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Welcome again to the course on CFD. Today you are on module four of this week. So 

far, we have seen direct methods in detail. Today, we are going to see a new procedure 

what is known as the iterative methods. Any linear system can be solve by Gauss 

elimination, L U decomposition procedure. The question is if the matrix becomes 

complicated whether the gauss elimination or L U decomposition procedure is 

economical or the whether it lead to some erroneous solution in such situation what do 

we do. The second question whether it is computationally or in terms of time wise 

economical to do direct methods or is there a way that we can go by iterative way we can 

get the solution. 

There are other issues for example, triangular factors of a sparse matrix. So, sparse 

matrix is you are not able to identify matrix into some form. It has elements distributed 

throughout. It has values distributed here and there in the particular coefficient matrix, 

such matrix is called sparse matrix, and triangular factorization of the sparse matrix is 

usually very expensive. While solving we have error due to computer arithmetic 

handling of numbers rounding of errors or there is also error due to discretization. And 



  

discretization errors are usually much higher when compared to machine rounding of 

error. We should have method which is more accurate than discretization error an 

iterative methods provides a suitable alternative, and it is also good for problems 

involving non-linear. So, it is suitable for non-linear problems. In iterative methods, one 

initial makes a guess of the solution then progressively improve and get the accurate 

solutions. Each iteration is less expensive, number of iterations required happens to be 

small, hence over all computation time requirement is also less when compared to direct 

method.  
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So, we start with initial guess that is x at to zero, and substitute into the right hand side of 

all the equation generate new approximation value and we call that x upon. By this way 

we go on repeat and this is the multivariate one point iteration. So, in mathematically x at 

j plus 1 is equal to x at j by some function g that is way it is called multivariate one point 

iteration. And repeat this process until you have two conditions either you specify 

maximum more of iteration or you specify some convergence limit. We learnt to about 

convergence limit that one such criteria under the convergence limit for example. If that 

different between present value and old value take the absolute and you specify some 

limit, if that absolute value of difference is less than the specified value then you can 

terminate the iteration this is one such convergence criteria. So, you repeat this procedure 

either specifying convergence criteria or you forcibly say we will to the iterations only 



  

for specs number of iteration say 500, 1000 whatever be the error accumulation. Slowly 

as the calculation proceeds that will also come down. 
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 So, start with the list of linear equations as we did before a 1 1 x 1 plus a 1 to x 2 plus a 

1 3 x 3 all the way and then b one on the right side. Similarly for all the rows we get ask 

row a n 1 x 1 to all the way up to a n n x n equal to b n. Now what we to is start with 

initial guess value. So, x 1 is an to be determine and all other terms of the equation for 

brought to the right side as shown here. Now in these values for x 2 x 3 all the way up to 

x n or from the guess value or from the previous iterated value. So, you get 

approximately values for x 1. Now we go to x 2 and all the way up to x n. 



  

(Refer Slide Time: 05:24) 

 

We will explain different iterative procedure by taking one example problem and that is 

shown here as a 2 D Laplace equation dou square u by dou x square plus dou square u by 

is equal to zero. And this is an elliptic equation. If that example equation that we have 

taken is discretized using second order accurate central difference scheme then we get 

finite differenced form of that equation on that is shown here. So, let me read that term u 

i plus 1 j n minus 2 u i j n plus u i minus 1 j n divide by delta x square. So, this is the 

central difference scheme which is apply to the first time in this equation dou square u by 

dou x square and we use two subscript one i for x second j for y and as usual superscript 

n is used here for iteration level. We write a similar term for the second derivative in the 

y direction and that is what is shown here. Now j is given index j plus 1 j and j minus 1. 

A corresponding computational molecule is shown here. So, i and j is the point of 

interest, and we consider values from neighbors i minus 1 comma j, i plus 1 comma j in 

the x direction; similarly the y direction, you have i j plus 1 an j minus 1. So, these four 

neighboring notes contributes for the solution at node i comma j. 
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For the example problem, the computational domain with the mesh arrangement is 

shown, delta x and delta y are the respective spatial different between two mesh points in 

x direction as well as in y direction. And we define a new term beta which is equal to 

delta x by delta y and we apply boundary condition along x as well as along y. 
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With the specific of nodal points, the same computational domain is repeated here. So, 1 

comma 1, 2 comma 1, 3 comma 1, 4 comma 1, 5 comma 1 for example, is along the first 

row for first in y direction, then we extend this for the remaining nodes and it is marked 



  

here. We define another term alpha for equal two minus two beta square now we apply at 

the discretized equation what we had before what we are the n before that is set second 

order central difference scheme dou square by dou y square use this definition of alpha 

and beta for this miss arrangement you are apply for each nodal point. 

For example 1 comma 1, 2 comma 1 this may be coming along the boundary are you 

take a second row. So, 1 comma 2 for again on left side boundary 5 comma 2 is again 

near the right side boundary. So, we have apply, for example, for the node 2 comma 2 

discretized equation then we get the first equation as shown here. So, 2 comma 2 node is 

influenced by neighbouring notes that 1 comma 2, 3 comma 2, 2 comma 2, 2 comma 3 

their respectively i minus 1 j i plus 1 j i j plus 1 un i j minus 1. So, you get corresponding 

equation written here. We extend this procedure for all the notes. So, it is 2 comma 2 is 

their 3 comma 2 and 4 comma 2. In the same way equation are written for all the nodal 

points. 
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Now, if you put all those equation in the form of matrix an you structure as shown here. 

Now in this alpha, we already define beta also we have define those alpha and beta or 

definitions are for convenience. So, that discretized equation and the matrix are return 

elegantly. If you look at in this matrix then along the diagonal you have alpha and 

immediately above super diagonal immediately below sub diagonal then there are two 

zeros entry then you have beta square that is also appearing parlor to the to the diagonal 



  

on the upper side as well as on the lower side. So, this is like one form offers for matrix 

an all the unknown u vector are given then known coefficient value is given on rights 

side.  
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You will explain different iterative procedure for that matrix and that example problems 

first one is Jacobi iteration method in this the equation are solved using initial guest 

values of the neighbouring points are from previously computed values. So, that final 

difference equation becomes as shown here the node of interest that is u i comma j 

current iteration value superscript is n plus 1. So, you i, j n plus 1 is the one that we 

determine at the node of interest i, j and all the neighbouring notes are taken to the right 

side there are either determined from the previous level are known from the guess value 

and that is again molecule. 
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So, we have rewritten the form of that discretized equation when you follow Jacobi 

iteration method the next one is a point Gauss-Seidel iteration method in this method the 

current values of the dependent variable are used as soon as they are immediately 

available. So, the discretized form his return for point Gauss-Seidel iteration as shown 

here though it looks similar you to pay attention to particular term that is u i minus 1 j 

with the super script n plus 1 an u i j minus 1 with the super script n plus 1. So, in the 

computational molecule, if you look at i comma j is the point of interest u i minus 1 is on 

the left side and u i j minus 1 is at the bottom values at these two nodes are known from 

just immediately completed iteration procedure. So, they can be immediately use behave 

their available that way the nodal value i comma j is more realistic go be learn from this 

discretization i comma j value is influenced by neighbouring nodes. 

So, if you take very close value then the solution can be obtain faster an in this procedure 

values at node i minus 1 comma j and i j minus 1 or known from just completed iteration. 

So, why not use it and that is idea of point Gauss-Seidel iteration method and we are 

going from point to point that is why the word point is used. So, discretized equation 

written for point Gauss-Seidel iteration procedure has values immediately found 

included that is why you is super script n plus 1 for left side node as well as node at the 

bottom. 
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Next is Line Gauss Seidel method; in this method, the finite difference equation in 

rewritten with the unknown points at i minus 1 j i comma j and i plus 1 and you can see 

the equation here. So, i minus 1 j then we define one plus beta square i comma j than you 

at i plus j n plus 1 equal to values at j plus 1 and j minus 1 here this is a long the line 

because i minus 1 is on the left side i comma j is a point of interest and i plus 1 is on the 

right side. So, we identify notes along that particular line and they all have to be inverted 

together and that is the idea behind Line Gauss-Seidel method. 

If we extend this procedure, for all i at particular j, then it will result in what is in system 

of linear equation and it will have a finally, tridiagonal matrix form, because, if you look 

at this equation again i comma j is the point of interest on you have one on the left side 

one the right side, and extend this for all i an j for the particular j then it will result in tri 

diagonal matrix form and we learned TDMA procedure in the previous class. At this step 

is repeated for next line and you finally get one full matrix. Though individually it as 

appears to be taking more computational time per iteration, the convergence rate is faster 

than that is required for Gauss-Seidel method. 
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Graphically the line iteration procedure is shown. So, initially you have values along this 

particular j node not known previously iterative values as shown by the triangle or from 

the previous known previous time level or previous iterative values as shown again with 

a triangle. So, along this particular j and u setup equation, when you solve equation for 

the particular j then this nodes values are coming to known and they are used for the next 

level as shown here. So, now for the same line j it becomes triangle that we need is a 

known value this triangle becomes unknown value along the same j and then we have 

previously iterated value just above.  

(Refer Slide Time: 16:32) 

 



  

So, this way you repeat this procedure and you get complete solution next we see a 

procedure called point successive over relaxation method, otherwise PSOR. So, we know 

the solution is progressing and it is likely to reach the solution in the same direction, and 

this is what is known as the directional change. So if trend is observed why not we 

accelerate and that is idea and that is implemented by a procedure called over relaxation 

method. So, u i comma j n plus 1 is to be determine we now introduced factor called 

omega an one minus omega. So, this is kind of fraction. So, omega as one then it the 

contribution of u i comma j n is actually o. If omega is less than 1 is say for example, 0.2 

then becomes 0.8, the 1 minus omega becomes 0.8. 

So, we take 80 percent weightage of previous level value for the same node i comma j 

that is a meaning of the term one minus omega u i comma j n and the remaining terms. 

Again we introduced omega for taking wait age of neighbouring notes if the relaxation 

parameter omega is equal to one then it will result in Gauss-Seidel method which we 

have just now seen. If the omega has value between zero and one the method is called 

under relaxation method if it is above 1 then the method is called over relaxation method. 

Now what is shown here is only a sample example equation, you can write this for 

auxiliary equation as well. And you need to define omega differently for different 

equation different variable will behave differently when you iterate. 
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Next is a line successive over relaxation method is the same as p s o r only thing it is 

implemented for the line as a whole. So, we have omega i minus 1 j n plus 1 then for i 

plus 1 value extra and similarly for neighbouring nodes contribution.  
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There is another procedure what is known as the alternating direction implicit ADI 

method. In this method, we go from length to n plus 1 level in two steps that is n to n 

plus half and then n plus half to n plus 1. Now every time one set is given in implicit 

another set is given in explicit. The first step for example, it is implicit in x-direction and 

explicit in y-direction, accordingly you can rewrite the discretized equation. So, we get 

final discretized equation as shown here. The next stage n plus half value is known and it 

is explicit in x-direction. So, it is taken to other side and implicit in y direction that is 

taken on the left side. And you already learned this is usually applied for Penta diagonal 

matrix, and by applying this ADI procedure it gets reduced in to tridiagonal matrix and it 

is possible to apply TDMA procedure to get solution. It is also possible to introduced a 

relaxation parameter as we did in SOR procedure and accelerate the solution. 
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Now, ADI method is explain graphically as shown here. So, value at n, n plus half, you 

do to sweep in x direction and n plus 1 you to sweep in y direction. So, in this class, we 

have seen in detail, particularly iterative methods to explain different procedure, we took 

an example problem that is Laplace equation; we discretized by second order scheme, 

and we explain different iterative procedure for that example problem. We understood 

advantages. We also learned method of reaching faster by a procedure called over 

relaxation or under relaxation. 

Thank you. 


