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 Hi, we were looking at the energy equation, and what we basically started out doing is 

by saying that the 2D steady state energy equation is given by 1 here and 2 here. And is 

basically, if I were to look at this equation on the left hand side. So, this is the change in 

internal energy, left hand side of this equation here. 
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Change in internal energy and you can see that this is, like the convective change in the 

temperature. So, del t, del x, del t, del y and u and v are the velocity components. Now, 

and this term and c p is the isobaric co-efficient of pressure, as we defined earlier. Now, 

this change in internal energy, which is essentially the convective change in temperature 

can we written in terms of; the term which contains lambda as well as this phi and the 

phi looks something as given in equation 2 here.  

So, essentially we have a conduction term and a dissipation term because lambda is 

essentially thermal conductivity and phi is the dissipation function, which is given in 2 



and so this is the form of in a 2D steady state energy equation. We started out with the 

conventional energy equation saying that rate of change of total energy is equal to heat 

flux plus power and we went ahead and looked at a fluid element and saw how we could 

get the equation now. 
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We finally, did all these calculations and we came upon this expression. Once we came 

up on this and also therefore, using 1, 2 and the expression, this we basically, if we solve 

this, we should be able to get 1 and 2, which is the 2D steady state energy equation. Now, 

detail of this derivation is something that I will post on the web page. So, you can take a 

look at that, and of course I would definitely suggest that you go through it. Do this 

yourself, it always have set of a better understanding. Now, that is where we kind of 

stopped earlier. 

Now, of course, as we have seen here, that in order to solve for the temperature, we will 

basically need to know the velocity field. Now, if you look at this equation. This is our 

equation and we said that the total change in internal energy which is left hand side. 

Now, that can be written as the conduction term and a dissipation term. How I have for 

the dissipation term therefore, you can see that has a definition of the velocity. Therefore, 

in order to get the thermal field in this particular case, we need to know the velocity 



field. 
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Let me jolt down few points for you; let me jolt down a few inferences that we made so 

far. In equation 1, let us say, the left hand side is the change in internal energy, which is 

essentially convective change in temperature and this is basically possible to evaluate the 

above, in terms of conduction and dissipation. So, essentially now the point is that we 

need to know the velocity field. Therefore, let us see how if we can, we could probably 

right this down as we have done earlier using non-dimensionalised quantities. So, let us 

see how we will kind of do that. 

Let us consider non dimensional properties. If I do that, let us use these and well, we will 

assume a high Reynolds number for this case, so that the flow will have boundary layer 

character and we will use the following non dimensional quantities. Using this is similar 

to what we have been doing so far. Non-dimensionalised quantities which is x star then 

theta, now this is delta t is basically some suitable temperature difference. Now, what we 

seen earlier there it could be the wall temperature, but the difference between the wall 

temperatures in the free stream temperature that is a possibility. But it is essentially 

whatever is suitable to the problem at hand, this and again y bar and v bar this. Now 

then, basically equation 1 then we can write the size state 2D energy equation as follows.  



Then we shall write it as rho c p v by l delta t into let us write this in a, just to give me a 

second. This is taking little long to derive, so u star del theta, del x star plus v bar del 

theta, del y bar is equal to lambda delta t by l square. Just try to pin point, where we are 

using this theta because that is what we interested in. We are really interested in the 

temperature field. So, del 2 theta, del x star 2 plus r e, del 2 theta.  
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This, when plus mu v square by l, 2 plus and this term I am going to write this out 1 by r 

e del v bar, del x star by and well, here two. Then this is del u star del x star square plus 

del v bar, del y bar square. Now, the detailed derivation of this is something that you can 

look at I will basically posted. Then this is essentially, this is equation 10 and this is 

equation 10 and so, basically we writing the 2D steady state energy equation instead of 

found. 

Here, you can see that instead of the temperature, we said we need the velocity field and 

what we do is, we write this down. We did have these in terms of the temperature. As we 

convective change in temperature and what we use now the usual, non dimensional 

variables and we are able to get something like this where, what we have essentially is 

the non-dimensionalised temperature theta. Now, if I do that, now what we will do is, 

will since we said this is going to be at high Reynolds number. So, that we have the 



boundary layer you behavior. We are able to see boundary layer behavior. So, we are 

going to take this further limit. So, for this, then this 10 equation you can see it becomes 

so and so. 

Then, it becomes u star del theta, del x star plus v bar del theta del y bar is equal to 1 by 

p r, is a Prandtl number actually write it down for you, del u star del y bar this. So, 

essentially if I say that Reynolds number is very high. Then we looking at each term and 

this is something we have done earlier and I would like you to sort of go through, each 

term and make sure that, you agree with what I have written. I think you should be able 

to do that. So, high Reynolds number, what happens? 

So, we write it in this way, where p r is the Prandtl number, which is mu c p by thermal 

conductivity and the Eckert number, which is v square by c p into delta t. Of course here, 

if you have this equation, this is now an important equation for us and this is equation 11 

and of course, here this equation will have to assume that at a high Reynolds number, the 

Prandtl number and the Eckert number are finite values. That they do not blow up for I 

think. So, that is essentially kind of while we assume. That the Prandtl number and 

Eckert number are finite at large rho numbers. Now, a Prandtl number actually is a pure 

physical property and what I will do now is give you just a feel for. I will give you some 

of the typical values of the Prandtl number. 
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The Prandtl number is, it is a pure physical property meaning, it is the property of the 

fluid itself. It is not something that comes on and off due to the fluid flow, but it is a 

property the fluid itself. It is a pure physical property and for example, let us write here, 

so this is the Prandtl number I am write it for various cases. Now, this is T degree 

centigrade. So, I got at 20, at 200 and at 500 degrees.  

This is for air and the Prandtl number for 20. For example, is 0.717 a 200 is 0.702 and 

for 500 is 0.696 which is interesting. If you look at that with increase in temperature, the 

Prandtl number decreases what I can see form here. Again, you got temperature and this 

is prandtl, I mean this is for this is for water. This is for water and this is at 0, this is very 

interesting 13.47 I got 20, which is 7 and I got 70 I got 2.55. Again, this is for oil, this is 

0, 1303.6 for 20 it is 412.28 and for 70 it is 80.35. Now, what is interesting is you can 

make your inferences from there. If you see, I would have compare let us just say, that 

just between water and oil. 

Now, water and oil are both way more viscous than air and also the density is way more 

heavier, in the density of water and oil is much larger than that of air. So, what you see is 

for at least water and oil that in here two with increase in temperature this is Prandtl 

number, establishes instead of Prandtl number. 



Now, for both, for all air, water as well as oil with increase in temperature, the Prandtl 

number decreases. Increase in temperature is decrease that I can see. Now, oil is more 

denser than water and you can see that this is almost 100 times more than, the Prandtl 

number is almost 100 times more than water. Now, what you can see here the Prandtl 

number is got the coefficient of viscosity here you know. So, that kind of gives you a hint 

right away. It is directly proportional to the co-efficient of viscosity so; obviously, this is 

way more viscous.  

This is almost like 100 times more than that of water. Again at 0 degrees as you increase 

20 degrees then, this is 412. So, again it is more than that of water at the same 

temperature and it is more than that. Now, for air you see that even for 20 degrees, you 

can compare that 20 degrees it is extremely less it is 0.7. If you go up to 500 then you 

kind you know, you decrease the temperature if you go up to 500 then, you get around 

0.7, which is no more even like a close. So, if you are 20 degrees, then you get like 0.7. 

So, so definitely I mean that is kind of. So, that is what we can see. Of course, it is a 

direct Prandtl number is directly in proportional to the co-efficient of viscosity. 

Hence, we see this now the Eckert number of course, is the measure of the dissipation 

effects and as you can see that it this grows, as a score of the velocity which means, that 

for a very small velocities, you can neglect this. For example again, air is like seems to 

be this spoil spot to its peak. Now, for example; for air, let us change that, now for air c p 

is 1000 meter square second square kelvin, v is equal to 10 meter per second, delta t is 

ten kelvin and Eckert number is 1 by 1 100 basically. Now, what essentially because of 

the dissipation therefore, because of the dissipation there is no heat transfer, but there is a 

there is a temperature field which emerges because of that.  

And example for that could be, insulating walls which are antibiotic in nature. Of course, 

the walls of higher temperature, than the outer wall and than the outer surrounding fluid 

which is a free stream t t infinity and this is something that we call as antibiotic wall 

temperature. Now, we know that at the edge of the boundary layer that is at y is equal to 

delta is 0. Now, if that is so, del u star del y bar, which means that the term containing the 

Eckert number which is here which is basically the dissipation term in equation 11, if 

you see. So, that is going to go off. Therefore, we will be left with this equation, which is 



only in theta. Now, therefore a possible solution, a possible solution is for 11 is theta is 

equal to 0 and theta is 0. Which means what? Theta is defined as t minus t infinity by 

delta t that is what I have defined. 
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If theta is 0 this implies, the t is this, which means that at large distance away from the 

wall the temperature of the boundary layer. Boundary layer edge is basically is equal to 

the field stream temperature. So, in other words theta is a function of x star, y bar which 

is in this case is far away, and the Prandtl number and that is equal to 0. Now, equation 1 

which we have seen earlier, so mathematical equation 1 is a linear differential equation, 

which has this standard solution theta, which is x star y bar Prandtl number Eckert 

number, this is what it depends on.  

It has a standard solution theta 1 which is x star y bar Prandtl number plus Eckert number 

into theta 2 x star y bar and Prandtl number. This is a Prandtl number now, which 

essentially means that so, theta 1 as you can see, we have the theta 1. This is a solution 

which is not; contain the dissipation which does not any dissipation and the second term 

which contains the Eckert number essentially contains dissipation. So, this is your 

equation 10 and 11. 



This is the general solution to the equation 1, so equation 11. Now, therefore, let us see 

that this essentially is if I may clarify here that this is a super position of theta 1, which is 

solution without the dissipation, plus theta 2 which is solution with dissipation. 

Therefore, we can write the solution, we can write the equation 1 therefore, we can break 

it down and what we can write is this. We will break that down in terms of theta 1 and 

theta 2, del x star plus v bar del theta 1 del y bar is equal to 1 by Prandtl number, del 2 

theta 1.  

These are nice, in an equations which we can write and plus this is the equation which 

has the dissipation effects. When I write that, this is the equation 12. Now, 12 and 13 can 

be investigated separately. So, essentially what we doing is, we have breaking down 

equation 1 into 2 equations, which is easier to solve or basically it is the solution of the 

linear differential equation, where we define these 2 functions theta 1 and theta 2 which 

is essentially solution without dissipation and with dissipation. 

Now, the way we can look at equation 12 is the in here, this is a linear equation 

dissipation to this holds y because the dissipation terms are small. The dissipation term is 

small this dissipation effects are small, because the velocity is a small and since this is a. 

So, therefore, the Eckert number is basically negligible. It is similarly 0 and this is a 

linear equation is not a problems if I want to solve then all I need to do is just get back 

the dissipation term. Therefore, it basically breaks down to 12 and 13 and you can see 

this is an easy equation to solve from the equation that we started with which is 1 and 2 

so. Therefore, I think will close here and the some of the detail derivation is something 

that I will post for you and you can take a look at this. So, we have come up with 

equations in terms, in order to solve for the some more boundary layer. So, will stop here 

and move on to new things in the next module. 

Thank you. 


