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Hi. So, we are here to continue with some more concentrations of the Prandtl Number 

and Dissipation. So, continuing our discussion of the viscous dissipation for a flat plate 

and we stop to this equation, our expression that we cut for this, we said this r which is a 

ratio of the thermal Tad minus t infinity by u infinity square by 2Cp. 
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So, this ratio is basically something that I can calculate as a function of this Prandtl 

number by solving this equation. And this is called the recovery factor and for a flat 

plate, the adiabatic wall temperature is constant meaning at it is independent of x and 

hence it is also called Eigan temperature; this where we stopped, OK. 
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Let us continue from there. And now in this expression here in 13 this u infinity square, 

right by 2Cp. Now that is actually equal to t naught minus t infinity which is essentially 

this, where t naught is basically total temperature of the outer flow, and what is this 

basically means is that the dimensionless yes, arise in temperature of the adiabatic wall 

due to dissipation is called the recovery factor. Yes well, basically we are looking at the 

rise in temperature, rise in temperature of the adiabatic wall temperature and we have 

non-dimensionalizing it by this term in the denominator. And we are calling that is 

recovery factor. 

So, now let us see what this thing is, the thing that we wrote in the bottom, the 

denominator rather. Now, this delta Tad I am just denoting that is delta Tad is essentially 

the increase in temperature, increase in temperature here due to the adiabatic 

compression of an ideal gas it comes in specific heat, this is the Cp constant specific heat 

capacity. So, now, this thing actually is the increase in temperature due to adiabatic 

compression of a gas, at constants specific heat capacity, that is Cp. So, increase in 

temperature due to adiabatic compression of a gas at constant as specific heat capacity 

Cp. 

Of course, now at Prandtl number 1 the recovery factor is also equal to 1. So, if from 13 



basically I can see that the, which means that this, which means this from it was from 13 

essentially; minus t infinity is equal to this, which means that the increase in the wall 

temperature. Increase in the wall temperature due to viscous dissipation is equal to 

increase in the temperature due to adiabatic compression. It is exactly the same as so. 

Now, the thing is basically what we are doing here if you see. Now let me write that 

down first, what this essentially means that increase in the wall temperature due to 

viscous dissipation is exactly equal to increase in the temperature due to adiabatic 

compression. 

Now, So, we will give you some numbers in stuff. Now the thing is that, basically what 

you see is that the recovery factor. So, I am taking the temperature here, the temperature 

difference of the adiabatic wall temperature with the free stream temperature. This is at, 

we are kind of trying to measure this in terms of the local velocity and this also happens 

to be equal to the bottom you can see here, that this is basically effect the velocity and 

that is also equal to this change in the temperature.  

So, this is the total temperature of the outer flow, minus the free stream and this is the 

adiabatic wall temperature minus. So, essentially what I am saying is that the recovery is 

adiabatic wall temperature minus the free stream by outer flow minus free stream. This is 

a recovery thing. So, this is the increase in this is the increase in temperature, the 

numerator is increase in temperature due to viscous dissipation and this is the increase in 

temperature due to adiabatic compression of a gas at constant specific heat capacity. 
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Now, some output from research. So, I can say basically I have got Prandtl number and I 

have got the recovery factor. Now this Prandtl number is less than 1, the recovery factor 

is also less than 1. Prandtl number is larger than 1, recovery factor is also larger than 1. 

So, if you sort of look at this for example, Prandtl number less than 1 recovery factor is 

less than 1, which means in the first case that the increase in temperature due to viscous 

dissipation is less than the increase in temperature due to adiabatic compression. So, due 

to random and that is because if the Prandtl number is less than 1. If Prandtl number is 

larger than 1, the increase in temperature due to viscous dissipation is larger compare to 

the increase in temperature due to adiabatic compression of the gas.  

So, I will give you some values. This is from researches for your reference. For example, 

now values like this, r is equal to Prandtl number for very small Prandtl numbers and this 

was given by Gersten H Korner, this. Again, this is for very large Prandtl numbers and 

this was given by. Now I am going to do is, now look at a plot which you can pull up the 

actual reference in sort of look at that, or this is I got this from book actually. 
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So, what I am going to do is; look at this. Fine if you sort of look at this, now if you look 

at this plot here what you basically see here on the y axis, this is recovery factor. So, Tad 

minus t infinity by infinity square by 2Cp and on the horizontal axis is essentially the 

Reynolds number, this is for the Reynolds number and you can see that between this is 

the Laminar sound because, this is between 0.1 million to 5 million. So, this region from 

this plot that you can see and these are the data, which is been plotted. 

Now this here, what you can see in the Laminar region. The recovery factor is 0.85 and 

then this corresponds to a Prandtl number of 0.72 and this experimental result actually 

agrees well with theory. So, it is from this plot that you sort of can see that, and this is 

like I said the measurement of the adiabatic wall temperature of a flat plate at zero 

incidence in air, after Eckert; Weise 1942. So, then in theory Prandtl number is 0.72. So, 

it explains it well for that. So, if I go back here let me sort of write that down. This is just 

a note, so that speaks; I will just write that here. That in laminar region or in laminar flow 

say; there Re is less than this. 

Now, the recovery is 0.85 and the corresponding Prandtl number is 0.72. So, just of the 

matter is that the experiment agrees well with theory. So, having talked about that, now 

we will just sort of slowly look at some wedge flows and how the temperature profile or 



the temperature and exactly how we are going to arrive at an expression for the 

temperature field, in case of wedge flows. You got wedge flows, you got a wall jet and 

we are going to talk about a little bit about the nusselt number. 

Now, when we were going to talk about the next thing that we will talk about is Wedge 

flows. So, we basically use the equations that we have been, use similarity solutions if 

we have used earlier. Then solve that and get an expression for the wall temperature field 

and that should give us an expression for the wall temperature which is our main purpose 

here. Now, if you remember. So, let us sort of do that. 
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Now, if I were to that, so let us just do that. Wedge flows, so here we are going to write 

the velocity in an exponential form of the x and beta is this and then we shall use the 

solutions. So, following solutions which is that, then that. And of course, we have an 

expression for eta, which we write as that, this, which is also that and yes, then of course, 

we have. So, if I do this then the equation that I get is so, so I get this equation. So, if I 

use these solutions and so and so forth, so the equation that I get is this. That, and the 

corresponding boundary conditions and eta very large, is this. 
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Then of course, we solve this equation for; we solve this Prandtl number and m. So, then 

we get the recovery. So, the recovery factor is a function of both the Prandtl number and 

m. So, we get. We have to solve for the wall temperature that definition and then we get 

the wall temperature field actually, and then we get this. 

Now, it is interesting here that. So, we get this expression, now the only thing is that we 

have been able to, we have written the velocity like this. We write the velocity in terms 

of the x. Now, if the increase in temperature due to dissipation is also related to the local 

velocity which can be written in terms of x. Resource in power of m. So, if this also is 

something that I could write in that fashion then we can get an expression for the 

recovery factor which is independent of x. What I mean is that if were to write, if I were 

to write this then we will get. If I were to do that then you get a recovery factor 

independent of x. Now that becomes interesting, fine.  

So, that is that about the wedge flows. If I were to write it like this, the next thing is let 

us talk about wall jet. We will talk about a wall jet, so here in wall jet, well it is actually 

proportional to the inverse of x and u max is proportional to the inverse of root x. 

Therefore, the recovery factor which is the function of the Prandtl number. So the 

recovery factor based on the maximum u, so this term as you can see here the numerator 



is a function of 1 by x and the bottom actually is a function of under 1 by under root x. 

So, this is actually independent of x. The recovery factor actually is independent of x. 

That is very interesting. 

Of course, now for Prandtl number 1 recovery factor is 0. Now if the for Prandtl number 

1, in this case of Prandtl number 1 recovery factor is 0 which means that the adiabatic 

wall temperature is equal to the free stream temperature. So, where we will just talk 

about the Nusselt number and then we will stop. 
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So, let us do that. Let us talk about the Nusselt number; we have not done that at all. So, 

that should be the last thing which we talked about and then we will stop for this module. 

Now, the accounting for dissipation if we account for dissipation now the heat transfer 

can occur only if the actual temperature of the wall is different from the adiabatic wall 

temperature. So, let me write that down.  

So, if we account for viscous dissipation. So, heat transfer can occur only if the actual 

wall temperature is different from the adiabatic wall temperature. So, if you account for 

viscous dissipation. So, the heat transfer can actually occur only if the actual wall 

temperature is different from the adiabatic wall temperature. Now, what we do here is 



that now the energy equation is linear. Now, since the energy equation is linear the two 

temperature fields; one is due to the dissipation and other is due to the difference in the 

wall temperature and the adiabatic wall temperature are super imposed on one another, 

since it is linear. So, temperature fields due to dissipation and due to temperature 

difference are super imposed on each other. 
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So, if I do that, then we get Nusselts number something like this. Now, if the wall 

temperature is greater than the free stream temperature and less than the adiabatic wall 

temperature, heat is transferred to the body. Heat is transferred to the body although its 

temperature is higher than that of the surroundings. Yes, well this like a interesting thing 

here. Now if you see here if the wall.  

So, basically like we said that if you account for the viscous dissipation heat transfer can 

occur only if the actual wall temperature is different from the adiabatic wall temperature. 

Now, if this is larger than the surroundings and less than the adiabatic wall temperature, 

heat is transferred to the body. So, heat is transferred. This is the wall temperature which 

is less than the adiabatic wall temperature, so in this case heat is transferred to the body 

even though its temperature is higher than that of the surroundings. So, just notice what I 

am trying to say here. So, this is the wall temperature, which is larger. So, this is the 



temperature of the wall which is greater than that of the surroundings.  

However, the adiabatic wall temperature is larger than the wall temperature. The actual 

wall temperature and we said on if you account for viscous dissipation, heat transfer can 

occur only if the actual wall temperature is different from the adiabatic wall temperature 

which means that in this particular case, it is so, right? Due to the viscous dissipation 

there is actually a difference in the actual wall temperature and the adiabatic wall 

temperature. Hence, heat is transfer to the body. The only catch is that heat is transferred 

to the body although the body temperature is actually higher than that of the 

surroundings. 

So I think, that is all I need to discuss about dissipation effects and hopefully you get a 

picture of the interesting things happening here, and also along with the theory hopefully 

you get an idea of how the math shapes up so that we get information for the math is 

also. And this gives you an idea if we do take into account the viscous dissipation then 

what transpires and compare to if we do not. This is what we did for most of the part 

before we started this one.  

So, I am going to stop here and hopefully that you can make some (Refer Time: 32:24) 

out of this. So, I will stop here and I think this is probably the close of this course hope 

you if picked up something’s, and I will try to answers my questions as you may have. 

And hopefully I can also some of them at least. 

Thanks. 


