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Greetings and it is my pleasure to welcome you again to this course on CFD. We are 

now onto the week eight of this course, and this is the last week for this course. So far, 

we have lean different techniques in CFD. And in this week, we are going to particular 

see how some of these techniques are applied for a problem. So, in this week, we will try 

to explain different discretization, convection and diffusion, pressure velocity coupling 

method, time integration procedure for a test problem. And we will also display 

corresponding code and how these are actually implemented in a working code. For this 

purpose to take a test problem what is known as lid driven cavity. 
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So, we will first define the problem then explain different numerical strategy to approach 

CFD to get a solution for this problem. We will do detailed procedure and explanation of 

every step, and display corresponding code. Once you get solution then we are interested 

to see the result in different form, and that stage of CFD is what is known as post 

processing. In addition to primary variable in its forms, you also have derivatives of 

primary variables and we will explain how to get different post processing using this 

primary variables and show that result. 
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The problem considered is the lid driven cavity on here what is shown here is a 2D 

cavity, it can be three-dimensional also. So, in this, we have depth and then width 

depending on the ratio of depth to width, it can become the square cavity or cavity of 

different aspect ratio. Now all the three sides of wall that is have it is representation as 

hash line; on the top, you have the lid and it is driven by a velocity and for this particular 

case u is equal to u, a specific velocity is given. Now this can be one particular value or it 

can be a function of sin or cos. If it is two d then it becomes square cavity, if it is three d 

it become three-dimensional cubic cavity. 

Now in this problem, the geometry is very simple and you can also understand from the 

figure. Once you have this driving velocity imposed on one side of the problem then you 

have a primary vertex form at the centre, and you have a corner vertex form at these two 

corners. You can have a Dirichlet type of boundary condition that is specified a 

particular value for the variable this is what is known as Dirichlet condition this we 

explain in the week one or week two lecture. So, in this figure Dirichlet boundary 

condition is in terms are velocity as you can see h ere u equal to v equal to zero on all the 

three sides of the wall. Then on the top, you have velocity driving condition u equal to u, 

v is equal to zero. It is also possible to prescribe Neumann type of boundary condition 

for pressure. Depending on the Reynolds number it may be a laminar flow or turbulent 

flow. As I mentioned in the beginning, you have primary vertex form and you have 

vertex from and these two corners. Now depending on Reynolds number a primary 



vertex either stays at the centre or it moves to one corner. Secondary vortices appear very 

near the bottom right and left corners. 
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The intension of this week class is to completely understand the concepts of 

discretization solving the Navier-Stokes equation using a model problem of flow inside a 

lid driven cavity. As I explained previous slide for this problem the top wall in other 

words the lid of the cavity is moving to the right with a specific uniform velocity and 

thus create the flow inside the cavity. As shown here, so u equal to 1 meter per second, it 

is the specific velocity given and the lid is moving from left to right. 
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We mention you can have a vorticity steam function formulation of the governing 

equation or it is also possible to solve using primary variables. When you say primary 

variables they are u, v, w and pressure, because we consider two-dimensional situation, 

we have only u and v pressure is always there. For the sake of simplicity, we consider 

explicit Euler time integration, because it is explicit, we learn scheme is conditionally 

stable. Reynolds number need define, and we need to have a length scale and velocity 

scale. The length scale in this problem it can be a side of the cavity or it can be aspect 

ratio of the cavity. In this particular problem, because we are considered square cavity all 

the sides are equal. So, the side of the cavity can be length scale and the top lid with the 

driven velocity is considered as the velocity scale. 

So, the Reynolds number computed based on this length scale and velocity scale is one. 

This is only for demonstration purpose; you can increase the Reynolds number and 

investigate the flow inside this problem. We have a diffusion term on the right side and 

convection term on the left side. So, diffusion term and convection term in Navier-Stokes 

equations are discretized explicitly. So, coefficient matrices are not formed for solving u 

as well as v momentum equations. Then we have procedure called pressure velocity 

coupling; we learned three four methods that is MAC algorithm, SIMPLE, SIMPLE R, 

SIMPLE C and projection method. In this demonstration problem, we use what is known 

as projection method to solve incompressible flow equation. 
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You also learnt what is projection method. However, for the sake of completeness, we 

repeat the steps involved in projection method. There are basically three steps; in the first 

step, we solve momentum equation without considering pressure term. So, in this 

problem, we are considering 2D situation, so you have u-momentum equation and v-

momentum equation. In u-momentum equation, we have minus dou p by dou x; in the v-

momentum equation we have minus dou p by dou y. So, in the projection method, we do 

not consider these pressure gradient term and solve without considering, hence the 

obtained solution does not satisfy the divergence condition that is delta dot V equal to 

zero. Based on this velocity we set up the Poisson equation for pressure, which is linked 

with continuity equation also, hence we get the Poisson equation. Once you solve 

Poisson equation then you get the pressure. Project the intermediate velocity onto the 

divergence free vector space using the pressure calculated above; and this pressure act as 

a Lagrange multiplier and ensures continuity is satisfied, this is important step in the 

projection method. 
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Once you solve the momentum equation neglecting pressure terms, we get equation as 

shown here. So, you have a time derivative term as the first term on the left hand side 

and then convention term as a second term on the left hand side then we have only 

diffusion turn on the right hand side. We are not considering any other source term hence 

the equation appear as simple as shown here. Pressure terms are neglected, only 

convection and diffusion terms are consider. Discretization is performed for convection 

term as well as diffusion term at nth time step, making the scheme explicit. So, the 

discretized equation for u momentum equation is shown here, all are evaluated at nth 

time level; new time level quantity to be determined is given by the superscript star, 

because pressure is not considered, obtain velocity is the temporary velocity field since 

we use superscript star. 
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Now to obtain the pressure Poisson equation, divergence of moment equation is 

consider, considering only the pressure terms. So, dou u by dou t equal to minus del p 

and that implies u at n plus 1 level minus u star by delta t equal to minus delta p. Take 

the divergence of the above equation to obtain equation what is known as pressure 

Poisson equation. So, we do that step here as shown. So, we get minus del square p on 

one side, and source term for the pressure Poisson equation is on the left side. Now we 

can repeat all the steps for the second momentum equation that is v momentum equation. 

Since the flow should be divergence free, but that is what the meaning of del dot v equal 

to zero; in other words continuity is satisfied. At new time level n plus 1, we have the 

condition dell dot u n plus 1 equal to zero. Now using this condition, the above equation 

gets reduced to as shown here minus del dot u star by delta t equal to del square p, and 

this equation is what is known as a pressure Poisson equation. 
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Using the pressure calculator the previous step that is one solve the pressure Poisson 

equations you get pressure p it is also what getting remembered that passion equation or 

the Laplace equation or elliptic equation. And we need to have boundary conditions 

prescribe on all the sides using the pressure calculator in the previous steps can project 

intermediate velocity u start on the divergence free vector space as shown here. So, u at n 

plus 1 level minus u star delta t equal to minus del p and u n plus 1 is the final corrected 

velocity equal to u star minus delta p and del p and this is important steps in the 

projection method and this is called projection step. 
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Now, we have a test case problem lid driven cavity define the problem with the boundary 

conditions. We already mentioned top wall lid is moving to the right the velocity of 1 

metre per second. If you are using velocity to prescribe boundary condition then you 

have Dirichlet boundary condition or if you using a pressure then you have Neumann of 

the boundary condition, the cavity is square into dimensions 1 metre by 1 metre and for 

both velocity as well as pressure type of boundary condition that is a description given 

here. So, the first one is for velocity as you can observe here, the Dirichlet boundary 

condition applied for velocity u equal to zero v equal to zero and so on. Now if you using 

pressure to apply Neumann type of boundary condition and that is what shown here. So, 

dou p by dou x zero on this vertical spaces and dou p by dou y is equal to zero on this 

horizontal spaces. 
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We also learn about storage of variables; we have three possibilities, one is collocated, 

staggered and then semi-staggered. We learnt collocated method of storing the variable 

result what is known as checker board problem and there is a pressure oscillation. To 

avoid that we have another method what is known as staggered way of storing the 

variables. In staggered scheme, we have the u-velocity unknown are located on the 

vertical faces and v velocity nodes are located on horizontal faces; and pressure is stored 

at the centre of the cell. The gird runs from i is equal to 1 to i is equal to i max; you 

specify how many grids are required in x direction and how many grid you design in the 

y direction. This is the simple problems, hence we use structured grid; we can use again 



uniform grid or non-uniform gird. In this problem, we define with the uniform grid. 

Staggering the u, v and pressure unknowns removes the pressure of oscillation which is a 

case in the case of collocated grid arrangement. 
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Steps in simulating cavity flow; first we do grid generation then discretize the governing 

equation and solve the momentum equation to obtain intermediate velocity u star, v star; 

solve pressure Poisson equation, project the intermediate velocity onto the divergence 

free space using the calculated in the previous step, then repeat the process till the 

solution is converged. So, we have a convergence criteria defined; based on that 

convergence criteria decide whether iteration needs to be stopped or to be continued. 

Once you get solution then you are interested in post processing. Post processing of the 

results can be in many forms, you can have contours, you can have a line or can go for 

advanced post processing, stream function, vorticity contour and so on. 
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 So for the purpose of explanation, we take a simplified grid, structured uniform grid 

with the 4 by 4 grid points that is four in the x-direction, four grid points the y-direction. 

We define uniform grid in such a way delta x equal to delta y. Three cells are created 

along x-direction and three cells are created along y-direction. The grid coordinates run 

from i equal to 1 to i equal to i max, j equal to 1 to j equal to j max along x and y 

direction respectively. And this is a gird arrangement shown here. So, i is x direction, j in 

y direction, we define four girds in i direction, so 1, 2, 3, 4; similarly, four grids in y 

direction 1, 2, 3, 4; so 4 by 4 results in three cells in the respective directions. So, we 

have totally 9 cells. We are going to follow finite difference method of solving or 

discretization the equation, and we also mention staggered grid is used to store variables. 

So, dx and dy are uniform, because we define number of grids in x direction and y 

direction to the same, that is 4 by 4 in this case, we can find out what is d x and d y. 
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So, this is the corresponding code that is used to generate grid. So, we have a command; 

gird size and other parameters; i run along x direction, j runs along y direction. R e is 

Reynolds number; dx dy cell sizes along x and y direction; dt is a time step value 

velocity is actually lid velocity. We already defined i max to be four actually change into 

any number; this is a number of grid size in x direction similarly for y direction j max 

equal to four this is the grid size in y direction. And this is required in later, I am now 

showing you actual working code written in Matlab. So, what is shown here is a 

beginning of that code. So, some parameters needs to be defined beginning of the code 

and this one such parameter what is shown here is the iteration that is given as numbers 

twenty thousand and this is the tolerance limit or convergence limit that is error one ten 

to the power minus four; Reynolds number is 1, velocity is 1. So, in this particular slide, 

we are interested to see how the grid is generated and what is a corresponding code 

available to generate a grid. 

So, we have compute parameters, then dx equal to one by i max minus one and d y equal 

to 1 by j max minus 1. We decide number of grid lines in the particular direction that is 

given by i max and j max, then the starting point for x for grid in the x direction. So, x 

equal to 0, it goes to 1, and with the delta x it that is defined as dx. Similarly in y 

direction, it starts from y is equal to 0, and n at 1, because we have define the side of the 

square cavity as 1, and we have also explain the dx equal to dy; for simplicity we are 

considered dx is equal to dy. And in this particular line, we have y is equal to zero, dx it 



can also be dy and starting from y equal to 0 to y equal to 1.0. In this module one of this 

week, we have explained the test case problem and then we have decided on 

discretization procedure, pressure velocity coupling, storing of variables, grid 

arrangement then I displayed actual working code, how the grid is generated. In the next 

module, we will go to next part of the algorithm where we talk about discretization of 

convection terms and diffusion term. 

Thank you. 


