

the transition does not take place, you can delay the transition also. So that is also possible. 

But for most of the cases we do not use so much of control parameters, so 2300 is a number 

which is acceptable by the engineering community as a value for the transition to turbulence.  

And like we saw in the case of drag coefficient, there is always a sharp change in the 

behaviour of the flow when the transition takes place, like in the case of the flow past a 

cylinder, the same is true for the flow past a sphere also, that there is a sudden change in the 

drag coefficient. Similarly we can see the entrance length also, there is a sudden change when 

the transition takes place to turbulent. So now let us look at if we can analyse the developed 

flow using our approach, the fluid dynamic approach, differential approach which we have 

introduced in the last week, during the lectures of the last week. 
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So for that we go to the next slide. So let us see if we now consider only the fully developed 

flow because the developing flow is a very complicated, it has viscous flow at the near the 

wall and an inviscid flow at the Centre. So and that is only limited to the entrance length. For 

long pipes and in which case the flow is mostly turbulent because the velocities are high, so 

for those cases the entrance length is only as we saw in the last slide 30 times the diameter of 

the pipe. So if you, the flow losses in that region is not so significant losses. 

In fact the entrance loss is designated as a minor loss. The major loss in the pipe flow is 

basically the frictional losses and that mainly happen in the fully developed region. So this, 

let us look at the fully developed flow from using the differential approach which we have 

introduced during the last week. For looking at pipe flow we used, introduced a cylindrical 

coordinate system because this is useful because the cylindrical coordinate system represents 

the geometry of the pipe more accurately.  

For a circular pipe, circular cross-section pipe, it exactly reproduces or represents the 

geometry of the object. So this is always better because in fact when we deal with a sphere, it 

is better to use spherical coordinate system. So we used XR coordinate system rather than the 

XY coordinate system which we have dealt with so far, XY coordinate system is basically the 

Cartesian coordinate system. So as we do that, so this is basically a cylindrical coordinate 

system and the velocities in the X direction is, the velocity in the X direction is U and that in 

the R direction is given as VR. 

So in the cylindrical coordinate system in the vector form the velocity the governing 

equations are same, like we say for example incompressible flow it will be dell dot V is equal 

to 0 as the continuity equation but when you the dell operator in a Cartesian coordinate 

system is different, that is Dell Dell X I hat plus Dell Dell YJ hat in the case of a Cartesian 

system. In case of a cylindrical system it will be different, so the equations will be different 

and we have not derived that but we will use it for this particular case. 

So the continuity equation is something like this and the X momentum equation is something 

like this. So if you look at here you have will in the let us say X momentum equation you 

have the convective term like it appeared in the case of the Cartesian system like VR and Dell 

Dell R of U and U of Dell Dell X of U. So this is for the U velocity, so this particular 

operator is operating on the velocity U. Dell P by Dell X term is also there and this is 

basically the viscous term which is and this one is Dell square of U. 



So if you write Dell square of U in cylindrical coordinate system, it will look something like 

this. The R momentum equation now looks something like this, so you have the VR, you, you 

know V R Dell Dell R of VR and U Dell Dell X of VR. So we have not expanded this term 

here because we will see quickly afterward that this term will all vanish. Okay, so we have 

not expanded this Dell square here. So let us see what else conditions do we have. These are 

the governing equations but I such these governing equations looks very complicated. 

(Refer Slide Time: 26:51)  

 

So what more condition we, do we have? The next condition which we have is this is a fully 

developed flow, so that means the velocities does not change along the X direction. So fully 

developed condition says Dell U by Dell X is equal to 0 and Dell VR by Dell X is equal to 0. 

The radial component of velocity with respect to X is also zero, sorry the gradient of the 

radial component of the velocity is also zero. So we have to utilise all these conditions to 

simplify these equations. 

Now boundary conditions also we have to impose, so they are simple, U at X, R is equal to 0, 

R is the radius of this pipe measured from the centreline of the pipe. So because this is, 

because of the no-slip condition and similarly VR, the perpendicular velocity on the wall is 

also zero at X, R. Now let us look at this condition Dell U by Dell X is equal to 0. This fully 

developed condition immediately reduces and makes a lot of simplification because this term 

goes out, this term also goes out and this term also goes out. 

So it immediately gives us a lot of simplification and it also tells us that U is only, 

mathematically speaking, it is only a function of R and not a function of X. This differential 



equation, because this condition is also a differential equation. So Dell U by Dell X is equal 

to 0 means U is not constant, U is a function of r in the radius. And R means small r here, 

capital R is basically constant which is the radius of the pipe. Let us see with this 

simplification how does this equation look like. 

So this looks like Dell Dell R of R VR is equal to 0. So what does it mean, it means that R 

VR is a function of X, like we said here U is a function of R. R VR looks like it is a function 

of X, so what do we, how do we proceed now? So using this fact that R VR is a function of X 

we can come back to this equation, the other fully developed condition. What we are getting 

from here is Dell VR by Dell X is equal to 0. So R VR is a function of X but Dell VR by Dell 

X is 0, so what does it mean? 

It means immediately that F prime X is equal to 0 because if you plug-in VR is equal to FX 

by R here, it means F prime X is equal to 0 where F prime X is basically Dell F by Dell X or 

dF by dX because this is a total derivative now. So F prime X is 0 means what, FX is 

constant, that is what it means. So essentially what we get here is the velocity profile of the R 

velocity profile. So it means that VR is basically K by R. So by utilising this fully developed 

condition without solving, going into the momentum equation we get the velocity profile in 

the R direction.  

But look at this profile, this has to satisfy this condition also that the R velocity at the wall is 

zero. So what does it mean, it means, so if you, if it has to satisfy this condition it means 

capital K by R, K is a constant is zero, that means K is equal to 0, if R is not infinity of 

course. So K is zero, so VR is zero, so simply by using, so this is, this shows that by utilising 

this condition and it is important actually we utilise the fully developed conditions and the 

boundary conditions to arrive at the solution. 
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So by doing this systematically you see that you can arrive at the, it very simply, at a very 

important simplification that the radial component of velocity becomes zero. Now if the 

radial component of velocity becomes zero, okay, we cannot directly write it as zero, we have 

to come through this route and once it is zero it becomes, it makes our equations very simple 

because a lot of terms will disappear. See this goes out, this entire equation almost everything 

goes out except this Dell P by Dell R because this is VR is zero and VR is zero everywhere 

according to this condition. 

So Dell VR by Dell X will also be zero. Dell square VR because VR is zero everywhere, so 

Dell square of that will also be zero. So what our R momentum equation tells us is that Dell P 

by Dell R is equal to 0. So Dell P by Dell R is 0, it means B is a function of X, okay it is 

independent of R, this relation we had also derived previously if you remember in tutorial 

problem in the last week. Similar case for a flat flow kind of condition, not for a pipe flow.  

So pressure is a function of X, so pressure see velocity is not a function of X, velocity is only 

a function of R in a fully developed flow but pressure is not a function of R, it is only a 

function of X in a fully developed flow. And this is, this comes we will see soon that this 

dependence is due to the fact that there is a pressure loss due to friction. So now after looking 

at this that pressure is only a function of X, we can now rewrite this equation. So here all the 

3 terms has have gone, we are left out with pressure gradient term and the first part of the 

viscous term. 



It can be written as an ordinary differential equation because it has 2 variables only, one is 

pressure which is a function of X and which we have a derivative with respect to X and 

another is U which is a, which is purely a function of R. So this becomes an ordinary 

differential equation. Now if you further consider this, the left-hand side is a function of X, 

the right-hand side is a function of R and they are equal. So what does it mean? These 2 can 

only be equal if they are constant. 

So this simplifies and gives us very important conclusion that DP by DX is actually constant 

for a pipe flow and this is true for, this is of course true for laminar flow because turbulent 

flows you cannot drop out the unsteady term, unsteady because it is highly unsteady, 

turbulent flow is highly unsteady, so we cannot drop out the unsteady term. Okay, so for a 

laminar flow we get that, so pressure falls linearly along the direction of the flow. We in the 

plot in the last slide we had used utilised this to get the pipe the pressure loss in the entrance 

region, now we have proved it using the Naviar-Stokes equation. 
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Okay, that is what it says, the pressure drop in the developed region is linear for a laminar 

flow. Now we can continue with the right-hand side and if we integrate it we get this thing, 

this du by dr as this, this can be easily integrated and C1 is basically, so dp by dx is a constant 

but we write it as dp by dx and C1 is the first integration constant arriving from the first 

integration and the by integrating this equation again, so this also can be, this is easily 

integrable and you can get this equation which is which involves the 2
nd

 integration constant 

C2. 



So this is basically the velocity profile. Now you can see that you have another boundary 

condition left and you have to find 2 constants C1 and C2, so how to resolve that, how to get 

C1 and C2 when only one condition is given? That is the velocity at the wall, U velocity at 

the wall is zero, V velocity at the wall is zero is already utilised here. So to get that solution 

we look at look carefully at this form of this solution. So if you look at this, look at this term, 

the C1 Ln R so if you look at this term, this C1 has to be zero. Why, because U X, 0 should 

be finite.  

If you put U, if you try to find out U at R is equal to 0, so R is equal to 0 is basically R start 

from here, so R is equal to 0 is the centreline of the pipe, so R is equal to 0 if you put zero 

here, Ln of zero is minus infinity, E to the power minus infinity is zero, so this is minus 

infinity, so you cannot have infinitely large velocity. So this actually has to vanish. C1 should 

be zero, so without using boundary condition, just by observing the equation itself we can say 

this and what happens to C2, C2 can be obtained from the other boundary condition. 

So if you plug-in the boundary condition that U X, R is equal to 0, you get the value of C2 as 

this. So now just by plugging in the value of C2 into this solution C1 and C2 both into this 

solution we get the velocity profile. So we can get an exact solution, this is one of the rare 

case in which we can get a solution analytical solution for a laminar flow, at least for a 

laminar flow, for turbulent flow you cannot get an analytical solution like this but definitely 

get for a laminar flow a exact solution of this form. 

Okay, so now this is a very useful equation, so and we can rewrite this equation by 

rearranging this term in this form and there is a reason for writing it in this form because by 

writing it in this form you can see that the prefix here, it is like a coefficient, so you can write 

this as a U Max, so maximum velocity multiplied by this. Why is this U Max because at R is 

equal to 0, the velocity should be this and that is the maximum velocity.  

At R is equal to 0, U should be U Max, that is clear from the velocity profile, so basically you 

can represent this velocity now as U Max is equal, U Max into 1 minus R square by R square 

and we have got through this analysis a magnitude of U Max. This is a very useful and it will 

be useful in the estimation of the pipe pressure loss due to friction in the developed region of 

the pipe. 
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This kind of flow is called Hagen-Poiseulle flow, Hagen and Poiseulle, they did a lot of 

experiments on finding a correlation which we for arriving at correlation for frictional losses. 

Of course this derivation came afterwards, this was done in the 19
th

 century, this derivation 

came afterwards of course. But this just to commemorate the contribution to the pipe flow 

literature, it is named after these fluid dynamists. So now what we can see is what the 

important conclusion from all this mathematics is that we can find out the flow rate through 

this pipe using this velocity profile, we can integrate this as U 2 pie r dr between 0 to r and 

then get the flow rate as U Max by 2 into pie R square. 

So if you integrate this, you get it as U Max by 2 into pie R square. And this is important way 

of writing this equation because the first one if you see, it is like a velocity multiplied by the 

total area. So this is like an average velocity, U Max by 2 is an average velocity. So we name 

this average velocity as V, for the present lecture, for the pipe slow lecture we define V is the 

average velocity. Now this, it means that the average velocity is actually U Max by 2. Now 

we know U max, we know an exact expression for Umax for laminar flow, so we can use, we 

can also get an exact expression for average velocity. 

So the average velocity and we can do that by considering minus dp by dx is Delta P by L, so 

what is Delta P, Delta P is the pressure loss due to friction. So if you take first station as 1 

and the 2
nd

 station as 2, so Delta P is P1 minus P2, so P2 is less than P1, so P1 minus P2 

because there is a frictional loss, so P1 minus P2 is basically the Delta P. And of course P1 

minus P2 is positive because there is a pressure loss but this gradient is negative because the 



pressure, if you move along the X direction then the pressure is reducing, so the gradient is 

negative, that is expressed here. 

Now if you plug-in this value of dp by dx here, you can get a expression for, so Delta P is 

dropped to do, pressure drop you to friction and we can write the average velocity in terms of 

pressure term, this is a very important equation. This is equation which was experimentally 

obtained by Hagen by his experiments. Of course the details give us the reason for this kind 

of variation for the average velocity. Now we will see how we can use this for our actual 

finding out lost through a, due to friction for a pipe flow.  
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So this is also called head loss in a pipe. So we will see how to estimate this head loss. This 

head actually represents the height, how it represents we will come to that. So let us say we 

have an inclined pipe like this and we have one location 1 and another location 2. The 

diameter of this pipe is 2R, so either we use either diameter as a scale or R as the radius of the 

pipe at the scale. So in the station 1 the Bernoulli constant will be like this, we introduced this 

before rho V square by 2+ P1 plus rho G Y1.  

So this is the Bernoulli constant at the station 1, at the station 2 it will be like this where V is 

basically the average velocity, see that is why we got the expression for average velocity in 

the last slide because that is what is useful when we try to estimate friction for a actual file, 

actual pipe. We cannot use the total velocity profile, it is too complicated. So a simple way is  

to estimate the average velocity. That can be obtained by knowing the area of the pipe, the 

cross-sectional area of the pipe and the flow rate.  



So this is basically the Bernoulli constant at the first station and the 2
nd

 station. Now because 

this pipe is, pipe flow is a frictional flow, friction has a very important role to play here, these 

2 are not constants, so these values are different in the pipe. How are they different, of course 

this will be more than this because there is a pressure loss as the flow takes place from 1 to 2. 

But it is better to represent this in this term. So if you, what it says is the Bernoulli constant in 

station 1 is more than the Bernoulli constant in the station 2. 

Now we have written it in a little different form, see we have written it by dividing the entire 

expression with rho G. So what it does is by representing, by dividing it by rho G we get 

something like the total energy per unit weight. This was generally the kind of approach 

which was used by the experimentalist who did experiments on pipe friction losses. So this is, 

this practice has been returned all throughout and we write even Bernoulli’s equation in this 

form, that means this is basically each is a representative of energy. 

Of course you can arrive at this Bernoulli’s equation also starting from the steady flow 

energy equation, that is first law of thermodynamics applied to a control volume. So that can 

be also done, so without considering the, there is no worker, there is no heat transfer here so 

if you apply those conditions and get, apply the steady flow energy equation you will get 

arrive at the same equation. But the important thing here is that this one is more than this, so 

that means there is an energy loss, energy per unit weight that is more at the first station than 

the 2
nd

 station of course because of the friction. 

But we can convert this into an equation, this inequality into an equation by introducing this 

as a extra term on the right-hand side. So this is like the frictional head loss, head loss due to 

friction. And all this energy per unit weight is actually having, you can check on your own 

that it actually has a unit of height. And that is why we say head loss or this is represented in 

terms of height in length scale. So by introducing this head loss, we can now write this as an 

equation and let us see if we can estimate this head loss in the pipe because this is the friction 

which has to be overcome when you want to transfer any liquid through any pipe and that 

will give you an estimate of the pump power required to pump the fluid through the pipe. 
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So let us see if we can get an estimate of this head loss due to friction. Before going into that, 

of course we can use the continuity equation applicable for this flow which is A1 V2 is equal 

to A2 V2, the flow rate is the same, so as this is, that area duct, V1 is equal to V2. Okay so 

this is constant area pipe or constant area duct, so V1 is equal to V2. So what happens is these 

2 terms goes out and if we consider a horizontal pipe, that means we are not pumping 

something down which will help us, which will help in pumping or pumping up, then you 

have to do work to pumping up, pumping it upward, we neglect the effect of gravity in that 

way and then just see what is the only, what is the contribution of the friction, pipe friction. 

So if we consider the horizontal pipe we can remove this Y1 and Y2 and we are left out with 

HF. HF is equal to P1 minus P2 by rho G. Now this is basically the head loss due to friction. 

Now if you remember in our Poiseulle flow example in the last slide what we got as an 

expression for P1 minus P2. We got an analytical expression for P1 minus P2 for the case of 

a laminar flow, we can utilise that equation, so we can use the Hagen-Poiseulle flow solution 

which says that the average velocity is P1 minus P2 is R square by 8 mu L.  

So you can utilise this expression here and if you do that you get that the friction loss, so this 

was what you got, so you can now replace P1 minus P2 from this equation and plug it in here 

and you get an expression for head loss due to friction. This is very important relation for 

estimating the frictional losses in a pipe flow. This can be rewritten in a little different form 

by reorganising the terms which are appearing here. So you can take out mu by rho VD from 



here because this will, this is a familiar term for us rho VD by mu is basically the Reynolds 

number for the pipe. 
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So we can write this now as this first one is actually named as friction factor. And we can 

write the head loss due to friction as F LV square by 2 g D. This is a very compact way of 

writing the expression for the friction factor. So basically you see right now what we have 

done, we have actually for the laminar flow, we have actually analytically derived an 

expression for the head loss due to friction in a pipe flow. This equation is known as Darcy-

Weisbach equation and this came before this derivation. So this was arrived at using 

dimensional analysis that these parameters will influence the head loss due to friction. 

Now what changes in all this description is only the, is mainly the friction factor, friction 

factor is equal to 64 by RE in the case of a laminar flow. So for a laminar flow we say that 

the friction factor only depends on the Reynolds number. And the in the in a way like it is 

inversely related to Reynolds number. High Reynolds number higher flow rate generally 

speaking higher flow rate higher velocity, so for that you will have a lesser value, lower value 

of friction factor.  

Of course a head loss because this head loss is proportional to V square and this Reynolds 

number has rho VD. So head loss is basically linearly proportional to velocity. If you increase 

velocity, this is our common knowledge also, our understanding also, if we increase the 

velocity or flow rate through a pipe the frictional losses will increase but the friction factor 

reduces, when we write in terms of the Darcy-Weisbach equation. So this discussion is not 



only limited to laminar flow, a similar expression of, although we cannot analytically derive 

like we did for a laminar flow but the expression is applicable also for a turbulent flow. 

Only thing is the turbulent flow friction factor is not only a function of Reynolds number like 

here, it is a function of Reynolds number and epsilon by D, so what is epsilon, it is called, it 

is the basically roughness of the pipe. So what is the dimension of roughness of the pipe, 

divided by non-dimensionalized with diameter, this is how the friction factor changes for a 

turbulent flow. For a laminar flow it is 64 by RE. Now let us plot this friction factor with 

respect to Reynolds number.  

For the laminar part as we derived here, this is 64 by RE and of course you can notice that we 

have used a log log scale here, so this is a logarithmic, this is not a linear scale, the vertical 

scale for friction factor, and the horizontal scale for Reynolds number, both are logarithmic 

scales because we want to plot this for a wide range of Reynolds number and the variation of 

friction factor in during this wide range of Reynolds number is also a lot. So when we have to 

plot some, things like that where the variation is too high, then it is easier to plot them in log 

scale.  

So this is the first part, although it looks linear, it is actually not linear, it is looking linear 

because it is plotted in a log log plot. So this is the first part, the laminar part, the friction 

factor reduces with increasing Reynolds number like this. If you go to turbulent flow, what 

happens? So this is 64 by RE of course, so turbulent flow for smooth pipe, you have a 

variation like this. So before going into the turbulent flow we can look at this region also, so 

this region is basically a transition region from 2300 to 4000 which is a small region, you 

have a transition from laminar to turbulent flow. 

And as we observe before like in the case of entrance length, like in the case of drag 

coefficient, we can see here, even in the case of friction factor that is a sudden change in the 

value of the friction factor when the flow translates from laminar to turbulent. So this is, this 

shows that the turbulent flow is characteristically very different from the laminar flow. It is 

not smooth transition, so that is why they have to be dealt with separately. So now of course 

we can give qualitative explanation for why, so if you see here, actually the friction factor 

increases if you go to the turbulent flow. 

Okay so the reason is one qualitative explanation is that the velocity profile, if you look at the 

gradients of velocities near the wall will be higher in case of a turbulent flow because of the 



characteristic of a velocity profile, it is more flat, it is more full profile. So for that the shear 

stresses will increase because of the higher velocity gradient because shear stresses are 

proportional, shear stress is proportional to the velocity gradient. So we have higher friction 

factor also. 
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Of course this is in case of turbulent flow for smooth pipe the epsilon by D factor is close to 

0, as you increase the epsilon by D factor, it changes. So you have higher value of friction 

factor because the roughness will increase the friction factor and if you go higher and higher, 

you get different a different, a higher and higher, sorry if you go higher values of friction 

factor the roughness at higher values of epsilon by D, you get higher values of friction factor. 

And as you see here the curve also becomes more and more flat. In fact in this region it 

becomes very flat.  

This means that the, in this region of the flow now friction factor is almost independent of 

Reynolds number. See Reynolds number is changing but the friction factor remains constant, 

so it does not depend on Reynolds number for a rough pipe, it mainly depends for a turbulent 

flow in a rough pipe. If we go for higher roughness, so in this case you see all throughout the 

entire Reynolds number regime region you see the variation is negligible with respect to 

Reynolds number. 

So only thing for higher roughness pipes, only thing which influences the friction factor is the 

roughness, these are called rough pipes, so the factor which changes the friction or the 

friction factor is basically the roughness of the pipe. So and in this case if it is, if the friction 



factor almost remains constant with Reynolds number, you can see if F is constant in this 

factor in the Darcy-Weisbach equation, if F is constant, it means the head loss is quadratically 

or is proportional to V square. 

So that means in case of the laminar flow it was with V HF, the head loss, this is not HF, this 

is basically friction factor, so head loss was proportional, now it is proportional to V square. 

In between in this region, so this is head loss in this region is proportional to V and in this 

region it will be between, the exponent of V will be between 1 to 2. So this is basically a 

comprehensive representation of friction factor with respect to Reynolds number to estimate 

the head loss in the case of a pipe flow. 

Okay so this is basically the increasing, the direction of increasing epsilon by D and now we 

can utilise this kind of a diagram very well for doing engineering calculation or estimates of 

what will be the fictional head loss in the case of a pipe flow. And this diagram is also known 

as Moody chart which is tabulated and plotted by Moody and that is why it is named after 

him. And this is very useful as a design you know tool for designing in the industry because 

you can select your pumps, you can select your pipes, you can select your flow rate, you can 

select, specify the roughness of your pipe by using the Moody chart. 

Or if you know the roughness of the pipe you can the head, the pressure head that your pump 

can generate, you can find out what flow rate is possible to get using a particular, using a 

particular pump. So it has a lot of application, so most of this, particularly the turbulent flow 

region is derived from experimental correlation. The laminar flow is actually, even the 

experiments falls very close to the 64 by RE curve. So this is quite, this is analytical solution 

but this part is totally based on lot of experimental data and useful for a design engineer to 

design a different thing which I just mentioned. 

So this actually brings us to the end of the 4
th

 lecture and the first module of this course 

which dealt with the fluid dynamics aspects. The latter part of the course will deal with the 

Turbo machines aspects, will deal with Turbo machines and the next 4 weeks you will be 

taught by Dr Dhiman Chatterjee, he will be teaching you on concepts of Turbo machines and 

I am sure you will find the basics of fluid dynamics which you learned during the first 4 

weeks of this course useful in the latter part of this course and also to, this will act as a 

stepping stone for you to do a advanced level fluid dynamics course. 



So this brings us to the first, end of the first module and I thank you for watching this video 

and wish you all the best in your endeavour for learning fluid dynamics and Turbo machines, 

thank you.  

 


