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I welcome you all once again to this course on CFD. We are now on to module four of 

week one. Last class, we have seen some review on basic fluid mechanics, governing 

equations, importance terms, non-dimensionalization and why you want to do non-

dimensionalization. Today’s class we particularly see vorticity-stream function 

formulation, classification of equations, examples for each classifications, solution 

nature. 



 

After that we will quickly review what we did towards end of last class. We observed 

while solving Navier-Stoke equations, we have four equations, three momentum 

equations and one continuity equation; there are four variables, primary velocity 

variables u, v, w and pressure; though we have separately equations for velocity. There is 

no separate equation for pressure; and pressure acts like a source term in all the three 

equations. Another major difficulty is convective term; we noticed that in convective 

term, velocity multiplying its own derivative, which behaves like a non-linear term, and 

solution is obtained only through iteration. There is a question, is there a way to 

overcome. So, alternatively, we have to devise the equation, in such a way there is no 

pressure term as well as whether we can remove or rewrite non-linearity in the 

convection term. 
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So, towards that we take first 2D unsteady incompressible flow situation two-

dimensional Navier-Stokes equations. So, we rewrite here full equations, we also write 

continuity equations for 2D steady incompressible situation. 
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So differentiate equation one that is the x-momentum equation with respect to y, and 

differentiate the second momentum equation for v with respect to x, and subtract one 

from the other. This is the algebraic steps that we are going to follow, so that is written 

here as dou by dou y of the entire x-momentum equation and dou by dou x of entire y-



momentum equation. this operator dou by dou y needs to be operated upon each term in 

this equation; similarly for the other equation. So, what we do, we will take first term 

explain how to do, also for the second term, then the procedure is repeated for the 

remaining term. 
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So, we will first we will take the first term that is unsteady term, so dou by dou x of dou 

v by dou t which is coming from the second momentum equation, dou by dou y of dou y 

by dou t, which is coming from the first momentum equation, subtract one from the 

other. And we know this partial derivative can be interchanged, so dou by dou t common 

is taken out, dou v by dou x minus dou u by dou y is inside of that. we also know the 

definition of vorticity omega, we learned in the first class, so which is dou v by dou x 

minus dou u by dou y.  

So if you substitute definition of vorticity in this expression then we get first term of the 

vorticity transport equation, which is dou by dou t of omega, you can repeat this exercise 

for each term, so here I am showing you for the second term, which is dou v by dou x 

dou by dou x of dou v by dou x, which is the second term in the y-momentum equation. 

Similarly, dou u by dou x, which is the second term in the first momentum equation, and 

you take a dou by dou y of dou u by dou x and velocity is outside. So, this if you do then 

we get u into dou by dou x and dou v by dou x minus dou u by dou y, this is same way 

that common term, and here it is exchanged, so the common term is taken out. Once 



again we recognize the term in the bracket as vorticity, so u into dou by dou x of omega. 

So, we get second term which is like convection term of the vorticity transport equation. 
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We repeat this exercise for each term, and we get a complete equation as this. So, rho 

into dou omega by dou t plus u into dou omega by dou x plus v into dou omega by dou y 

on the left hand side; and on the right hand side, mu into dou square omega by dou x 

square plus dou square omega by dou y square. if you look at this term each of these 

term, first term is the unsteady term, which is the local a acceleration, similar to local 

acceleration term in momentum equation and next two terms are convection terms, 

similar to convection term in momentum equation. we do replace them, rewrite this 

equation, taking the definition of total derivative so which is capital D by Dt of omega; 

and on the right hand, mu into del square omega. So, equation five that is this equation, it 

is actually parabolic in nature. We are going to talk about solution or equation 

classification in few slides down the line. So, right now we just take that this is the 

parabolic equation and equation five is called vorticity transport equation. So, last class, 

we had seen up to this point. 
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We just wanted to review and then we move onto the next part that is the stream part. We 

know the stream function definition relating to the velocity dou psi by dou x equal to 

minus v and dou psi by dou y to u. Here also we start doing some arithmetic and calculus 

operation. So, take the first term, differentiate with respect to x; take the second term, 

differentiate with respect to y and add them up dou by dou x of dou psi by dou x plus 

dou by dou y of dou psi by dou y equal to dou by dou x of minus v plus dou by dou y of 

u. So, on the left hand side, you get dou square psi by dou x square plus dou square psi 

by dou y square; and on the right hand side, you can rearrange a little bit, so minus sign 

dou v by dou x minus dou u by dou y. Again, we are able to observe the term in the 

bracket on the right hand side, which is dou v by dou x minus dou u by dou y, which is 

the vorticity. 

Hence, we use the definition of the vorticity to rewrite that equation as dou square pis by 

dou x square plus dou square psi by dou y square equal to minus omega; in other words, 

del square psi equal to minus omega. We numbered this equation as seven. And as I said 

before we are going to talk about classification of equation, two slides down the line, and 

this equation seven is elliptic in nature. And del square psi, if it is del square psi equal to 

zero, such a equation is called Laplace equation, whereas, if it is del square psi equal to 

some source term on the right hand side, which is minus omega this is called Poisson 

equation. 
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We rewrite this equation once again, that is writing equation four which is the vorticity 

transport equation, and writing equation seven, which is in terms of stream function 

relating to vorticity del square psi equal to minus omega. what we do, we substitute this 

relationship that is relating omega with psi into this equation, so each of these term 

omega are now written in terms of psi, we will see how it is. We also replace velocity 

variable u and v in terms of psi, we get a equation like this dou by dou t and then omega 

is replaced with del square psi, similarly u is replaced with dou psi by dou y and so on. 

the common term, common sign, minus sign is the common, which is removed, 

cancelled from the entire equation, so you get a finally, you get equation like this. if you 

look at this equation, first this is the fourth order equation, because you have a fourth 

order term here. And then in this equation only psi is the variable, there are no other 

variables, so it is a complete transport equation only with variable psi. 

And this is the four scalar equation, because psi does not have a direction. equation 

seven, that is del square psi by del square psi equal to minus omega, and equation eight, 

which is a transport equation written only with the psi, these two together are called 

vorticity-stream function equation. So if you solve with corresponding boundary 

condition then you get psi from equation eight, which is related to equation seven with 

omega that is vorticity. And from stream function psi and vorticity omega, one can 

recover the velocity field u and v. 
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So, now the question is we started the vorticity-stream function equation with a node that 

there is no pressure term, but we are also interested to know the pressure in the flow 

field. So if one solves using a vorticity-stream function equation, then how to get a 

pressure is a question. So, we will setup a procedure to get pressure from vorticity-

stream function formulation also. Once again we rewrite the momentum equation for the 

sake of immediate reference, which is given here, what is given here is the u-momentum 

equation, again rewrite v-momentum equation. And then differentiate first momentum 

that is x-momentum equation with respect to x, differentiate the second equation, which 

is y-momentum equation with respect to y; add them together. I am not showing you the 

full all the steps involved in the derivation, we get the term finally, like this, which is del 

square p on the left hand side, and remaining terms on the right hand side. 

One can also replace u and v in terms of psi, so we get another equation, del square p 

equal to two rho into remaining term. So, you can observe that once you have solve the 

previous equation eight, which is at transport equation written with psi as a single 

variable then omega, which is the transport equation for vorticity from these two 

variables after solution obtained one can get pressure field. Another point observe, as 

you can see on the left hand side del square p and then there is a source term on the right 

hand side, so this equation is actually pressure Poisson equation. So, instead of solving 

momentum equation, three momentum equation and one continuity equation, it is also 



possible to approach by solving vorticity transport equation and get pressure field, 

velocity field as well. 
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So, we move onto the next topic that is classification of PDE. We know we have already 

seen also here; in Fluid Dynamics as well as in Heat Transfer, most of the transport 

equations, they are all PDE. In general, PDE can be classified based on order, we have 

already seen first order, second order, fourth order based on linearity, similarly based on 

the solution nature. Particularly here, we are going to talk about classification of PDE 

based on how the solution behaves like that is necessary to know, because that will also 

decide what kind of initial boundary conditions required, what kind of final boundary 

conditions required, before get into the solution of the equations. And it gives idea the 

way or the direction in which the disturbance or solution propagates. 
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There is a general procedure, consider a linear second order PDE with two independent 

variables, which is usually given here. And it is possible to fit any linear second order 

PDE into this generic form A dou square phi by dou x square B dou square phi by dou x 

and dou y and so on. So, it is possible to fit or rewrite any governing equation into this 

generic form. this A, B, C are and so on, they are function of independent variables or 

constants. we are going to make a classification based on the discriminant that is B 

square minus 4 AC; in other words, if B square minus 4 AC is less than 0, that values 

happens to be less than zero then equation is or the solution associated with the equation 

is classified as elliptic PDE. Similarly, if B square minus 4 AC is equal to zero then it is 

parabolic; and B square minus 4 AC is greater than 0, then it is hyperbolic. 
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We are going to see details of this. So, in elliptic PDE, there is no real characteristics, 

there is no specific direction preference. So, for example, if through a stone into a pond 

or well, there is ripple generated or a wave generated, and you can observe that ripple or 

wave propagates like a circular fashion in all the in all the direction. So, there is no real 

direction for this solution. So, information travels equally well in all direction up to the 

boundary. In the case of hyperbolic PDE, disturbance propagates at a finite speed in a 

limited region within the characteristics curve. There are two characteristics curves in 

hyperbolic PDE, compressible flow falls under hyperbolic PDE. And parabolic PDE, 

here information travels in only one direction along one characteristics curve. 

Having defined the classification elliptic parabolic and hyperbolic one tends to ask the 

question what about the Navier-Stokes equation itself. The complete Navier-Stoke 

equation that is unsteady term, convection term, three-dimensional along with the 

pressure term on the right hand side, does not fall under any one such category 

specifically. They are coupled non-linear PDE, and as we have seen before with four 

variables. 
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We will now specifically see what is elliptic PDE, so one of the example that is given 

here is Laplace equation or Poisson equation, del square phi equal to 0, this is called 

Laplace equation. This equation is generic form, it has for pressure or for temperature 

distribution, the phi can be any variable. If on the right hand side, if it is not 0, but it is 

with our source term, which is given here as G of x and y then that particular equation is 

called Poisson equation. If you follow the discriminant procedure, taking the coefficient 

values, so B is 0, A is 1, and C is 1, so if you rewrite B square minus 4 AC then you get 

minus four, which happens to be less than 0, then you can also conform that this is the 

elliptic PDE. So in elliptic PDE, as we have seen before, the solution is not having any 

particular direction it moves in all direction equally without any bias up to the boundary 

point. This is also given in this figure. So, you have to specify boundary condition on all 

the four directions, and solution is restricted full domain. 
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So, next is a parabolic PDE, again I am giving one example, it is one-dimensional heat 

conduction or diffusion equation and it is given for alpha positive, real constant as dou T 

by dou t equal to alpha dou square T by dou x square, it is a one-dimensional equation 

and capital T, which is to represent temperature and this small t is for time. And follow 

the procedure of discriminant evaluation B equal to 0, and C is equal to 0, and A is equal 

to alpha, for this equation fitting with the generic equation. So, B square minus 4 AC 

equal to 0. So, we know for that value equation is parabolic in nature.  

So, as you can see here, the time derivative component appears and we have observed 

that Navier-Stoke equation, first term on the left hand side is the time derivative term. 

Solution advances outward from the known initial values; that means, it only marches in 

one direction and you need to specify initial values. So such a problem is also called 

marching type problem. And sketch wise, it is given here, so this is the starting, and you 

specify initial condition and there is a boundary condition on for different time value, 

and solution marches in one direction. You do not come back and try to do boundary 

condition implementation at time is equal to 0. 

In today’s class, we have done a complete derivation on vorticity transport equation, 

understood the advantage vorticity transport equation, how to obtain pressure field as 

well as velocity field, once you solve the vorticity transport equation; the next topic, we 

took classification of partial differential equation pertaining to solution obtain in Fluid 



Dynamics as well as in Heat Transfer. We have understood what is elliptic PDE with an 

example; we also described, what is parabolic PDE and how does the solution look like. 

So we will take another interesting topic in next class. 

Thank you. 


