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Good morning and welcome to the 2
nd

 lecture for the 4
th

 week of this course on fluid 

dynamics and Turbo machines, we are looking at viscous flows. In the last lecture we had 

looked that the flow over a flat plate and defined different boundary layer thickness and we 

also looked at the momentum integral expression for a flow over a flat plate, derived the 

expression for the boundary layer thickness, the disturbance thickness in terms of the 

Reynolds number. In this lecture we are going to look at the same problem, the flow over a 

flat plate but starting from the differential analysis. In the last lecture we have looked at the 

problem more from the integral analysis point of view, in this lecture we will look at it in the 

differential analysis point of view. 
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So this also demonstrates how we can apply the different approaches of analysing fluid flows 

like the integral and differential approaches to a given problem. So today we will look at how 

to apply the differential approach to the flow over a flat plate. So basically when we say that 

we are going to apply the differential approaches, differential approach to this flow over a flat 

plate, it means that we are going to apply the Naviar-Stokes equation for boundary layer. So 



BL stands for boundary layer. Whenever we use during discussion within this chapter this 

acronym it means boundary layer. So the mass conservation equation is Dell U by Dell X 

plus Delta V by Dell Y is equal to 0, this is well-known to us. 

And of course this is a two-dimensional incompressible flow. X momentum equation is given 

as this and we have again taken two-dimensional incompressible and a steady flow, the 

unsteady flow, unsteady term is also removed from here because this is essentially what we 

are dealing with is a steady state boundary layer. You can have a unsteady boundary layer 

also but we are not dealing with that in this discussion. So this is a steady state boundary 

layer, that is a steady flow on the surface of the plate and what is the, how does the boundary 

layer forms. 

So basically this is the equation for that, these first 2 part is the convective part of the 

acceleration and what we have done, we have taken the rho from here and inserted it here and 

returned, this is the pressure gradient coming from the pressure forces and this is the viscous 

term. So basically this is our X momentum equation. Now what we do is in the next slide we 

will see how we can apply the Y momentum equation for the boundary layer flows. Let us 

see how we can reduce this X momentum equation for the case of a boundary layer flows. 

In that context it is very useful actually to write this equation not in the form of a dimensional 

variable like velocity, each quantity here has a dimension, that means U velocity meter per 

seconds, pressure as Newton per metre square and so on so forth. So all the quantities which 

we are going to solve has a dimension, we want to express this as a non-dimensional quantity. 

And we will see how that will help us to reduce this equation to a more simplified form. So 

this is another way, I think you will be introduced to non-dimensional, non-

dimensionalization process or dimensional analysis in the next part of this course, in the 

Turbo machines part of this course where it is more applicable. 

But this is an application of that dimensional analysis to deal with the differential equations. 

So to non-dimensionalize the equation, what we need to do is basically we have to divide 

each of these terms which we are going to solve. So velocity has to be divided by a velocity 

to make it non-dimensional, it is clear. Similarly length, X or Y has to be divided by another 

length, so what is that length? See one when we do non-dimensionalizing, we should 

basically try to choose an appropriate quantity to non-dimensionalize.  



So when we talk about U velocity, so we will come for the U velocity R, let us see the length 

scale for the X length, quantity which can be used to non-dimensionalize the X length is 

capital L because that is the length along X direction. So we and we name this as X star, the 

non-dimensional quantity as X star. Similarly we can define a non-dimensional Y star. But 

for that the length should not be this L because if you go in Y direction what you see, the 

significant length is Delta, the disturbance thickness. So we should define, we should divide 

that with Delta. That is the trick which you have to use while non-dimensionalizing an 

equation and you have to select the the appropriate length scale and velocity scale. 
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So this is done, so we have to replace Y in this equation with Y star, we will see how to do 

that but we will let us see other scales also. So for U velocity, again it is straightforward 

because the uniform velocity which is approaching the plate is capital U, so we non-

dimensionalise non-dimensionalise it with capital U. And name this velocity, nondimensional 

velocity as U star. V is little tricky and we define this quantity U Delta by L, how is this 

arrived at?  

You can see if we can do a scaling of this equation, the mass conservation equation, you see 

this is capital L, you replace this small u this with capital U and this with capital L and this 

with let us say some V and this with Delta, then the velocity scale which you will be left out 

with is capital U multiplied by Delta divided by capital L. So that is what we has been used to 

non-dimensionalise V velocity, U Delta by capital L obtained from the dimensional 

consistency of this equation. So we see this as V Star, now I think we are all set to write this 



equation in terms of this nondimensional variable now, that means X star, Y star, U star and 

V star. 

Of course, okay we have not addressed P, so P has to be non-dimensionalised with rho U 

square with the severe it because explicitly there is no pressure term appearing here, so just 

use the same dimensional quantity rho U square to non-dimensionalise P and name this as P 

star. When you non-dimensionalise an equation, every quantity has to be nondimensional, so 

that is important. Now let us replace the quantities like velocity, pressure, etc. and the length 

scale in this equation with this nondimensional equation variable. For doing that what we 

should do is, we should write X here as X star into capital L. 

Capital L will not do anything to this equation because they are all constants, similar, 

similarly all other variables. So if we do that now, now we can write these equations in this 

way, so before going here we have actually non-dimensionalise the mass conservation 

equation, although it was not necessary because the velocity scale was arrived at by using this 

equation. So because of that you will see the quantity equation remains in terms of non-

dimensional variable is also U star, X star, V star and Y star remains in the same form as with 

the dimensional quantities because of the selection of the velocity scale like this. 
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Okay so let us come to the X momentum equation now. So this expression is what you get 

but we will go term by term for this equation and try to understand how it is written. So for 

small u, you can replace it with U star into capital U. So U is replaced with U star into capital 

U, similarly U star into capital U here, so one U comes from this, another from this, it 



becomes U square and X, instead of X, we write X star multiplied by L. So L can be taken 

outside, so L comes outside here, so you get a coefficient U square by L here. 

Similarly if you do for the V velocity you will get a U square by L coefficient here and same 

for your pressure gradient term. Here also you can apply the same technique, you replace U 

with small u star multiplied by capital U, capital U comes outside, U remains here and X, 

with X star multiplied by capital L and then this comes outside because this is X star square, 

so it is L square here, so you can now club these variables. So this is how, this equation is 

arrived at.  

Now club these variables, see one thing you can do before going ahead, if you look at this 

equation carefully you have U square by L here, U square by L here as coefficient and also 

here as coefficient. So you can actually divide this, the left-hand side and the right-hand side 

of this equation by U square by L. So if you do that then what do you get? You get very 

similar for as the original Naviar-Stokes equation or the X momentum equation up to this up 

to this point. So this is very similar, here you get little different terms. So with the Dell 2 U 

star, Dell X star square, you get mu by rho U L, here you get mu by rho U L multiplied by L 

square by Delta square. 

So this is just by organising all the terms together you get this kind of expression, and see it is 

nicely organised actually. Why is that, because see rho UL by mu, it is basically Reynolds 

number. For this flow over a flat plate, the Reynolds number at this edge is basically rho UL 

by mu. So we get that expression here. So this can be replaced by mu by rho UL can be 

replaced by one by RE, this also can be replaced by one by RE, so what we are left out with 

is this L square by Delta square. So let us see if we can write something in terms of Reynolds 

number for this quantity. 

So before going into that we, okay, so we have taken this entire term here and put it here, that 

is mu by rho UL multiplied by L square by Delta square, we put the entire thing here, this 

part is one by RE like here, so this is one by RE, this part is one by Delta by L square. What 

is Delta by L square? If you remember our last lecture, we derived an expression for Delta in 

terms of X. So Delta by X is basically proportional to 1 by square root of RE. So Delta square 

by X square is one by RE or Delta square by L square is actually one by RE where RE is 

defined with respect to the length scale L. 
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So we can use that here. So this is one by RE and Delta square by L square is actually 

proportional to 1 by RE. So if you use Von Carmen relationship, then it is 5.48 by RE, okay. 

So what it actually tells us, it gives a order of magnitude value for this expression, for this 

entire expression. Order of magnitude value, what does it mean, it means whether it is 10 to 

the power zero or 10 to the power one or 10 to the power 2, like that. So if we look at this 

term, because you have only 5, you will even in the Von Carmen expression you will have 

5.48 by RE here, so this will be of the order of zero. 

So the magnitude will be of the order of 1. So we can use these 2 information and rewrite this 

equation. So now if you rewrite this equation, what we get, this is multiplied Dell 2 U star 

Dell X star square is multiplied by 1 by RE and this is the coefficient here is of the order of 1, 

the value is of the order of 1, the order of magnitude is zero. Okay, so now let us see what it 

means for high Reynolds number. So generally the Reynolds number will be high, so if you 

remember the value of Reynolds number at which transition occurs is 300,000, 3 into 10 to 

the power 5, that is very nice. 

So even if you leave that, if at least even for a your laminar flow we will be dealing with 

Reynolds number of the order of 100 and this Reynolds number which appears here is not the 

Reynolds number at a particular station, it is the Reynolds number with the length scale of the 

length of the plate. So this is basically Reynolds number of rho U capital L by mu. So for 

any, if it is a very small plate, it becomes like a small object, for that of course this equation 

does not apply but for any finite size plate, you will see the Reynolds number will come out 

to be 100 or so. 



If that is the case, this is, this particular term is multiplied by 1 by 100 whereas the other 

terms as it is not multiplied, are multiplied by 1, so this term naturally is negligible because it 

is 100 times as it appears here of the other term. So this is not zero but it can be, it is small 

compared to the other term because of the multiplier of one by RE with this particular term. 

So this can be removed and we can write this equation. So this is a modified, so by doing this 

analysis what we get is a reduced form of this differential equation.  

See know we are trying to apply the differential approach to the boundary layer problem and 

for doing that we need to deduce the equation in a form that we can solve it easily. So this is 

that effort actually, with that effort we try to non-dimensionalize this equation and arrive at 

the X momentum equation of this form. So now let us look at the Y momentum equation. 
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So Y momentum equation in its full form for a 2-D steady incompressible flow is like this. 

Okay unsteady term is not there, of course it is a steady boundary layer and incompressible 

flow. So now this is the full-fledged equation for a 2-D unsteady incompressible flow. So 

now non-dimensionalize the same equation as we did before, the same approach we adopt, X 

with L and name it as X star, Y with Delta and name it Y star, small u with capital U, V with 

U Delta by L and P with rho U square. So again we can use these expressions to rewrite the Y 

momentum equation in terms of the nondimensional parameter, namely U star, V star, X star, 

Y star, P star, so let us do that. 

We already introduced the methodology for that that what we we do in this equation, we can 

write small u as capital U into U star and small v as this multiplied by V star, so U Delta by L 



multiplied by V star, so if we do that, what do we get, we get an expression like this. So just 

to look at the first term if you see we have replaced U with U star multiplied by capital U, so 

one U comes from here and the V star V here inside the differential with is replaced with V 

star into U Delta by L. So one U came from U star, another U Delta by L comes from the V 

star. 

And this X star, X is replaced by X star into capital L, so another L comes from there. So that 

is how it becomes U square Delta by L square, so this is the coefficient of the first term. The 

2
nd

 term will also have the same coefficient if you follow the method which was introduced. 

So if you continue these are, like this, these are the expressions which you will get, again we 

divide the left-hand side and right-hand side with U square Delta by L square, we get this 

equation. So once we get this equation now, again we see that these terms can be organised in 

this form. 

So the coefficient of Dell 2V star square Dell X star square is mu rho UL and here it appears 

like this, very similar to what we got before, except for the fact that the pressure gradient 

term also have this expression now, L square by Delta square. So this can be resolved in the 

same way as we did before, mu by rho UL is one by RE, okay, and then mu by rho UL into L 

square by Delta square which appears as a coefficient here is of the order of 1 as similar to 

before and L square by Delta square is of the order of RE because L square but Delta square 

if you see, L square by Delta square has appeared here, it can be written, it can be written as 

one by Delta YL square that is 1 by 1 by RE, that is RE essentially. 
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So L square by Delta square is of the order of RE, so now let us replace these expressions 

with this particular expressions which we got here. We can rewrite this equation in this form, 

the RE is the multiplier here and the 1 by RE is the multiplier here. So what we do is, we 

divide the entire equation with RE again, so if we do that we get this. So now see for high 

Reynolds number, again this term is multiplied, this entire term is multiplied with one by RE, 

this term is multiplied with one by RE square and this is multiplied with one by RE. See if 

every term was multiplied by one by RE, then we could not have done anything. 

But fortunately we see that only that these returns are multiplied with, 2 terms with one by 

RE and one with 1 by RE square. So compared to this term, naturally these terms will be 

negligible because even for Reynolds number of 100, 2 of these terms are multiplied with 10 

to the power -2, one of the term is multiplied with 10 to the power -4. So all of them can be 

neglected compared to the term which is not multiplied with any RE factor, so that is the 

dominant term in the equation. 

So that is basically the advantage of using this dimensional analysis or writing the equation in 

a nondimensional form. If you do that, then you can see which terms will play more 

important role in an equation and you can reduce the form into more simple simplified form 

and you can solve it easily. So for example in this particular case you will see it becomes 

very simple. Now you are only left out, we began with this entire equation. This is not 

solvable, this is very difficult to solve but just by doing this nondimensional, just by non-

dimensionalising this equation what we got is that for high RE this is the equation. 

Dell P by Dell Y is equal to 0 is equation, this is the equation which you have to solve, which 

is very easy to solve of course. And now we will come to a very important conclusion from 

here. So that is Y momentum equation gives us a very important conclusion about the 

boundary layer characteristics and what is that, that is for explaining that we take 2 points on 

the top of the plate. So you have this point A and point B on top of the plate. What we know 

from this equation is Dell P by Dell Y is equal to 0 within the boundary layer. 

So if we use this, then and draw a streamline outside, okay we draw a streamline outside and 

extend these points to the outer streamline, to the point C, A to C and B to D, now within the 

boundary layer Dell P by Dell Y is zero, outside the boundary layer also it is zero, so that 

what does it mean? It means that if we do this, then PA is equal to PC, pressure at A is equal 

to pressure at C and PB is equal to PD, pressure at B is equal to pressure at D. Now we 



already saw for the case of this flow over a flat plate, okay, Delta P along the streamline is 

zero because Delta U is zero. 

And using Euler equation for an inviscid flow, of course this flow outside the boundary layer 

is inviscid flow, so you can use Euler equation and if Delta U is zero, Delta P will be zero. So 

that means PC is equal to PD, so that means PC is equal to PD. So if that is the case and you 

can use these equations now, what you get is basically PA is equal to PB. And you can do 

this for any set of 2 points drawn within the boundary layer. So what it essentially means is 

within the boundary layer Dell P by Dell X is 0 for the flow over a flat rate.  

So but this is quite general, Dell P by Dell Y is zero, it can be extended to flow over curve 

surfaces also but we will not go into that, we will see here is simply that whatever we actually 

assumed in the last lecture that Dell P by, the same pressure gradient outside the boundary 

layer is imposed in inside the boundary layer is actually correct, it can be mathematically 

proved like this. So Dell P by Dell X is 0 for a flow over a flat plate and this has a very 

important application which we will see in our next lecture.  
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That what what it actually means, that pressure gradient has a very important role to play on 

particularly with relation to viscous flows. So we will see that how that happens, now see 

what we got is the, we got the equations, reduced form of the equations, so we got the finally 

of course this is our mass conservation equation, continuity equation, this is our X 

momentum equation and that is our Y momentum equation just give us Dell P by Dell Y is 

equal to 0 and we use that for also showing that Dell P by Dell X is equal to 0 and that is how 



you see in the X momentum equation here now Dell P by Dell X we have removed because 

that is zero. 

So this is basically the reduced form of this equation. And let us see if we can solve this 

equation, these 2 equations together, U and V are the 2 unknowns and these 2 are the 

equations, so can we solve it. Still you see that it looks difficult to solve being a partial 

differential equation but if we make some observations, it becomes easy to solve these 

equations. So we will see what observations we can make.  

Before going into that, let us see these are the boundary conditions that U at X and Y is equal 

to 0 will be zero, that means if you move along this X at any point U is zero, same is V. That 

basically no-slip condition applied on the wall and no velocity perpendicular to the or the 

same velocity as the wall perpendicular to the wall. The wall is stationary here, so this is zero. 

So this is one boundary condition at one edge and the other edge is UX, Delta is equal to U, 

free stream condition. By applying this condition we can actually solve this equation. 

But let us see what more simplification we can do to this particular set of equation. That can 

be done if we make some few observations about this equation. So let us consider a velocity 

at any station, so by seeing station what we mean is any X location. You have any X location, 

what can you say about the velocity. So what we see, it is it comes from, of course we can see 

this velocity comes by solving these 2 sets of equations, mathematically it is that that is what 

it is. 

So at each point it actually we solve the same equations, the same set of equations. So it 

seems and it satisfies the same boundary condition, at each point the boundary condition is 

also same. So governing equation is same, for the velocity at any station, the governing 

equation is same, this, these 2 are the governing equations, the boundary conditions are also 

same. So same boundary conditions, same governing equations, so solutions should also be 

same right, but it is not. Why it is not? Because the boundary Y is equal to Delta shifts at 

different X location, the Delta is actually shifting. 
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If you move along the X, the Delta is different, so that is basically the problem. The 

governing equations are same, boundary condition is same but the boundary is shifting, so 

how to solve that? We can solve it very easily is we can make a small observation. What is 

that? So if we look at a transform coordinate system. How do we transform, that means we do 

not have to write this equation in terms of Y, we write it in terms, in a different coordinate 

system where this Y is equal to Delta, this boundary becomes fixed, it does not become, it 

does not shift, it does not shift to a new position for each location, if it becomes fixed, then all 

the points will have the same solution because there is the same governing equation, same 

boundary condition. 

Only boundary has to be fixed. So this approach is called, is seeking a similarity solution, the 

profile is actually similar but it is not appearing similar because it is not written in the correct 

form. If you write it in terms of correct variables, it will be similar. So it will be same actually 

but because it is not same it is called similar. So this is basically the similarity solution, so 

how to see that kind of a approach. The only task now remaining before us is to write this 

equation in a transformed coordinate system in such a way that this boundary becomes a 

fixed boundary. 

So we define, so Delta of course we know, basically it is a function of X, so it is changing at 

every X, so we define a new variable called Eta. What is this Eta? Eta is defined as Y by 

Delta, so see this is defined in an very, in a way that it satisfies this criteria that at Y is equal 

to Delta, the boundary becomes fixed, because at Y is equal to 0 Eta is zero, if you just plug-



in Y is equal to 0 here, at Y is equal to Delta, you plug-in Y is equal to Delta here, Eta 

becomes one and this is true for all the Deltas, all the X location. 

So this writing the equation in terms of the new variable Eta actually transforms this 

boundary which was changing, that means that U X is equal to Delta is U to a fixed 

boundary. So now what you can get, you can write the velocity profile in terms of a single 

variable Eta, you do not have to bring in X now and this equation becomes, if you have single 

variable for a differential equation, single independent variable for a differential equation, it 

becomes an ordinary differential equation. And this equation with this substitution becomes a 

3
rd

 order ordinary differential equation given as this. 
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And this is known as, this approach was developed by Blaussius and this solution is called a 

Blaussius solution. Using this Blaussius solution, now of course given this equation and the 

boundary condition has to be written in terms of this variable F which is not written here but 

it can be written, we just want to introduce the approach. So now this, if you solve you cannot 

get a analytical solution to this equation also. You can get a numerical solution to this 

ordinary differential equation and if you find a value of Delta by X using this, you get 5 by 

square root of Rex. Using Von Carmen approach we got a value of 5.48 by square root of 

Rex which is very close to what we got. 

The difference is only because of the fact that the velocity profile is not quadratic which was 

assumed to be quadratic by Von Carmen. So this brings us to the end of the 2
nd

 lecture of the 

4
th

 week of this course. In this lecture we actually looked at how to deal with the flow over a 



flat plate using a differential approach. That means starting from the Naviar-Stokes equation 

and how to reduce the Naviar-Stokes equation using a nondimensional, using nondimensional 

variable or by non-dimensionalising the equation.  

So if you write that, you actually drop lot of terms and then you can write equations in a very 

in a more simplified way and we also demonstrated that how to approach towards a solution 

of this kind of a reduced equation using the Blaussius, using the similarity solution approach 

introduced by Blaussius. So this brings us to the end of the 2
nd

 lecture, in the next lecture we 

will look at flow, so far we have looked at flows where the pressure gradient outside the 

boundary layer was zero, that is a essentially a flow over a flat plate. 

That also means like we introduced here that the pressure gradient inside the boundary layer 

is also zero. In the next lecture we will look at flows where the pressure gradient outside the 

boundary layer and so and that is why inside the boundary layer also is non-zero and what 

happens there. Thank you.  

 


