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Good morning and welcome to the 3
rd

 lecture of the 3
rd

 week of this course on fluid dynamics 

and Turbo machines. In the last 2 lectures during this week we had looked that the Naviar-

Stokes equation, we derived the Naviar-Stokes equation and we have, we will look at the 

application, some of the applications of Naviar-Stokes equation during the tutorial session of 

this week. Right now we will start with our 3
rd

 3
rd

 lecture where we start with the fluid 

rotation. This is a part of the fluid motion which we have so far not dealt with, so we will 

start with fluid rotation. So, let us see what is the meaning of fluid rotation. Let us go to the 

slides now. 
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So if you see first of all we take an example of pure rotation. So, what is meant by pure 

rotation? So we consider this fluid element like we had seen before and these are the axes 

displayed here and then let us see if this fluid element just undergo a pure rotation then how 

what will be the position of the fluid element after a time Delta T, after a duration Delta T. So 

this is basically a pure rotation. Why do you call it a pure rotation because if you look at the 

fluid element its shape have not changed, it was square shaped before and now also it is 



square in shape and the size also has not changed. So neither the shape nor the size of the 

element has changed. What has happened at time T plus Delta T, that is added time Delta T 

after the first position of the fluid element is that it has rotated about the Z axis. 

So this element has rotated about the Z axis. If we draw a diagonal of this element 

represented as BD in the first position and we take an angle, this is the angle through which 

this element has rotated. Of course for this particular case, this angle is also same the angle 

subtended by any of the edges of this fluid element with its original position represents the 

fluid rotation, magnitude of rotation. Next we let us look at what is pure deformation. So as 

we have seen before that the fluid element undergoes protection as well as deformation. 

Rotation we are not seen before, deformation we have seen before and we have seen how we 

can relate the shear stress or the stress in general with the deformation, with the rate of 

deformation for a fluid element. Now we are dealing with rotation but in, so let us relook at 

the deformation part again. 

So pure deformation of a fluid element if we see again, this is the initial position at time T of 

the same fluid element and now in the deformed state let us see how it looks like. This 

element will look like something which is shown in the 2
nd

 position. So what is the difference 

here, see the difference here is that the element in the 2
nd

 position has not undergone any 

rotation. What is meant by that? If we draw a diagonal of the element in the first position and 

the 2
nd

 position, they are collinear. What is actually meant by that, it means that suppose you 

consider the original fluid element that is ABCD and you consider the deformed element, let 

us look at the part of the fluid element showed in this region, so what has happened is this 

part of the fluid element has actually gone to a new position at time T plus Delta T. 

So it has probably moved from here to here, so actually this part of the fluid element has 

rotated in a clockwise direction. So this part of the fluid element had undergone a rotation. 

But remember for every part of the fluid element which has undergone a clockwise rotation, 

if we look at the lower age now, this part has gone through a anticlockwise rotation. So 

overall if we consider the total fluid element it has not undergone any rotation. That is why 

the diagonal of the origin drawn from the original element, of course the diagonal which 

passes through the axis of rotation, if we draw that, then we see that for the initial position, 

the initial fluid element and the final fluid element, they lie on each other. So, overall the 

fluid element as not undergone any rotation. This is the meaning of pure deformation. 
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Now in a real fluid element, it undergoes rotation as well as deformation at the same time. So 

let us look at that particular situation. So that particular situation, that means rotation plus 

deformation, again we say that ABCD is the initial fluid element, then the final position of 

the fluid element now if something like this which is shown here. So this position is different 

from the position taken or the location of the fluid element shown in pure deformation in the 

sense that now if you draw a diagonal of the to the fluid element in its final position, you will 

see that it, it subtends a finite angle with their diagonal of the fluid element in the initial 

position. So that means now there are some parts of the fluid element which has undergone 

some net rotation in the sense that you do not have a anticlockwise rotation of a part of the 

fluid element for every clockwise rotation.  

For the figure which is shown here, as the net rotation is anticlockwise, so it means it has a 

net anticlockwise rotation. That means this BD has gone through a final position after 

rotating in anticlockwise direction in the case of the final fluid element, final position of the 

fluid element. So essentially this is what we mean by fluid rotation, with respect to a fluid 

particle or a fluid element. Now let us see like we did for the case of deformation, if we can 

find out the value of this rotation, how much is the rotation of the fluid element. To find that 

out let us say that this angle which is subtended by the lower edge of this element, the final 

position of the lower edge of this element with the initial position and Delta Alpha is the side 

edge, it has rotated in a clockwise direction, whereas this has rotated in an anticlockwise 

direction. 



If both these 2 were same, then the net rotation would have been zero but they are not same 

and we are representing a general case where both rotation and deformation are present, in 

that case if we can find out the value of this angle then we can find out what is the magnitude 

of fluid rotation. So we do not want to go through the details of the geometric procedure for 

fighting of this angle, this is can do as a home work, this is not very difficult to do. If we will 

do this we will get that this angle is the angle of rotation of the fluid element is given as Delta 

beta minus Delta Alpha by 2. So for a limiting case when these 2 angles are same we can see 

the net rotation is zero that means it represents the case of rape your deformation. 

Now can we find out this rotation in terms of velocity because when we are dealing with the 

fluid flow it is important that we represent everything finally in terms of velocity or velocity 

gradient. This should not be difficult because while dealing with deformation in our previous 

classes, previous lectures, we have already found out how we can find out the value of Delta 

beta and Delta Alpha in terms of the velocity gradient. If we remember then we can say that 

the deformation was obtained as Delta Alpha plus Delta beta and the rate of deformation was 

often as Delta Alpha plus Delta beta by Delta T. In the limit of Delta T tending to 0, it takes a 

value of Dell U by Dell Y plus Dell V by Dell X. So now let us see what is the value of this 

fluid rotation in terms of velocity. 
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So if you remember the relations which were derived before, we know we can find out the 

rate of rotation. The rate of rotation of the fluid element is also known as the vorticity of the 

fluid at a particular point. And the vorticity about Z about the Z axis is what we are talking 



about here we have considered a two-dimensional flow, the rotation is only possible about an 

axis perpendicular to the X and Y axis. So this vorticity is given as Delta T tending to 0, the 

magnitude of rotation that means Delta beta minus Delta Alpha by 2 divided by Delta T. So 

this is basically the expression for the Z component of vorticity. So as we are talking about 

the Z component, so we must realise that this rotation could be about any axis. So it is a 

vector quantity, vorticity is a vector quantity and you can have rotation about X and Y axis 

also. In case of a two-dimensional flow the only component which is non-zero in the XY 

plane is omega Z, the rotation about the Z axis perpendicular to the XY plane. 

So now if we, this expression can be obtained by, if we remember that we obtained this value 

of limit Delta T tending to Delta beta by Delta T as Dell V by Dell X and the limit of Delta T 

tending to 0 Delta Alpha by Delta T is Dell U by Dell Y and this was by summing them we 

got the value of the deformation of the fluid element. Now to find out the value of the rate of 

rotation we can plug-in these values of these limits into this expression, if we do that then we 

get something like this, half of Dell V by Dell X minus Dell U by Dell Y. So this is basically 

the vorticity about Z axis. Now as I was telling, if we consider a three-dimensional flow, this 

becomes a vector quantity and you have 3 components of vorticity, that means omega bar 

because it is a vector quantity now and you have X component, Y component and Z 

component. 

The way we have written or obtained the value of the vorticity about Z axis, we can write the 

expression for vorticity about X and Y axis and the net result will be something like this. So 

if you carefully observe this expression you see that the Z component of velocity is plugged 

in from here to this, of course the half is taken outside this bracket because it appears in each 

component of the vorticity vector. So by comparing, we are not going to derive the this X and 

Y component of vorticities here but just by comparing with this expression, a similar 

expression can be easily written like this for the Y component it is Dell U by Dell Z minus 

Dell W by Dell X and similarly for the X component. Now if you look at this expression 

carefully, this is of course a vector quantity and if you see this can be written in a very simple 

form using our understanding, using vector calculus. 
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So this can be simply written as half of Dell cross V1 bar, please remember V1 bar is the 

velocity vector which we have defined in the beginning of this chapter. Now this, so in other 

words basically vorticity is half of the curl of the velocity vector. This also tells us that for a 

irrotational flow, that means in a flow where there is no rotation of the fluid element, in that 

case this vector, this curl of the velocity will become zero. So just coming back to our two-

dimensional case, it only means that omega Z will be zero. So for a 2-D a rotational flow we 

have Dell V by Dell X minus Dell U by Dell Y is equal to 0. We will use this expression 

afterwards in the next few slides. 

This if you look at carefully has given as a procedure for finding out whether a velocity field, 

just by knowing a velocity field the velocity field and finding the gradients of velocity field 

we can tell whether the velocity, whether the flow is rotational or irrotational. So it means 

that if you introduce a particle in the flow whether that particle will rotate about its own axis, 

rotating about its own axis is the very important factor because if you see the fluid element 

also, it is actually in a rotational case, it is rotating about its own axis. Okay, so now let us see 

go to the next slide. 
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In this slide we also introduce certain new terminologies which are very related to our present 

discussion that means the differential analysis of the fluid flow. So we introduce this stream 

function and potential function. Based upon our first slide of this lecture and the derivations 

done in the last 2 lectures we know that for a steady compressible flow from our previous 

lecture that for a steady compressible flow the continuity equation is given like this, like Dell 

Dell X of rho U plus Dell Dell Y of rho V is equal to 0. For a 3-D case we are always dealing 

with today, so I have just written the 2-D case here, for a 3-D case you will have Dell Dell Z 

of rho W along with this expression. So now let us see if we in defining stream function we 

actually try to define a function in such a way that that single function will automatically 

replace or automatically satisfied this equation. 

So this means that if we define a function rho U as Dell psi by Dell Y and if we define 

another function and we if we define rho V in terms of the same function as minus Dell psi 

by Dell X, so if you see the function has been chosen carefully so that if you plug-in this 

function into the continuity equation it will get automatically satisfied. That means Dell Dell, 

in the X part of this expression it will become Dell Dell X of Dell psi by Dell Y on the other 

hand in this case it will become minus Dell Dell Y of Dell psi by Dell X. So they will cancel 

each other and it will automatically get satisfied, the continuity equation will automatically 

get satisfied. The advantage is now, by doing this what you have done is actually you have 

reduced the number of variables in this formulation of the fluid flow. That means you have 

replaced both U and V by single function psi or derivative of a single function psi. And while 



doing that you have made sure that it satisfied some of the equations automatically by 

definition itself. 

So this is a very useful technique of in mathematics to reduce the number of variables. But of 

course the price you have to pay is in the fact that the order of the equation increases because 

now U is replaced with a derivative term. So the order of the equation, the eventual equation, 

momentum equation, continuity is automatically satisfied but the momentum equation will 

increase. We will not go to the momentum equation now. Let us look at how this will look 

like, how this function looks like in the case of a unsteady incompressible flow. So for a 

steady incompressible flow which will be the case, which will be dealt with in both of the 

examples which are discussed in this course, we know that the form of the continuity 

equation or mass conservation equation is like this Dell U by Dell X plus Dell V by Dell Y is 

equal to 0. Now taking example from here we can define the stream function for this kind of 

a flow in a little different way and make sure that it satisfies the continuity equation 

automatically.  
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How it can be done, it is now very simple, instead of writing rho U as Dell psi Dell Y, we can 

write U as Dell psi by Dell Y and V as minus Dell psi by Dell X. If we do that, you can easily 

see that we plug-in this U these values of U and V into the continuity equation, they get 

automatically satisfied. So that was the objective of this of this definition of this, of defining 

they function. This function psi is basically the stream function. So the stream function is a 

function which automatically satisfies the continuity equation. Now it has, it is not only that it 



only satisfies this equation, that is basically the motivation by from where this function is 

defined but if we look at the expression little carefully we can see it has more important 

physical significance in the sense that lets find out the value of d psi by applying the rules of 

partial derivative, partial derivatives we can write d psi where psi is a function of both, of 2 

variables, and 2 independent variables X and Y. 

We can write this as Dell psi by Dell X multiplied by dx and Dell psi by Dell Y multiplied by 

dy so now if we plug-in Dell psi by Dell X as minus V from here and Dell psi by Dell Y as U 

from here, then what do we get? We get this as minus V dx plus U dy. This is quite simple 

but this gives an important information. So what is that, now let us say we have a constant psi 

line or we have any constant psi line where psi is constant. If you go along this line then psi is 

constant. That means if you go along this line then d psi is zero. If d psi is zero, that means 

minus V plus U dy is zero. So in other words it means that dy by dx for a constant psi line is 

V by U. Or this is basically, if you look at this carefully dy by dx for psi is equal to constant, 

it means the slope of the constant psi line at any particular point. 

What this derivation tells us or what this expression tells us is that the slope of a constant psi 

line is equal to the ratio of the V component, that means Y component of velocity divided by 

and the X component of velocity. If we look at this, in this figure it means that, let us say this 

is a constant psi line and we have a velocity vector like this, so okay, we do not look at the 

velocity vector to begin with, let us look at the components of the vector, so this is the U 

component, this is the V component of the velocity vector then this V by U is basically the 

tan of the angle made by the velocity vector with the x-axis. The tangent or the tan of angle, 

tan of Theta where Theta is basically the angle subtended by the velocity vector with the X 

axis.  

So what it means in other words is that, so if we draw a velocity vector to this psi is equal to 

constant line, then it will be tangent to the psi is equal to constant line. Which means that this 

psi is equal to constant line is nothing but the streamline. So in the 2-D flow as we 

demonstrated here the psi is equal to constant line are actually streamlines. By this expression 

we have shown that the slope of the psi is equal to constant line is equal to the tan of this 

angle made by the velocity vector with the X axis. So that means the velocity vector is 

actually tangent to the psi is equal to constant line. So these are actually streamlines. So the 

stream function is very present streamline in a two-dimensional flow. This cannot be 



extended to that three-dimensional flow but this is, even this is very quite useful, constant psi 

lines are streamlines. 
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Now there is another function which has been introduced written in the top of the slide which 

is known as potential function, let us see what is that function. In the last slide itself we saw 

that irrotationality condition is Dell V by Dell X minus Dell U by Dell Y is equal to 0. This is 

basically omega Z, omega Z is equal to 0. If we apply this or if we define a function now, let 

us say we name it as phi in such a way that it automatically satisfies this is a irrotationality 

condition like we have defined the stream function in such a way that it automatically 

defines, it automatically satisfies the continuity equation, now we defined a function in such a 

way that it automatically satisfies the irrotationality criteria that is omega Z is equal to 0.  

If we do that, then U becomes, we can define U as Dell phi by Dell X any V as Dell phi by 

Dell Y, Phi being the potential function. You can see by the definition of the function itself if 

we plug-in the values of U and V, it gets automatically satisfied because by plugging it here 

you get Dell 2 Phi Dell X Dell Y, by plugging this thing here you get Dell 2 Phi Dell X Dell 

Y and if you subtract them it becomes zero. So a irrotational flow can be represented using 

this potential function. So irrotationality is automatically satisfied by potential functions, by 

potential function that means you can only defined a function when the flow is irrotational. 

That means irrotationality essentially means that the flow is inviscid because if the viscous 

effects are important in the flow, it will cause rotation of the flow of the fluid element. 



So now another thing we can observe here from the definition of the potential function, the 

way the potential function is defined, if we plug-in the this expression for velocities into the 

continuity equation now, so we plug-in these values of velocities into the continuity equation 

then it will form an equation which is in the form of the well-known Laplace equation. That 

means, let us, it is demonstrated here, you have U plug-in, U is equal to Dell phi by Dell X 

and V is equal to Dell phi by Dell Y, if you do that, then you get the equation in the form of 

Laplace equation. It means that the potential functions always satisfy the Laplace equation. 

Why it always satisfy Laplace equation because any flow has to satisfy the continuity criteria. 

Of course this is for an incompressible flow, so it has to satisfy, if it is a 2-D incompressible 

flow, it has to satisfy equation, Laplace equation in this form. 

So the potential function will always satisfy the Laplace equation. And if we can define a 

potential function, it means that the flow is irrotational. So essentially potential functions are 

true or are they exist for inviscid or irrotational flows. Stream functions, let us see if we do 

this kind of thing for the stream function or be ask the question whether the stream function 

should satisfy the Laplace equation or not, the answer directly comes, if we plug-in the value 

of the U and V velocity in terms of stream function into the irrotational, the irrotationality 

criteria, if we do that, we see that it comes in the form of, if we plug-in U and V into this 

equation, we see that the stream function, if the flow is irrotational will also satisfy the 

Laplace equation. So it is not mandatory for a stream function to satisfy Laplace equation 

because you can define a stream function in a rotational flow also, it has to be just unsteady 

flow or if this definition is correct, it has to be 2-D unsteady incompressible flow for this 

definition. For 2-D 3-D compressible flow it has to satisfy this kind of a definition. 
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So coming back to this, so it will only satisfy the Laplace equation if the flow is irrotational. 

But the potential functions are always satisfy the Laplace equation because continuity 

satisfying continuity equation is a mandatory requirement. Now like we did here, let us see 

what does the constant phi lines signify. So we write again d Phi in this form, if we do that, 

we can plug-in the value of Dell phi by Dell X as U and Dell phi by Dell Y as V so it is U dx 

plus V dy. Now for constant Phi lines d Phi is zero, that means dy by dx for constant Phi 

lines, is dy by dx for constant Phi lines is equal to minus U by V. So this is also important 

because if you see this slope, this is a slope of a constant Phi line like this was a slope for a 

constant psi lines.  

What we can see from these 2 expressions immediately is if we multiply these 2 expressions, 

what we get is minus 1, that is dy by dx for psi, constant psi, dy by dx constant Phi is equal to 

minus1. In a physical terms, it means that the slope of the constant psi line and the slope of 

the constant Phi lines, their product is minus1, of course we know from our coordinate 

geometry, from our knowledge of coordinate geometry but this is true if the 2 lines are 

perpendicular to each other at the point of their intersection. So this is a psi is equal to 

constant line and let say we consider a constant Phi line through this point, then Phi is equal 

to constant will be perpendicular to the psi is equal to constant line. So we also say that 

streamlines and potential lines are perpendicular to each other. So in this slide were actually 

introduced these 2 important functions in fluid mechanics which is useful to deal with the 

equations which we derived before. Because by the definition of this function, certain criteria, 



certain mathematical criteria corresponding to some physical criteria is automatically 

satisfied. 
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Another aspect of the equations or the differential equations which we have derived in the 

beginning of this week is the special form of these equations in a little simplified conditions. 

So the first one is, we have seen that this is basically in a vector form, this is basically the 

Naviar-Stokes equation, you have the acceleration term which we saw that you have the 

presence of local and the convective accelerations here, the pressure gradient, the viscous 

term and the body force terms in terms of the body weight. So, if we remove this term from 

this equation, what we get is the Euler’s equation. So this is basically the Euler equation. Of 

course this equation was derived before this Naviar-Stokes equation came, so this has 

separately an existence. 

So this was derived much before this equation actually came, they inviscid form of the 

momentum conservation equation. So this is Euler equation, so now if we consider a steady 

two-dimensional incompressible inviscid flow, then we can write the X momentum equation 

which is basically a special form of this equation that means 2-D and steady form. This is 

already inviscid, 2-D and steady form of this equation, so it will look like this, the X 

momentum equation to not have any gravity term, it has only the flow acceleration term only 

to do the convective component and the pressure gradient term, all these 2 terms are only 

present here. The Y momentum equation as is in this form, the only extra apart here is the 



gravity term. So you have the flow acceleration term, the convective acceleration term, 

pressure gradient term and the gravity term. 
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Now let us see what happens along the streamline. So we have defined the streamlines in the 

previous slide, they are basically psi is equal to constant lines, that means the lines along 

which the stream function has a constant value. So let us see what form these 2 equations are 

valid in 2, in the Cartesian coordinate system, in 2 directions of the Cartesian coordinate 

system. That means one is the horizontal direction and one is the vertical direction like what 

is represented in the simple situation here. Can we transform this equation in a different form 

if we move and apply this equation in the streamline coordinate system? That means can we 

apply this single equation which is applicable as we go along the streamline because we 

know certain criteria have to be satisfied along the streamline. So along a streamline we can 

say, we take up this point, so basically this is the length along the streamline and these are the 

elemental psis along the X and Y direction. 

So ds, this is dXs and this is dYs. If we do this, then along the streamline we can always write 

that like we derived before d psi is equal to this, d psi is equal to 0 and so minus V dXs plus 

U dYs is equal to 0. So this particular criteria is satisfied along the streamline. Let us see if 

we can utilise this expression and get an equation along the streamline, valid along the 

streamline. So to do that what we do is this, we multiply the X momentum equation with dXs 

by ds and Y momentum equation by dYs by ds. So if we do that, this is done with an 



objective to get a momentum equation valid along the streamline, along the psi is equal to 

constant line. So if we do that and utilise this relation, let us see what happens.  

Here in this expression, what we have done is we have done this particular operation to this 

expression, that means we have multiplied the, although it looks a very big expression, what 

it exactly what it actually means is we have just multiplied this one with dXs by ds and the Y 

momentum equation with dYs by ds of course on both the left hand and the right-hand side. 

So after doing that we get this equation. So after getting this equation we can make a few 

observations, for example if you look at this equation, this is directly plug-in from here, U 

have this term, U Dell U by Dell X and if you take this actor inside, you have dx by ds. On 

the other hand you have V Dell U by Dell Y, now if you see, if you club this V and dXs, this 

V and dXs, it is U into dYs. So why do not you replace this V dXs with U dYs, what do you 

want to do that because then this equation becomes very simple. We will see what it becomes 

in the next line. 
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So this expression remains as it is, we are just taken in this factor inside as a multiple of this 

one, the 2
nd

 one by replacing V dXs with U dYs, what we can get is U Dell U by Dell Y into 

dYs by ds. This dYs is actually dy but only thing is we want to emphasise the fact that this is 

along the streamline, otherwise it is just dy. So if we do that, now if you look at this full 

expression, this has, if you take U outside, you can take U outside the bracket, you can write 

this as rho U, this is Dell U by Dell X into dx by ds Dell U by Dell Y into dy ds. This is the 

chain rule of partial differential equations and then if we apply that rule, then we can write 



this as, simply as dU by ds, that is what we wanted to get, that is what that means we wanted 

to get this equation rewritten in the streamline coordinate system.  

So like we did it here, the same thing has been done for the Y component also, that means 

here what we have done is, the first expression, the first expression in the Y component that 

is Y dYs has been replaced by V dXs, so if we do that, again you get this expression as dV by 

dx into dx by ds, dXs by ds. If you take rho V out you get dV by ds here. On the right-hand 

side it is already in the form of the chain rule that is dV by ds, dx by ds plus or this minus if 

you take outside, this will be plus dV by dy dy by dx, so this is already in the chain rule form 

so that you can write it in the streamline coordinate system, that is you can write it as  dP by 

ds. So we utilise that factor here and then we can write this equation in the streamline 

coordinate system and this rho U dU by ds plus rho V dV by ds is equal to minus dP by ds 

minus rho g dYs by ds. 

So as such if you see this equation looks quite similar to our U or V momentum equation and 

then that means you can apply this equation along a streamline in this form. So now the 

advantage is it is a total derivative and you can actually integrate this. For integrating this if 

you now club these 2 particular velocities, what you will get is essentially d of, so this U dU 

is actually half of d of U square or d of U square by 2. V dV, just by the rule of derivative it is 

D of V square by 2. If you club them, it is D of U square plus V square by 2, U square plus V 

square is basically VS square, what is VS square, VS square is the velocity along the 

streamline. 
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So this is basically the velocity vector, it means the velocity vector because along the 

perpendicular to the streamline there is no component of velocity. So this is basically the 

velocity, the total velocity, magnitude of the velocity vector. Okay, so now we have this 

expression, we have taken the DP by ds also from the right-hand side and we can write like 

this, this is essentially the same Euler equation but now written in the streamline coordinate 

system. So this is another form of the, you can now write this, like this DDS of this and 

finally if you integrate this equation you get a very useful equation which is valid along a 

streamline that rho VS square by 2+ P plus rho g into YS is equal to constant. That means if 

you move along the streamline, the sum of all the 3 things will remain constant under the 

assumptions which I have made. 

That means it is a steady 2-D incompressible inviscid flow. So we have to remember this 

assumption, that is a steady 2-D incompressible inviscid flow and this equation is actually 

known as the Bernoulli’s equation, this has wide application in fluid mechanics as well as 

many other allied branches of engineering for finding out the pressure, velocities, etc. in 

different applications. So, let us get little more physical insights into this particular 

expression or particular equation. If you look at this, the first term is actually the, it 

emphasises the velocity, so this is called, this can be called as pressure because this a unit of 

pressure, rho V square has a unit of pressure and of course we can say that this equation has 

to be dimension dimensionally consistent, so any one term, if it is pressure, the other term 

also should have unit of pressure. So this is basically dynamic pressure, the 2
nd

 part is called 

static pressure, so the static pressure essentially means that, the name is given as static 

pressure because this pressure is called dynamic pressure. 

So this is basically the pressure, this is for a flow, the static pressure is also for a flow, not for 

a static condition but it only emphasises that it is done the pressure due to the non-velocity 

component of the flow. So the velocity component now, this will be little more clear when 

you go to the next step, so if we consider the same value of YS between 2 points in the 

streamline, than what we can write this as as rho V square by 2+ P equal to constant. So this 

actually means that the sum of the dynamic pressure and the static pressure is constant. So 

this pressure is called a stagnation pressure. That means so what it means is if you have a 

flow and you stagnate the flow, then what happens is the velocity becomes zero and the 

pressure increases. 



So the and the stagnated flow has a high-pressure, now if you suppose if you follow the 

streamline and if we find that the flow from a stagnating condition has come to an accelerated 

condition, that means it has some velocity along the same streamline. It will automatically 

mean that the pressure along the streamline has reduced. This is a very, this helps us to 

explain a lot of things in fluid mechanics, that means the static pressure, so the velocity and 

the pressure, these 2 heads exchange continuously between each other the values 

continuously between each other along a streamline. So if one becomes I the static pressure 

becomes high, then the dynamic pressure becomes slow, if the dynamic or if the flow 

velocity increases, the pressure should reduce, if the pressure, the static pressure increases 

then the velocity should reduce. 

If we consider a converting section the flow goes from a low velocity too high velocity 

because in the throat of the section the velocity is high, so the pressure is to reduce. So this is 

basically, this is a simple application of the same Bernoulli’s equation. We will see an 

application of this during the tutorial session also, so this brings us to the end of the 3
rd

 

lecture and basically the lecture session of the 3
rd

 week of this course. During this today’s 

lecture, what we have looked at, we started with, we started with the flow rotation, we 

defined what is flow rotation, we defined the vorticity in the two-dimensional, in the two-

dimensional flow, we defined vorticity vector from there we defined the condition for 

irrotationality, then we defined stream function and potential function. 

We saw that the stream function actually represents the streamline in a two-dimensional flow 

and we saw the stream functions are functions which automatically satisfies the continuity 

equation. Potential function on the other hand are functions which automatically satisfies 

irrotationality condition, so they are only defined for an irrotational flow. From there we 

moved on to do little simplified and very important forms of the momentum equation or the 

Naviar-Stokes equation, the differential form of that equation is called the Euler equation 

which is the, which is for the inviscid case and the same inviscid differential equation, if it is 

integrated in the streamline coordinate system we get the Bernoulli’s equation along the 

streamline. So this is what we have discussed during this lecture, this brings us to the end of 

this lecture session for the 3
rd

 week, we will do some tutorial problems. Thank you.  

 


