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 Hi, hope you are all set to discuss little more about Prandtl numbers. 
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So, where we stopped was that we were discussing was the effect of a very small Prandtl 

numbers. And what is a very small Prandtl number mean, which is a picture like 

something like this. This is actually for a very large Prandtl number, where the thermal 

boundary layer thickness is like very very small compared to the velocity boundary layer 

thickness.  
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And we then looked at little bit of the math what we can do, so we looked at Prandtl 

number very small and we looked at the math and what kind of simplifications it brings 

about, and we saw that we could actually write the Prandtl number, I mean the nusselt 

number for a large Prandtl number in this fashion. And hence, you come up with 



equations, simple formulae which one can actually use from this consideration, so that is 

that. 

Now the next thing to do is basically we are looking at the two limiting cases. So, this 

was we discussed about when the Prandtl number is very small and so where the thermal 

boundary layer; we discussed this, thermal boundary layer is much higher, is much large 

compared to the velocity boundary layer thickness. So, what we are going to discuss now 

is about this, where the Prandtl number is very large which means that the thermal 

boundary layer thickness is very small. Let us sort of do that now. So, we will go and 

discuss this, so let us see. 
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So, we are going to talk about that, we are going to talk about large Prandtl numbers, 

now so large Prandtl numbers that, Now, this was actually this sort of problem was first 

actually not even going to try and pronounce that, so this scientist basically and so the 

thermal boundary layer thickness is much smaller and the velocity. So, basically the 

velocity boundary layer thickness is the one which terminates. 

In other words we can really say that the entire thermal (Refer Time: 03:46) because this 

thermal boundary layer thickness, because this lies, this is very small, if it is really very 



small compared to the velocity boundary layer. So, we can basically say that the entire 

thermal boundary layer lies within that region where the velocity depends; velocity is the 

function of y. So, I mean let us just go back and look at this diagram right here, now 

these are the two cases. 
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Now, if you say this was the Prandtl number very small case, this is the one that I am 

talking about here; this is the one that we looked at earlier. So, this is where the Prandtl 

number is very small and you can see that here the thermal boundary layer is large. So, it 

spreads from the surface to about this height and for the majority of the distance which is 

like from here to here actually, the velocity is constant; the velocity actually is v infinity 

is not it because this is delta x, because delta x is the boundary layer thickness, the 

velocity boundary layer. So, that really goes up there after that the velocity remains 

constant, therefore this is the u. 

So, that is what we are talking about right now, that here delta t h for the case that we are 

considering now which is for very large Prandtl number. So, delta T h is the thermal 

boundary layer thickness, thermal boundary layer thickness is just this small, just this 

much. But since the velocity boundary layer is very large, now that extends from here to 

this much, this is the entire delta, but delta T h is just this much. So, what basically you 



can see that this, thermal boundary layer actually overlaps the delta in the sense that here 

there is a difference in the temperature. So, you go from the wall temperature to this and 

the velocity also goes from or you know some temperature, so I can say that or say u, let 

me call that as u and here u is 0, let me write that properly. 

So, basically what I am saying is here u is 0 and here it is u y. So, v u have both, unlike 

you know in this a case where; so that is kind of different from what we did earlier. So, 

that is what I mean actually when I say this; depends on y. 
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So, if we then can write the velocity components, you know close to the wall. So, we can 

write this we will write the velocity components close to the wall, so we can write that. If 

we write the velocity profile, velocity description here like this then the energy equation 

which I will just write this again here, so the energy equation; this is basically, it can be 

reduced to an ODE which is an ordinary differential equation, so, this is a PDE, partial 

differential equation. So, we can reduce this to an ordinary differential equation, using a 

similarity transformation. If I use these velocity, if I use this description for the velocity 

components close to the wall and the energy equation can be reduced to an ODE using a 

similarity variable or similarity transformation or variable or whatever it is. 



So, let me write that, what is that similarity variable and that similarity variable can be 

written as y, 9 a; x; tau w x, where I hopefully you remember what the x naught is, x 

naught was the location of the temperature jump. Let me just go back and show you just 

remind you that, so if we took a flat plate; so this x naught was the location at which 

where we had this temperature jump, so we basically then again in the integral is 

basically from x naught to x. 

Now so, if we use, so this is x actually. Now so, if we use this similarity variable then my 

energy equation reduces to, so therefore using basically what I can say is that, if I use 

this, then what I get is this, then the energy equation becomes d 2 t, d eta 2 . Now, 

basically this is getting a little mathematical, so I will try to keep it simple because it 

would be nice if we had enough of mathematical back ground, but that is OK if the 

progress in fluid mechanics is always been related to the development in math and the 

mathematical progress is so important because you just come up with all sort of weird 

equations and then we have to sit and solve them. So I mean we have to be grateful to the 

mathematicians to help us do these things, so the entire numerical methods etcetera you 

have never seen much day light without the contributions from mathematicians. 

So, now that I understand all of it; but I will try to keep it brief and give you just a little 

over view as to what we do here. Now this is a stand, so this has a solution, which is for 

in terms of an incomplete gamma function. I will explain briefly about that let me first 

write this solution for you. 
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So, if I have this, this equation can be solved; this equation is solved and what you get 

from there is this is a solution l rho by tau w and so this is basically the solution. And 

here, so this 0.5384 this term, so this thing is basically by this. So, therefore, this gamma 

that capture gamma that you see this is nothing but the gamma function. So, what I will 

do is; so this is basically the solution that you get. So, the whole (Refer Time: 15:30) 

here is, that for large Prandtl numbers, if you use this velocity components description 

close to the wall, then the energy equation is reduced to an ODE using this similarity 

variable. So, the equation becomes this and this has a standard solution in terms of the 

incomplete gamma function, let me just sort of write there. So, this has a solution in 

terms of the incomplete gamma function, let me just you know tell you what exactly is 

this gamma function, I will do this very briefly. 

So, now the gamma function is, so what is exactly a gamma function? 
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Now, gamma function; gamma n is nothing but n minus 1 factorial, so basically you 

know similar to the factorial except it is like n minus 1, factorial n would be factorial n. 

So, gamma n means one less you know than n factorial. Now let me sort of explain, what 

do you mean by the incomplete gamma function or something. Now, therefore, complex 

numbers with a positive real part, it is defined the improper integral. Now what exactly is 

an improper integral, so let me sort of write this down. 

Now, for complex numbers with; this is important, a positive real part; it is defined via 

an improper integral which looks like this. So, that is gamma t is equal to right; where 

this t is basically a complex number, so t is a complex number with positive real part, 

which is that real part of t is greater than 0 and where gamma function is basically 

defined for all complex numbers except negative integers. So, I can write that as well, so 

let us just say gamma functions are defined well for all let us start do that, for all 

complex numbers except for negative integers. What is nice is that this is basically this is 

an integral, so in terms of the gamma, we said the gamma 1 by 3, as you can see, it is a 

positive number. So, now this basically this converges, absolutely to what is called all are 

integral of the second kind. 
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Now, then if we use sort of, I mean integration by paths. When we use integration by 

paths what we can, using integration by paths what we can say is this, now along this if I 

combine gamma of 1 is 1. Then what we can write is gamma of n is basically 1 into 2 

into n minus 1. So, which is nothing but n minus one factorial, therefore we can also 

write gamma t is, gamma t plus 1 by t. So, it is a little bit about gamma function, now 

what we said something about improper integral. It is defined via an improper integral, 

what exactly is now improper integral? This is just defined a little bit. 

Now, improper integral basically the limits are it is actually unbounded. So, the limits are 

infinity so, give you an examples for that. So, improper integral so, the limits; if I give 

you examples you will find better. Limits of integration are either a real numbers or very 

large or very small, what I mean by that for example, if I give you the examples for 

example, say we have limit, so we have functions like this say p 1 to p 2; f x d x. Then 

we have function we will write this again, again p 1 to p 2; f x d x. So, I can say limit for 

example, p 2 tends to infinity or I can say limit p 1 tends to negative; negative infinity. 

So, basically what we are saying is, it is unbounded domain, this is basically an 

unbounded domain. 



Well, I can explain that little bit, you can kind of understand that, you could have say; 

some I do not know some function. So, say this is your x and y or something, this is y in 

the sense this is actually your f x, y is equal to f x. So, p 1 here is some boundary this is 

say you know this one, but p 2 is infinity, so say I have this function; so this function is 

something like this, something like that. So, then if I had to draw, if I had to integrate 

this, so what I do is basically take the area under the curve. So, if I had to take the area 

under the curve, so this is going to be my area under the curve then I would know where 

to stop because this is unbounded p 2; p 2 is really somewhere you know it is all I can 

say is that the next limit is p 2 which is infinity. So, this is what kind of physically means 

it is an improper integral, so that is what we basically use. 

Now during; the point is, it can get a little scary you are like fine you showed us some 

real complex equations and then you came up with an even more weird sort of thing and 

you calling this as solution. Now how am I going to even do this? How am I even going 

to use this and all? Well, the interesting thing is that all of these things they reduce, they 

actually reduce to very nice formulae from here, so we do not have to worry about all 

these complex math. However, at the time when we are learning the subject and it is 

important to understand that what goes in, you know to make something as 

comprehensive with this as this. But finally, when it comes to applying it you would be 

using formulae to do that. So, I will give you briefly these formulae although you can 

find this in; I got this from the (Refer Time: 26:16), so the reference is there you can get 

that. 
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Let me just give you a couple of examples for this; I am not going to write all of this 

down. So, this is a kind of formulae that you can land up with, this is the formulae you 

can generate. Now, for example, flat plate at 0 incidence; so wall shear stress is given by 

this formulae or for say stagnation point flow, if I have a stagnation point flow, so there 

my wall shear stress is given by this. Now let me give you some these formulae, so from 

here is basically; actually I would not write out all, but some actually. So, this is for the 

two cases, for the limiting cases here Prandtl number is very small and here Prandtl 

number is very large.  

These formulae is basically for specific cases, we have this for examples for flat plate, so 

numerical solution, you need boundary condition. So, one boundary condition is where T 

w is equal to constant, so this is more like the (Refer Time: 28:23) condition that I was 

talking to you about. 

Then the solution here for this, Prandtl number this case is basically given like this; the 

nusselts number by this you get a pretty little formulae, nothing complicated you pick 

this up and just use it, that is it. So, that and then if it is very large then what you get is 

this, that this is the cubic root of the Prandtl number or if this is more difficult to 

understand best to write this is Prandtl number raise to the power 1 by 3 by square root 



of x by l. So, that is a like one of these. Then the next one is for the normal condition 

where the heat flux is given that is constant, so basically the gradient of the temperature. 

So then here again the same thing, that is equal to half by L and this is 0.464, Prandtl 

number raise to 1 by 3 by L. I have got a stagnation point and I got heated wall jet for 

both these conditions, so I could you know give you those as well. 

So, basically the point is; so I am going to not go further and not write any more 

formulae, you can actually pick this up I am writing this only for the flat plate; just to 

give you an idea that what it kind of reduce is to. So, you get similar formulae you have 

similar formulae for this and the heated wall jet and things like that. So, basically that is 

what it kind of reduces to and you should be able to use these formulae to solve the 

problem. So, what I am trying to say is that this kind of usable formulae something that 

we can trust is something that you can come up after lot of research and thought behind 

it.  

So, that is what the objective was to kind of give you a little insight into what went 

behind all of this research, and understanding so that we can come out with formulae like 

this and this and then we should be able to solve our real life problems with this.  

So, I think we will stop here and I think we will be talking about the dissipation, effects 

of dissipation in the next couple of modules. So, I think I will stop here for now. 

Thanks. 

 


