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Welcome you all, we are now on to module three of this MOOC course. Last two 

classes, we have done some review on mathematical formulation, operators, important 

properties, description of the flow, and then we started doing equations. So, we first did 

conservation of mass or continuity equation then we went on to momentum equation, 

which is called conservation of momentum and we have written a momentum equation in 

both vector form and as well as scalar form, and that is repeated here. All the three 

components of a momentum equation and we know this also called Navier-Stokes 

equations. We recognize here again, first term is unsteady term or local acceleration, the 

remaining three terms are convective acceleration. 
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Like we did in conservation of mass, if you simplify for different situation, then the 

original the generic continuity equation get reduced as two-dimensional only with spatial 

derivatives. Similarly, conservation of momentum equation also can be reduced for 

different simplified situation. For example, if you say the flow is frictionless, then effect 

of viscosity mu term is negligible. So, in the Navier-Stokes equation mu term appearing 

as viscous term on the right hand side. So, that term is removed and you get resultant 

equation or Euler’s equations. So, left hand side remains the same, D by Dt – total 

derivative of the velocity, there is one term that is removed, because of the viscous effect 

is not consider. The external force and pressure term remains same. So, this equation is 

derived or deduced by scientist Euler, hence the name is given as Euler’s equations.. 

So, theoretically, for any inviscid, where viscous effect is not there in incompressible 

flow, you can directly either Navier-Stokes equation and momentum equation can be 

used to obtain pressure as well as velocity field. So, you can also integrate this Euler’s 

equation along a streamline and after some simplification, it results in what is known as 

Bernoulli’s equation and that is given here p by rho plus v square by two plus g z equal 

constant. We know Bernoulli’s equation is a energy equation. So, you get a pressure in a 

p, kinetic energy or velocity energy and potential energy. So, Euler’s equation if you 

integrate, along a streamline then you get a Bernoulli’s equation. So, Euler’s equation is 

derived or deduced for frictionless flow. So, Bernoulli’s equation is the restriction for 

only frictionless flow. You can also obtain Bernoulli’s equation for unsteady flow also. 
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So, next third equation, which is conservation of energy equation; once again we are not 

going to the details of the derivation steps. We first state the energy equation itself which 

is given here as rate of change in kinetic and internal energy is equal to sum of net inflow 

of the kinetic energy, work done by the body force and net work done by the stress field 

as well as net heat flow. And this definition is applied then there are many arithmetic 

operation, finally, the form that is given here is given dou rho C v D by Dt of 

temperature on left hand side, and there are three other terms on the right hand side. So, 

in this equation, C v is the coefficient of specific heat in constant volume; and k is the 

coefficient of thermal conductivity; and q is any external heat source, and phi is a rate of 

dissipation of mechanical energy and that is given by this expression. 

So, in this expression, it is the summation and tau i j dou u i by dou x j, where i and j are 

indices it is representing direction 1, 2, 3. So, if you substitute i is equal to one, j is equal 

to 1, 2, 3, i is equal to 2, j is equal to 1, 2, 3; i is equal to three, j is equal to 1, 2, 3, you 

get so many components in this equation. This index notation is also otherwise called 

tensor notation, we are not going to the details of tensor notation here, only this term is 

expressed in this form. So, as I mentioned before from the definition after for simple 

condition, the equation is derived and it is given here. There are other forms of energy 

equation available in other references. 
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As we did exercise, how to simplify conservation of mass, conservation of momentum 

for different situation; conservation of energy equation is also simplified. So, in the case 

of incompressible flow phi which represent the energy dissipation will be very, very 

small, and hence the effect can be neglected from that equation. Similarly, if there is 

absence of external source, then energy equation gets reduced to only one term on the 

right hand side, so in most equation. So, we have conservation of mass and conservation 

of momentum; conservation of momentum of course, there are three explicit equations 

for each direction. So, in essence there are four equations, one for conservation of mass, 

and three equations for conservation of momentum – x component, y component, and z 

component. 

So, if you look at number of variables, you have mu, v, w – three, and pressure – four. 

So, there are four unknowns and there are four equations. So, mathematically it is a 

closed system of equation along with number of boundary condition you specify then 

you will able to solve those four equations without any problem. If you are looking for 

only simple basic fluid mechanics problem then those four equations are enough. And if 

you have a problem where energy transfer is also important then you activate or include 

energy equations also. So, whether you solve energy equation, in line with momentum 

equation or not is a question. If for most of the situation, the energy equation is solved in 

a decoupled manner with the continuity and momentum equations. What is the meaning 

of decoupled, you solve mass equation and momentum equation get a converged solution 



based on mass equation and momentum equations then you trigger or activate the energy 

equation in the code, get a converged solution for energy equation, then moved to the 

next iteration, the cycle repeats. So, this is known as a decoupled way of solving 

equations. 

But in problem where there is a natural convection, where temperature distribution 

causes a buoyancy force, then this procedure is not applicable; we need to solve energy 

equations coupled manner with the momentum equation, because in natural convection 

problem, buoyancy force is an external acting as a external source term in the momentum 

equation. Hence, we have to solve energy equations, as and when you are solving 

momentum equation, which is going again as an energy, as a source term the momentum 

equation. 

(Refer Slide Time: 10:01) 

 

Next, important topic is non-dimensionalization. What do we meaning of non-

dimensionalization. It is a method or a procedure by which unit quantities are replaced. 

So, we have seen three major equations, mass, momentum and energy. In all the three 

equations, we also observed the variables, velocity, density, gravity, viscosity then 

temperature reserve. So, all these variables have units. The reserve a way by which you 

can remove the units and solve the equations in non-dimensional form, and there is a 

procedure and that is known as a non-dimensionalization procedure. How do we do, we 

identify suitable variables and replace actual variable or non-dimensionalized actual 



variable by the corresponding suitable variable which is acceptable. Now, what is the 

advantage, it parameterize the problem in place on units. So, this reduces number of 

parameters in the problem. And you can also identify by this procedure characteristic 

properties of the system, which mean there is a particular scale exist in a flow either 

velocity scale or a lens scale or time scale, you can identify corresponding scale by the 

non-dimensionalization and the scale information is very helpful either to control the 

flow or manipulate the flow or to design a system based on the scale. 

Now, the advantage is suppose, you are running or doing experiment, running a 

simulation for one particular geometrical condition or flow condition, and there is a need 

to repeat for some other condition, if you do non-dimensionalization then you do not 

have to do this repetition of cases for different situation; results obtained one situation or 

condition can be obtained with ease for another condition. 
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So, in connection with that, we need to also know many non-dimensional numbers and 

there are also many other important numbers. So, I am listing here only few of them, 

they may be more depending on the problem that you are studying. First one is the 

Reynolds number, usual symbol is given as Re, and which is the ratio of inertial force to 

the viscous force. Next is the capillary number, which is given a symbol Ca which is the 

ratio of viscous force to the surface tension. Froude number, which is used for which is 

generally used flows via gravity Fr consider. So, it is defined as ratio of inertial force to 



the gravity force. Next non-dimensional number is a Weber number, again given a 

symbol We, which defined as ratio of inertial force to the surface tension force. So, it 

basically means either inertia is dominating or surface tension force is dominating 

depending on the value of the number. 

And heat transfer context, we have Nusselt number, which is given a symbol Nu and it is 

the ratio of convective heat transfer to conductive heat transfer. Then there is Prandtl 

number – Pr, which is ratio of momentum diffusivity to thermal diffusivity. The one 

more number what is known as a Stanton number. So, which is defined based on heat 

transferred to thermal capacity, and it is also related to Nusselt number and Prandtl 

number as given here Nu denominator Re multiplied by Pr. As I mentioned before, there 

are many more non-dimensional numbers for different problems. 
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 So, we have seen important of non-dimensionalization, and some important non-

dimensional numbers. Now, we are actually going to do non-dimensionalization of 

governing equation. We will do a detail derivation for one equation that is conservation 

of mass, and you can follow the procedure to get non-dimensionalization equation for 

other equations. So, to do that we need to define what is known as reference scale. So, in 

a problem, you need to identify reference length scale, reference velocity scale. If you 

consider for example, flow through a circular cross-section pipe, diameter of the pipe can 

be a reference length scale. If you consider flow through a rectangular cross-section pipe, 



then hydraulic diameter, which is defined as four a by p, where a is the area, and p is the 

perimeter that can be a length scale. If you consider flow over an aerofoil, the cord 

length can be a length scale. 

So, one needs to identify, which is the major influencing length scale in a problem. It 

may vary from problem to problem. Then one also identify reference velocity scale. So, 

again if you consider the flow through circular cross-section pipe, if the inlet is uniform 

velocity then uniform velocity can be a reference velocity scale. The inlet is parabolic 

profile either the bulk velocity can be a velocity scale or the average the middle 

maximum velocity can be a reference velocity scale. If you consider a flow over a flat 

plate, the free stream velocity U infinity can be a reference velocity scale. So, one needs 

to identify reference length scale and reference velocity scale. Once we do that in the 

governing equation all the length scale related quantities are non-dimensionalized with 

the reference scale. Similarly, all the velocity related quantities are non-dimensionalized 

by the reference velocity scale. 

And we also know you can get a time from velocity as well as length. So, we will see 

how to do, let say for example, all the length scale in all the length related information, 

so in this case, x, y and z. So, x is non-dimensionalized with L, and this non-

dimensionalized quantity is referred with the symbol superscript star. So, x star is non-

dimensionalized length and x is the length, actual length, L is the reference length, and 

we know both have the same unit. So, x star has no units. You can define similarly for 

other two dimensions length dimension, we use the length scale in all. So, it is y over L 

and z over L. And t-time is non-dimensionalized from these two L over U infinity will 

give you the time. So, any time related quantity for example, the first term time 

derivative term is divided by L over U infinity to get non-dimensionalized time t star. 

Similar manner, you can also do for velocity. So, it is u star is non-dimensionalized 

velocity component in x-direction, which is u is the velocity dimensional quantity and U 

infinity is the reference velocity. So, u over U infinity will give the non-dimensionalized 

velocity quantity u star. You can extend this to get v star and w star. And pressure, is also 

another term appearing; the pressure is related to U infinity square and you define 

reference density. So, if you take the unit of density, and velocity square then you find 

the product of them has the same unit as pressure, you are able to non-dimensionalized 



pressure term p over rho infinity U infinity square will result in p star which is non-

dimensionalized pressure. 

And we have just now seen different non-dimensionalized number. So, Reynolds number 

is appearing in momentum equation, when you non-dimensionalized and we know the 

definition of Reynolds number is ratio of inertial force to the viscous force. And if you 

use this non-dimensionalized quantity, then finally, you end up in expression for 

Reynolds number as rho infinity U infinity L by mu. Of course, you can define mu over 

rho infinity also as a mu and Reynolds number becomes U infinity L over nu. So, all the 

star quantities are non-dimensionalized variables, now that we are done the first exercise, 

we can repeat this, we can substitute this term in continuity equation to get a non-

dimensionalized continuity equation. 
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Now, we will try to do non-dimensionalization of the continuity equation. So, we know 

dou u by dou x and dou v by duo y and dou w by dou z equal to zero. And we just now 

learned how to represent them by length scale, velocity scale and that is written here. 

And we also defined u by U infinity as u star and x over L as x star and so on. So, we get 

dou u star by dou x star dou v star by dou y star and dou w star by dou z equal to zero; so 

this equation is actually non-dimensionalized continuity equation. You can immediately 

observe none of the quantity have units. So, take any of these, first term for example, u 

star is already non-dimensionalized there is no unit; x star is non-dimensionalized, there 



is no unit. Similarly, other two terms so no term has any unit. So, this entire equation has 

no unit. 

You can extend this procedure to get non-dimensionalized momentum equation, and that 

is given here. First term dou u star by dou t star, similarly u star dou u star by dou x star 

and so on up to last term also the viscous term. So, we see here, as I explained continuity 

equation, here also no term has unit. So, dou u star, of course, you know already u star 

has no unit, t star has no unit. So, the entire term has no unit, similarly, other terms so the 

entire equation is without any particular unit. And one can extend this procedure to get 

non-dimensionalized y-momentum and z-momentum equations. So, if you solve for 

example, this equation for one problem then you see the advantage, if there is a change 

in any design parameter, for that problem then you need not repeat this calculation just 

for the sake of changed dimensions or changed design condition. 
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We go to the next important topic, what is known as a vorticity stream function equation. 

There are certain difficulties while solving Navier-Stokes equation. What are the 

difficulties, one is the pressure gradient, pressure gradient terms appears on the right 

hand side dou p by dou x, dou p by dou y and dou p by dou z. So, this pressure gradient 

term behaves like a source term and if you observe we have a continuity equation and we 

have three momentum equations. Primary variables u, v, w are there in these three four 

equations, but there is no separate equation for pressure. Wherever the pressure is 



appearing in all the three equations derivative dou u by dou x, this is the term first term 

in the momentum equation, x-momentum equation, convective acceleration first term. 

And function u multiplying its own derivative dou u by dou x is non-linear in nature. 

Hence treating this non-linear term is again very trick. 

Now, you may have to do many iteration to get a solution so, whether we can have an 

alternative to overcome these two main difficulties. So, if you can eliminate pressure 

term or and if you can get a equation where such a non-linearity behavior is not 

appearing in that equation. Now, such alternative approach is what is known as a 

vorticity stream function formulation. 
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So, we will do a detailed derivation vorticity stream function formulation. Starting point 

is always again momentum equation. So, take a momentum equation and consider the 

two D situation, which means you can consider x and y momentum equation, unsteady 

term. So, they are repeated here, x-momentum equation and y-momentum equation, and 

continuity equation is also written here for the sake of completeness. Now, what we do 

this is x-momentum equation referred a equation one, and y- momentum equation is 

referred here as equation two. So, we are going to do some manipulation from these two 

equations. And we are going to see that. 
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So, differentiate equation one which is x-momentum equation with respect to y. So, all 

the terms in the x- momentum equation are differentiated with respect to y. We follow 

similar exercise equation two, which is the y-momentum equation differentiate all of 

them with respect to x and subtract the second equation from the first equation. So, 

mathematically it is given here; this is the first equation in this bracket, first equation, 

which is x-momentum equation, differentiate with respect to y. Similarly, the second 

momentum equation differentiate with respect to x, whatever you obtained, subtract one 

from the other. So, what we do will take term-by-term, and see how this is done. 
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Now, we will do that exercise term-by-term. Let us take the first term; first term is the 

time derivative term. And you see here, dou v by dou t which is coming from the y-

momentum equation, and that is taken derivative with respect to x, dou u by dou t is 

coming from x-momentum equation that is taken derivative with respect to y. So, 

subtract and you are able to get this. Now, this partial derivative can be exchanged with 

this; similarly this partial derivative can be exchanged with this. So, common term dou 

by dou t is taken out and dou v by dou x and dou u by dou y term appearing inside the 

bracket. You can immediately recognize the dou v by dou x minus dou u by dou y, we 

already defined, which is from the vorticity vector in the first class. 

So, this is one component of that vorticity vector omega- z component and that is given 

by dou v by dou x minus dou u by dou y. So, if you substitute omega into this 

expression, then you get that equation that expression is written here as dou by dou t of 

omega. So, this is the first term in the voracity transport equation, the time derivative 

term, first term in the vorticity transport equation. We will extend this procedure for the 

second term, which is a convective term, again you can recognize dou v by dou x, which 

is coming from the second term in the y-momentum equation, take a partial derivative 

with respect to x then dou u by dou x which is the second term in x-momentum equation 

take a partial derivative with respect to y. Subtract one from the other then take a 

common term dou by dou x outside, you get dou v by dou x minus dou u by dou y inside 

the bracket and this term is same as what is shown here dou v by dou x minus dou u by 

dou y, and we define that as vorticity. 

So, you get u into dou omega by dou x. So, as you can see here, this is the second term in 

the vorticity transport equation. We are going to repeat this procedure for term-by-term 

to get a complete vorticity transport equation. 
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So, finally, the resultant equation will look like this. First term dou omega by dou t, we 

have seen in detail, u into dou omega by dou x we have seen and v into dou omega by 

dou y, you can derive. Similarly, you can repeat that exercise on the right hand side and 

you get the equation like this. So, if you look at this equation, the form the way the 

equation looks all similar. We had a similar format for u-momentum equation, except 

that the variable is now vorticity omega; otherwise you are again able to recognize this is 

the local and these two are convective kind of term. And if you put them together, you 

get total derivative of expression in terms of omega. The difference here is you see the 

function use u, but it is not multiplying its own derivative, it is the different function. 

Hence the non-linearity associated with the convective term in the original momentum 

equation is simplified in this equation. 

So, if I express in terms of total derivative D by D t of omega representing all the three 

terms here on the left hand side; and then right hand side, is mu into del square omega. 

So, this equation five is actually what is known as a parabolic in nature. We are going to 

talk about equation nature next week. So, we will come to know what is parabolic in 

nature; right now we just accept, this is parabolic and that equation five is what is known 

as vorticity transport equation. 

So, in this class, we have started momentum equation, went over the momentum 

equation once again, simplification of the momentum equation, obtain Euler’s equation, 



Bernoulli’s equation then non-dimensionalization, some important non-dimensionalized 

numbers, we did a detailed work in on how to obtain non-dimensionalized continuity 

equation, it helps to avoid repeating calculation for different situation. Then we went on 

to do another important topic what is known as a vorticity stream function formulation; 

in that we did the first part how to obtain a transport equation for vorticity. We will close 

here for this class. So, next class, we will start from here obtain governing equation for 

stream function and relating vorticity and stream function and few more interesting 

topics. 

Thank you. 


