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Hi, welcome back. So, we kind of talked about the energy equation and k map with the 

solution where we decoupled the velocity and temperature. And we came up, in the last 

time we stopped it was at this equations to (Refer Time: 00:37) 13. So, we also came up 

with this the Prandtl number and Eckert number.  

So, what are we going to today is actually today you know couple of modules is to really 

understand what the Prandtl number here means and what does it set of mean in terms of 

physically what is it fall down to. So, because we relate a lot of things for example, the 

Reynolds number that something you more familiar with. So, we will also do this kind of 

similar studies to what exactly is this Prandtl number and how is it, you know what 

exactly is it mean. 
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So, this is your Prandtl number that we had and this is the Eckert number. So, we will 

talk about that the Prandtl number and the Eckert number. So, let us begin to do that and 

see how things shape up and whether we can get some more inferences from this. Now, 

before I get to that just a little bit what do we mean you will hear this term a lot in the 

sense that forced convection, you know forced convection. So, I am going to define that 

a little bit. 
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So, let me write down. So, let me first write this topic as Forced Convection of Constant 

Properties. Now this is the two equations which I just showed you, but I am anyway still 

going to sort of write it down again just to this for continuity I guess. So this is a non-

dimensionalised form Prandtl number and let us call that equation 1. It is equal to one by 

Prandtl number del u star del y bar square, and let us call that as 2.  

Now what we are going to do is to write equation 1 again in the dimensional form. So, 

basically what we are saying is that Dimensional form of 1 that is what I am talking 

about. So, we have done this map earlier you can do this to cross check, I am not going 

through the whole drill of it. So, it will look like this. So, if I were to do that it will look 

like this. So, this is essentially the energy equation.  
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This is the energy equation where a is equal to, right. So what is a? a is the thermal 

diffusivity, and lambda is something that we said earlier, so lambda is thermal 

conductivity. So, we have done this lambda before so I am not writing that again. So, a 

here is essentially is thermal diffusivity. Now what happens here is as we emphasize 

earlier also, you can see here in order to if I were to solve this equation this energy 

equation in this form and if I would get a you know an expression for T across the 

boundary layer, I would need to know the velocity. I would need to know the velocity 

first. So, I would actually, so if I were to write this term let me sort of write this down. 
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So, basically what I am saying is; To determine the temperature field that is T x y in the 

boundary layer, we need to know the velocity field, which is this. So, therefore, basically 

we are saying that there has to be a flow, so which means we are forcing the flow to have 

a velocity. So, we need the fluid to have a motion for us to determine the temperature 

field, so that is why we come up with this terminology forced convection or force 

convective heat transfer. So, what you basically saying is, so what this essentially means 

that the motion of fluid is forced you have to force the fluid to have a motion, so that it 

has a velocity field, I can calculate that and hence I can calculate the temperature which 

essentially means that motion of the fluid is forced. So, therefore, hence we use the 

terminologies forced convection and forced convective heat transfer. 



(Refer Slide Time: 08:54) 

 

Now, we will need to have some boundary conditions of course, so what are those 

boundary conditions, what are those boundary conditions? Of course, at far away from 

the far distance away from the wall or the plate of the surface whatever you are looking 

at the temperature field. The temperature is equal to the free stream temperature. So, at a 

far distance from the wall, at distance far away from the wall that that would be the right 

English, at a distance far away from the wall the temperature is equal to the free stream 

temperature, so that the non-dimensionalized temperature difference theta 1 basically is 

0.  

We could have a definition or we could specify the wall temperature distribution. So, we 

could have a wall temperature distribution, easiest thing would be to make it a constant 

and we will do that actually. So, you could have a wall temperature distribution, you 

could also have the heat flux distribution at the wall, you could have a heat flux 

distribution at the wall, which is that is equal to; let me write that neatly is equal to. 

So, what actually this is I am not sure if you are realizing this, but this is kind of you 

know, if you have a wall temperature distribution then it is basically you know the 

temperature the wall directly. But if you do not it, but if this is not specified; if this is the 

boundary condition not being used, then you could also have boundary condition like 



this third one here, where you are basically you know the heat flux distribution. So, 

which is you know at the normal component of the temperature at the wall.  

This is similar to the Neumann and Dirichlet boundary conditions you know velocity if 

you are aware of it. So, that is you know either you say the property that you talking 

about; in this case the temperature is directly you know specified which is case two here 

or the normal components which is the Neumann and Dirichlet is the second one. So, the 

Neumann boundary condition is similar to the third one actually, so that is what we are 

saying. 
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So, now another thing is that you could have a combination of the two, you know you 

could have a combination of the two as well. So, which is basically the there is a 

relationship between q w and tau w. So, there is a relation between tau w and this is 

actually called mixed boundary condition. So, this is a mixed boundary condition. So, 

basically we will have to calculate both simultaneously. So, temperature field and 

basically temperature field at the wall and the body have to be calculated simultaneously, 

so that is what we mean by the mix boundary condition. So, that is how we sort of go 

about doing that. 



So, now, let us come back to what we started out saying that we going to look at the 

effect of the Prandtl number. So, this is what I am talking about the Prandtl number here. 

So this is what we are talking about the Prandtl number here. So, let us sort of call is that.  

So, what we going to say here is effect of the Prandtl number. So, let us see where we get 

from here. Previously I mean when we do this earlier, we know that Prandtl number was 

defined as mu cp by lambda, but just now if you say thermal diffusivity we got a to be 

defined as lambda by rho cp. So, then from this expression what I can write is, so from 

here I can write cp by lambda is equal to 1 by a into rho. So, if I use this and put it back 

here, so what I get is that Prandtl number is equal to mu into 1 by a by rho, but we know 

that mu by rho mu by rho is nothing but kinematic viscosity a. So, this is important. 

So, basically what we are saying is that Prandtl number is a direct ratio I am going to call 

this is as 2. So, Prandtl number is a direct ratio of the kinematic viscosity to the thermal 

diffusivity that is interesting. Now give this a little bit of a physical feel for what this 

actually is you know it is going to be like, so let us see. So, it is actually a physical 

property of the fluid and here of course, as we have seen similar to how the Reynolds 

number is something that we use for subsonic flows. So, Prandtl number here is 

characteristic number 4. Some more boundary layer and heat transfer in forced 

convection so that is basically was the Prandtl number is. 
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So, basically what we can say now infer from 2, from 2 what we can infer is that from 2. 

So, from 2 what we can see here is that it is a ratio of transport properties of a fluid with 

respect to momentum, because there is a momentum change across the boundary layer 

due to the existence of the kinematic viscosity. To that due to the existence of heat 

transfer which is a here thermal diffusivity. So, if I want to write that down the Prandtl 

number it is meaning Prandtl number. So, I can write that Prandtl number that Prandtl 

number is a ratio of transport properties of a fluid. So, there is a transport of properties of 

a fluid due to momentum so with respect to momentum and that happens due to the 

existence of kinematic viscosity to that with respect to heat and that is due to the thermal 

diffusivity. 

So, basically we are saying that if there is a momentum, if there is momentum transport, 

we talked about this earlier, so we have a velocity profile across the boundary layer we 

have a momentum transport across the boundary layer and that is because of the existing 

viscosity. So, with a trans positive of our fluid with respect to momentum and we have a 

heat transfer across the boundary layer, because of the existence of thermal diffusivity. 

So, Prandtl number is basically is a ratio the transport properties of fluid with respect to 

momentum to that with respect to heat.  



So, now the point is that as you can see you know very easily that if Prandtl number is 

very large, you can see from here that is the Prandtl number is very large which means 

that the kinematic viscosity is very large with respect to a. So, which means that if the 

kinematic viscosity is very large which means that we will have a very large boundary 

layer thickness, which means that this change in momentum or the momentum decrease 

that happens because of the surface pools on the flow, so it slows down. So, it slows 

down.  

Velocity is 0 at the wall it increases to free stream away from it. All of this happens 

because of the nu and hence of course, there is a change in momentum there is decrease 

in the momentum. So, this effect is quite dominating and it extends far into the fluid. So, 

there happens if Prandtl number is very large. So, you one can sort of understand that 

which means that delta x which is the boundary layer thickness will be very large, if the 

Prandtl number is very large. 
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So, up right here again we can say that Prandtl number is very large implies that 

boundary layer thickness is very large. Thus similarly of course, if the heat dominates if 

the heat dominates, so when Prandtl number will be very small. So Prandtl number is 

very small what happens? Then the heat dominates, when Prandtl number is very large 



that means, delta x will not dominate, then the thermal boundary layer will be 

dominating. So, we can say that thermal boundary layer is very large or that dominates, I 

will expand on a little bit right now.  

So, therefore, Prandtl number is also a direct measure of these two heights or these two 

distances like the velocity boundary layer and the thermal boundary layer. So, therefore, 

you know Prandtl number as we said is the property of the fluid and it gives you a ratio, 

idea of the ratio of transport properties with respect to momentum to that of with heat. 

And it is also a direct measure and it is also a direct measure of the boundary layer 

velocity boundary layer thickness to the thermal boundary layer thickness. 

So, we can say that this is the velocity boundary layer thickness to the thermal boundary 

layer thickness. Now, so that is to talk about what is exactly now we are trying to 

basically understand what physically or what exactly we came up with this number, so 

Prandtl number. Now we need to figure out what exactly that means, and whether you 

know we can plot things you know against the Prandtl layer and make inferences out of 

it like we do for Reynolds number. So that is what we trying to do here. 
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Now the next thing, now for a flat plate at zero incidence, for a flat plate with Prandtl 



number equal to 1, which means that is what nu is equal to a. And we had boundary 

conditions, so the wall temperature is to use this. Then the differential equations, then if 

you see I am reproducing this you can look this up yourself, we have sort of. So this is 

for the velocity. So, this is for a flat plate at zero incidence, at flat plate with zero 

incidence basically that it is inline the flat plate is kept in line with a free stream it is line 

for the free stream the Prandtl number is one and the wall temperature is constant. Then 

the differential equations turn out to be like this. And here we will basically is you can 

see that there actually identical, they are actually identical. And in this case, they number 

one that they are identical the differential equations are identical. 

Secondly, in this case, delta there is a velocity and thermal boundary layers thickness are 

same that is so that is for a flat plate, so that is what it comes down to if I were to look at 

Prandtl numbers. If I had a Prandtl number which is equal to 1, and I use a wall 

temperature which is constant then what it balls down to is that the equations look 

exactly, they are exactly identical and the two thermal and velocity boundary layer 

thickness are same. Now please remember that, this is essentially for the conditions that I 

have said it is a flat plate, it is a zero incidence, Prandtl number is one and tau wall is 

constant. 

So, now, for any other flow; however, given the conditions, so these are of the same 

order of magnitude. So, they not really fold a part or anything. So, now what we going to 

do is sort of continue on this a little bit and talk about two very important tool set of 

limiting cases. It is kind of just talked about that one is the Prandtl number is very large 

and secondly, the Prandtl number is very small.  

So, we kind of have an idea what that means, now because what happens here is that it 

brings about a lot of simplification, you know simplification in the type of equations that 

in the type of a solutions that we can come up with that a formula actually. And 

therefore, it is of lot of interest. So, I think that is something that we will start looking at 

and so what I will do is and I will stop here at this moment and take it I mean take that 

up in the next module.  

So, I will kind of see you there. So, let us see, I have forgot to make this full screen at the 



beginning I hope you kind of got that. So, basically we talked about forced convection, 

and then we came up here we talked about the thermal diffusivity we wrote down the 

dimensional form then the equation we got that. And we talked about why we are saying, 

what exactly it is term forced convection mean if in, right? So, forced convective heat 

transfer, we looked at what kind of boundary conditions are possible. Now, we started 

talking about the effect of the boundary the Prandtl number.  

So, we will stop here and take it up in the next one. 

Thanks. 


