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It is my pleasure to welcome you again to this course on CFD. Last class, we started 

discussing about matrix inversion procedure; we listed three direct inversion procedure 

gauss elimination, TDMA and L U decomposition. In last class, we did in detail gauss 

elimination, and today’s class we see in particular tridiagonal matrix algorithm otherwise 

TDMA. 
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We know in Gauss elimination, there are two steps forward elimination and backward 

substitution, bulk of the time consume in forward elimination because in the backward 

substitution and it becomes completely upper triangular and we start from the last row in 

substitute and get the unknown. Hence most of the time is appear to be spend in the 

forward elimination process. We also learned different discretization procedure for 

example, central differencing, forward differencing, backward differencing pure up 

ending, quick and combination. And whatever the method you follow for some 

combination, the coefficient matrix will result in what is known as a tri-diagonal form. 

And we have already seen in previous class, diagonal matrix, tridiagonal matrix and 

penta diagonal matrix. The tridiagonal matrix structure is displayed here again. So, this 



will have one mine diagonal, which is marked here in red colour, and immediately above 

is a super diagonal and immediately below is a sub diagonal. 

So, you see in this matrix we have values restricted only to limited region of the matrix 

and you have for most of the places zeros, so obviously, matrix of this nature applying 

Gauss elimination is not economical. So, we need to find some alternative way where 

you do not need to handling zeros, hence reduce computational time substantially. So, 

you follow what is known as a simplified form of Gauss elimination procedure, it was 

proposed by Thomas, just called Thomas algorithm for tridiagonal matrix; in short form, 

it is called TDMA. Only one element needs to be eliminated in the forward elimination 

process then when the algorithm reaches the last row, you have an equation with only 

one unknown on the left side and the known on the right side. So, you are immediately 

able to get the unknown, then we follow what is known as a backward substitution to get 

all the unknowns. 
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We will see TDMA little more detail now. So, when ordinary differential equations or 

partial differential equation or finite difference say in this case central different scheme, 

we know in central differences scheme we have node of interest and one more on either 

side left as well as right. And if you apply CDS scheme for the full domain, then the 

resulting algebraic equation will have a simple structure and each equation will have 

variables at its own nodes and immediate left as well as right, such a system linear 



equations with n rows is given here. So, b 1 u 1 plus c 1 u 2 equal to d 1; and we go to 

the next row a 2 u 1 plus b 2 u 2 plus c 2 u 3 equal to d 2, and all the way up to the n th 

row, a n u n minus 1 plus b n u n equal to d n. Now in the first row, we have only two 

contributions that is because you have on the left side boundary condition and boundary 

condition is accounted as a source term and that is added and you get d 1. 

Similarly, the last row again has only two contribution, there was for the last row, the 

right side is again boundary condition and that is appearing as a source term and added to 

know value d N. Now the same algebraic question in the form of matrix it is shown here. 

So, b 1 c 1, remaining all zeros; similarly, all the way up to last row a n, b n this is a 

coefficient matrix multiplying the unknown column vector, you want to u 1 to u N on 

both on left side then on the right side you have a known column vector. 
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We repeat that again here and to solve this, we follow same procedure as Gauss 

elimination procedure that is you have a forward elimination and backward substitution; 

only thing it is slightly modify for this matrix structure. And after working out, you are 

able to set what is known as a recursive relationship and that is what is shown here. So, u 

n which is the last unknown is equated to q n, and you go in the reverse, because now it 

is a backward substitution; u i equal to q i minus u i c i by p i, where i goes from n minus 

1 in the reverse order all the way to 1, so this is what is a backward substitution. Now we 

define q and p as given here; p 1 is equal to b 1, q 1 is equal to d 1 by p 1 and then this is 



for the first for the remaining from 2 to N, q and p are defined as shown here. Now this 

relationship is already worked out, what I am showing here is only final expression, and 

this is in the form of a recursive relationship. 
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What is shown here is a sample FORTRAN code listing to achieve what is known as a 

TDMA. So, equations are numbered from 1 to N; one special point to be noted here is 

matrix has values only along three diagonals - main diagonal, sub diagonal and super 

diagonal, remaining elements are all zero. So, we do not store the matrix in full form; we 

only store main diagonal, super diagonal and sub diagonal as independent matrix and 

that is what is A, B and C. So, N, A for example, we will have all elements belonging to 

the sub diagonal; B will have element belong to the main diagonal, and C will have the 

element belong to the super diagonal. So, they are independently store that way you do 

not store full Matrix because the full matrix are zeros and it is expensive in terms of 

memory as well as handling those zeros that is the specialty of this TDMA procedure. 

And we also noticed we have one more column vector on the right side, the known 

column vector and that is stored in D and X is unknown column vector. So, we call 

subroutine TDMA with arguments and you define A, B, C, D and we defined two new 

variables P and Q related to the recursive relationship. So, we follow the formula and 

write this FORTRAN listing, this will result in some form of forward elimination. And 

the next step is the backward substitution, there you get solution better itself. So, the last 



row is one that we can find first, so X of N is equal to Q of N then we do in the reverse N 

1equal to N minus I, we go in the reverse and find complete column vector. 
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We also have the similar simple code listing, but written in C language as shown here. 

So, double star a, star b, star c as we did before a, b, c are diagonals corresponding to 

main diagonal sub diagonal and super diagonal; and n is a number of rows that is 

required to be solved. Then you modify so in this instead of P and Q in the previous 

slide, here we defined some other quantity, you calculate d then substitute in the 

backward substitution form, you get the answer for unknown column vector. 
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We will try to take an example problem and explain TDMA procedure. Problem 

statement - solve one-dimensional diffusion equation in the domain x going from 0 to 1 

with the boundary condition u x equal to 0 comma t is always zero and u 1 comma t 

equal to 0 for all time greater than or equal to 0. And at initial condition the time is equal 

to zero, we have boundary condition u x comma 0 equal to sine pi x. So, this is a initial 

condition, and these are all boundary condition applied at x equal to 0, at x is equal to 1 

for t greater than or equal to 0. And specifically it is given follow Crank Nicholson 

scheme C-N scheme. We already learned this before; we will repeat it here again. So, 

consider one dimensional unsteady diffusion equation dou u by dou t minus alpha dou 

square u by dou x square is equal to 0. We know what is FTCS, that is forward in time 

central in space. So, we have forward in time for the time derivative and central in space 

for second order special derivative. 

And this is explicit scheme in the sense all the variables are known from the previous 

time level that is what is given in the superscript as n. The current value to be determine 

is given the superscript n plus 1 and that is only one quantity appearing for entire 

equations; remaining all from previous time level, and in terms of schematic that is 

shown here. So, n plus 1 level value required at n plus 1 level is determined from value is 

already found at nth level. In this problem specifically it is Crank-Nicholson scheme. So, 

for the same governing equation, we write down Crank-Nicholson scheme and that is 

shown here. So, the left hand side you have the time derivative term that is same forward 



in time; the difference is only for the special dou squared you by dou x square that is 

written in the form of Crank-Nicholson scheme. We know Crank Nicholson scheme is a 

semi implicit scheme that is it is half explicit and half implicit and you are able to 

identify that here. 

So, we have one set of term with superscript n plus 1, we have another set of term for the 

superscript n and there is weightage of that is what is in the denominator here two, 

corresponding molecule is schematics is given here. So, n plus 1 value is determined 

with the values from n plus 1 as well as values known from nth level. Now we can 

rewrite this specifically for the sake of writing code r is a new variable defined as alpha 

delta t by delta x square and all this n plus 1 values are to be determined. So, we take all 

of them on the left hand side and all quantity with the superscript n is known from the 

previous time level, and they are taken to the right hand side. This equation needs to be 

solved, when you apply Crank-Nicholson scheme. 
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Now, if put this form of a matrix, so in the last slide, for the example problem, one-

dimensional diffusion equation, we defined discretized equation; now we define 

computational domain as shown here. It is going from x is equal to zero on the left side 

to x is equal to one on the right side. We take four spacing otherwise three grid points. 

So, at one, two, and three and they are equally space on delta x happened to be 0.25. On 

the left side, boundary condition is defined as well as on the right side of boundary 



condition is defined. For the sake of simplicity, we assume delta t and alpha in such a 

way of value r equal to one and we already define r to be alpha delta t by delta x square. 

We rewrite the discretized equation here again. Now we use the value r and apply the 

discretized questions at every nodal point, and we get algebraic equation as shown here. 

As you can observe, the first row has influence of left side boundary; last row has 

influence of right side boundary. Now the same algebraic question is written in the form 

of matrix as shown here that is 4 minus 1 0 minus 1 4 minus 1 0 minus 1 4 the coefficient 

matrix and then one unknown column vector; on the right side, you have a known 

column vector. 
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Now we apply the recursive relationship, we define two quantities p and q. So, p 1 q 1 

and p i, q i for i going from 2 to N, there were also defined. We try to apply for this 

example problem. So, we get p 1 equal to b 1 equal to 4; q 1 is equal to 0.25. And we 

calculate other values for example, p 2, q 2, p 3, q 3; once you find this can we do the 

backward substitution and that is also defined in terms of recursive relationship u N is 

equal to q N, and u i is equal to q i c i u i plus one p i. And it is backward substitution, so 

i is going from n minus 1, all the way to one. We substitute n is equal to 3 that is the last 

row and then n minus 1 is equal to 2. So, we get u N equal to q N which is otherwise u 3 

equal to q 3 equal to minus 1, and we calculate for the remaining u 2 u 1 using this 



relationship, and substituting appropriate values, and the values are shown here it is so 

easy in TDMA. 
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Now we have the TDMA for a simple system, but in some problem, you may have to 

force what is known as a periodic boundary condition. Periodic boundary condition 

means values are repeated from one boundary to the next boundaries and the domain you 

supposed to extend in the periodic way indefinitely. When such situation is there, we 

pose periodic boundary condition, the matrix tridiagonal matrix gets slightly modified as 

shown here. The main diagonal, sub diagonal, super diagonal they are same. Now in the 

first row, we have one more element or value added; and the last column as shown here a 

1. Similarly, last value in the first column again gets alter by the periodic boundary 

condition and it is shown here as c N. The TDMA procedure with just now explained is 

suitable for other boundary condition and it is slightly modified as Sherman-Morrison 

formula, we are not going to discuss that here and still we can use it TDMA procedure 

we have explained.  
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So, overall as you observe through example problem and also through recursive 

relationship, we understand it is very easy to program. And in practice, you do not 

actually have full coefficient matrix stored, only diagnosis are stored as a separate 

column vector. Number of operation because we are not handling with zeros, number of 

operation when compared to the Gauss elimination procedure is substantially reduced, 

now it is only of order n. It saves lot of computational time, because we are not handling 

zeros; memory requirement is also less. It is one of the successful algorithm and it is 

used by many researches for their own calculation. 

Cases where you end up getting penta diagonal matrix, for example, we learned before 

what is known as alternating direction implicit, alternating direction implicit was a 

reduced form of the penta diagonal matrix solution procedure, where the original penta 

diagonal matrix is reduced into two tridiagonal matrix by having a method of explicit in 

x-direction, implicit in y-direction and then next stage implicit in x-direction, explicit in 

y-direction; you learned that before we will see that again. So, by that procedure, the 

original penta diagonal matrix its reduced tridiagonal matrix; similarly, there is another 

operation called operator splitting that also results in reducing original matrix into 

tridiagonal matrix. There are procedures available to convert penta diagonal matrix and 

septa diagonal matrix into tridiagonal matrix once it is reduced then we can apply 

TDMA procedure to get the solutions. 



(Refer Slide Time: 19:33) 

 

We have listed three direct methods one is Gauss elimination, second is a TDMA, third 

one is L U decomposition. In L U decomposition, the full matrix A is split or 

decomposed into two as A is equal to L into U, where the L stands for lower triangular 

matrix and U stands for upper triangular Matrix and that is in the form of matrix that is 

shown A - full original coefficient matrix is decomposed into L Matrix and U matrix. So, 

in this class, we have seen in detail tridiagonal matrix algorithm procedure, we also had 

an example problem. We listed advantages associated with the TDMA procedure. And in 

the next class, we are going to see details about what is known as L U decomposition 

again with listing an example problem. 

Thank you. 


