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Reynolds Transport Theorem 

So good morning again so we will  continue on the aspect  of the revision  of the continued
continuity momentum and  the energy equation, the governing  equations by means of another
approach .

(Refer Slide Time: 00:29)

Where you are completely working with the arbitrary shape control volume, which is not fixed to
any coordinate system , okay and this is a very interesting  approach. So here what we do is we
consider a control mass essentially a  system that means, we are considering  fixed packet of
fluid with a given mass  and tracking it with respect to time. So  if you assume that there is a



fixed mass  of fluid with the volume V at a time T  and then after some time T + Δ  T  you see the
volume changes but the mass  content is the same and if you define  any property α as a property
per  unit volume and this property is  supposed to be a function of time .okay  so this is this is the
traditional  Lagrangian approach so where you just  the observer travels along with  the frame of
reference of moving frame  of reference of the the packet of fluid  so and then therefore the
property  changes are all happening over time  right rather than the oilarin   approach.  

Where the observer is stationary the  control volume is stationary and then  the fluid crosses the
control  volume  boundaries  and there  is  a  corresponding  change  of  mass,  and  mass  flux
quantities of  this particular property okay .So  that  is a different frame of reference so now  so
this Lagrangian frame of reference  can be used to calculate what is the  rate of change of this
particular  property with respect to time okay so  now for that we have taken a small  differential
volume Δ  V  corresponding to this time T and seeing  how it evolves over time okay the same
differential volume what happens  time T + Δ -t so if you overlap  these two control volumes
essentially  you see that this Δ  v has probably  grown to this size now Δ  V at T +  Δ  T okay so
therefore what we can do  is.

We can calculate the change Δ  V  at T + Δ  t - Δ  V at t  from the velocity vector basically if  you
take this particular differential volume so this is Δ  V T and this  entire thing is Δ  V T + Δ  T  so
this change is basically the volume  of this element that 
I have drawn here okay.

So therefore if this surface is actually  sweeping a distance of U  vector dotted  with the normal
okay so that much  displacement is happening to that the  differential surface element at time  T
and it is sweeping that much of  distance so that should be = to this  difference change in the
differential  volume okay so this is nothing but u R u  dot n Δ  T Δ  s right so this is  this is just
how we are representing the  change in the volume if you want to  calculate from the oil arian
point of  view what is the rate of change of this  property.
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With respect to time okay from  from the control mass system so the mass  doesn't change so you
are just tracking  this property change with respect to  time so this is the total derivative  okay
This single total derivative okay so  that you have to say suppose you have a  particular value of
α for this  differential volume so you will have  different values of α for  differential different
differential  elements and you have to integrate all  of them okay that will give you the  total
property of that particular  control volume okay so and you want to  calculate the rate of change
of this  particular property now this can be  written  as your limit Δ  T goes to zero you  can split
it up into the property at T  + Δ -t okay - the property at time  T okay so these are the two
integrals  that you see here and what I am going to  do a little bit of mathematical jugglery .

 I am just adding and subtracting in this particular term right here. So this is  integral at V of T α
T + Δ  T  DV so I am just subtracting and adding  the same term here so now if you look at  this
particular term okay. So this is  nothing but you are you are keeping the  integral in integrand the
same okay and  you are changing the volume okay we get  V of T + Δ  t - V R T so  essentially
that is like you are keeping  the integrand same and you are  integrating with respect to a change
in  the differential volume so which is  nothing but this particular term right  there okay so this
can be combined  together and we can write this as α  t + Δ  t DV where your V changes  from t
+ Δ  t to the earlier  volume RT okay so that can be replaced  by this particular term right here
and  this term that you see so in this case . You are keeping the volume fixed okay so  this
volume is at time T and the  integrand is changing okay from α T  + Δ  T okay - α T okay.



 So  this describes what is happening to the  change in the property from time T to T  + Δ  T for
the same control volume  okay so this is nothing but the oil  arian derivative okay so now what
you  are essentially doing this you are  changing the frame of reference from a  moving frame to
a stationary frame okay.

 So left hand side is the moving frame of  reference, where you are tracking a  control mass, with
a fixed amount of mass  and you are tracking the evolution of  the property, with respect to time
and  when you go to a stationary frame of  reference ,so that should involve partial  derivative
with respect to time that is  changing change of property with respect  to time for fixed control
volume so that  is you are converting a control mass to  a control volume okay + now once you
convert that to a control volume there  should be some flux of this property  which is crossing the
control volume  boundaries so that should come in terms  of this .

So we will see how it comes okay so in the next step I am just going to  replace this particular
terms right here  okay .
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So this will give me D by DT V of T  α t DV should be = to limit  going to zero I am saying α T
+  Δ  T and this is nothing but your  change in the volume from V T to V T  + Δ  T and that I am
going to  replace by u dot n vector into DT D s  all right so the DT cancels there so  this will be u
dot n vector D s so you  are converting the volume integral to a  surface integral okay so this also
will  be corresponding to the surface at time  T okay + the other term right here is  nothing but
the rate of change of this  property for the same volume with  respect to time so this is the partial
derivative integral V of T this is D  α by DT into DV okay so is it clear .



 Because this is for the control mass or  the system which is which is essentially  a closed system
so it doesn't allow any  mass transfer so essentially the  property can change only with respect to
time spatial it cannot change yes but  this is with the reference frame where  you are moving
along with the particle  so if you convert that to a stationary  reference frame that will have the
spatial  derivative so that is what  essentially  the Reynolds transport   theorem does this at it
essentially   transforms it  gives you a relationship   to  transform a control  mass  to a  control
volume okay. 

So  if  you  know  that  I  think   after  that  working  out   for  a  control  mass  will  be  very
straightforward because if you write the  energy conservation for control mass you  do not have
things like reflux right  because it is impervious to mass okay so  much it is much easier to write
the  conservation for a closed system rather  than the open system and all you need to  do is the
link between the total  derivative and the partial derivative so  that you just substitute and then
you  will  bingo finally you reach the conservation  equation we have derived earlier which  is
for a control volume okay so very  shortly we will see that you know but  this is just a routine
way of no  substituting now .we are looking at two  terms here 

One we are fixing the  integrand and changing the volume okay  so that is being substituted by
this  particular term here okay and the other  we are basically fixing the volume V of  T and
trying to track the change with  respect to time so that is the partial  derivative with respect to
time okay. So  now we can apply Gauss divergence  theorem you all  know that the surface
integral can be converted  to a volume integral okay so how this  can be done so this can be
integrated  over volume then fair  play class  divergence theorem to this  divergence of  this
particular term that is Del dot  okay you have your α and u vector  and integrated over the wall
okay .

So therefore I am just I am just going to replace these terms in terms of the divergence operator 
and this becomes D by DT of V α DV should be = to integral so the entire right hand side is
having a common integral with respect to volume T so this can be D α by DT + Δ dot α u vector
and this is all integrated over the differential volume DV okay so this essentially is the Reynolds
transport theorem. I will  call this as one okay so this is the  Reynolds transport theorem which
says  that you are converting some property  variation from a control system mass  which is a
closed system to a control  volume which is the open system.
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So it is  nothing but you are converting a total  derivative writing a total derivative in  terms of
partial partial derivatives  okay with respect to control mass it's  only a function of time therefore
it is  one derivative single derivative and  with respect to the control volume you  have property
which is varying with  respect to time and space therefore you  have partial derivatives so as
simple as  that okay so this can also be  written in a tensor notation okay so  this is a general
notation also in  tensor form.

I think many of you have  learned tensors in your incompressible  flows so I am just going to use
some  notation here so the left hand side term  tastes the same α DV should be =  to D α by DT +
D by DX so I am  going to use the subscript K to denote  the divergence here okay so this should
be again α u K okay in fact I can  remove the vector so this itself means  DV okay so this is in a
tensor  representation okay .

So this here right  here means that you are basically going  K is = to 1 2 3 and you are summing
it up I hope all of you can remember  your tensor notations okay k =  to 1 becomes DX okay
similarly here D u  by DX k = to 2 becomes this DV by DY  so you can keep changing this
particular  thing with respect to whatever suppose  you write your X momentum so you can
write your momentum in the X direction  and keep this as 1 and we will see what  is this α there
similarly in terms  of energy so you have to define α  and then the index also will keep  changing
accordingly okay .

So this is  your theorem we will apply this to  derive the conservation principle number  one
conservation of mass ok so when you  talk about conservation of mass so what  should be your
property α be  α we are defining property per unit  one the Q conservation of mass so this  is
mass per unit volume right so your  α should be Ρ so simply replace  your α by Ρ so what it
essentially  states what your conservation of mass  says if you have a closed system there  is no



mass entering and mass leaving  because this is a closed system so that  is the advantage of using
Reynolds  transport theorem you do not have to  consider any flux of mass okay. 

So all  you are bothered about is this total  derivative so what it says you are D by  DT integral
over V your Ρ DV should be  this is the mass the total mass 0 right  because as I said this is the
control  mass so the mass cannot change with time  okay so this is zero so now what you  know
is this is the fundamental  starting point for a closed system so  now you also know from the
Reynolds  transport theorem the link between the  total derivative and the partial  derivative okay
so now you can write  from a control mass to a control volume  the same expression.

Okay so that that  will say that this is = to V of T  okay D Ρ by DT + del dot Ρ u DV  = to what 0
from the  Reynolds   transport  theorem okay so  now for  this   two condition  to  be valid  the
integrand  has to be 0 correct . So therefore this gives you your continuity equation  okay so in a
coordinate free  representation  so momentum I think you can do it  yourself you have to just
apply the  Newtonian law okay for start with the  closed system apply the Newton's second  law
for the closed system and then you  can link the total  derivative with  respect to the partial
derivatives okay  so I am going to do that for energy  equation so you can probably apply the
same principle for the momentum equation 
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Also okay now what I am going to do is  for this particular case I am going to  consider the
corresponding transport or  maybe the different forms of energy  which are acting on this control
wall  right so one component which I will  combine together the body force and the  viscous
forces together I will say that  they are acting in some direction okay  let me call this as some P



vector okay  this does not mean pressure here it has  all the components of viscous and  pressure
and body viscous body on  pressure forces.

 Okay and one single  component ,I  am showing all these sub  components are included under
that P  vector okay so naturally what will be  the work if you have a P vector acting  on this
differential volume and you have  a Lassa T vector in this direction so  the work will be P dot u
vector okay so  the corresponding displacement that is  along this the particular velocity  vector
direction should give me the work  okay so apart from that I can also have  heat transfer okay
and I can just say I  have some heat transfer like this Q  vector  okay so now I cannot do this in
any  coordinate system it is arbitrary in any  direction. 

So I am just using the vector  notation and I am going to substitute  there okay so this is your
heat transfer  rate okay in fact I can use the  heat flux here right here okay Q double  prime
vector heat flux okay so you have  some internal energy for this particular  system you have this
is  a  controlled  mass so essentially  what is  happening  you are not considering any flux of
energy okay it is close to mass but it  allows work and energy transfer to  happen  therefore you
are considering a  component of work that is speed ordered  with you vector and heat transfer so
now  we can write the first law of  thermodynamics for a closed system okay  now first we'll
define what is the Α  here you have to tell me property α  for when you consider energy .

So you have  components of internal energy and  kinetic energy right per unit volume  okay so
you have u + u square okay in  fact I can write this as some magnitude  of U vector square okay
so I am just expanding it in the  conventional Cartesian coordinate system  okay just for your
convenience and so  what else is this correct this is per  unit mass okay but I need property per
unit volume divided by density  multiplied by density right that's it  okay so this is my α now I
will  write the conservation for energy to  this particular closed system and that  should give me
what D by DT I can  integrate this α that is Ρ into so  in fact. 

I am going to use a coordinate  free representation here so  write this as half of you vector dotted
with you vector right that is the same U  square + v square + W square if  you write it in a
Cartesian coordinate  system so I am just going to write this  as + U + half u dotted with u DV
this is my left hand side term for a  control mass I am writing the first  law of thermodynamics so
that should be  = to the work okay and the  contribution of work and heat okay only  this can
contribute to the change  of energy of this particular system I am  now going to split into two
components.

So I am saying that this P  has components of viscous and pressure I  can also have components
of gravity  which I will say it is acting in some  direction like this okay so therefore  this is the
gravity contribution I am  separating that from the viscous and  pressure contributions so I will
write  those contribution separately so as far  as the work done by the pressure for the pressure
and the viscous forces  are concerned so it should be u dotted  with P and they are acting on the



surfaces so it  should be integrated over  the surface so this is one contribution  the other is
coming from the gravity so  that is u dotted with Ρ G and this is  a body force right this is acting
on the  entire volume so this should be a  volumetric integral so what is the final  contribution so
you have the work and  energy heat okay. 

So the heat will be q  dotted with the normal and once again it  is a surface integral right now
what  should be the magnitude of the should it  be what should what should be the sign  of this +
or -  okay so in fact I should give it  correct  representation here so in my  thermodynamic
definition the heat  transfer to a system is positive  therefore I will not denote that my heat  flux
is actually entering its particular  so therefore Q dotted with n will be  negative so I have to put a
negative  sign here to make sure that this  convention is the positive heat transfer  all right  so
according to this is opposite to  the normal okay so this is the positive  definition of heat that is
added to a  system and this has to be negative so  that's it so once you have written this  for this
particular control volume  control mass so okay so this is for a  control mass okay.

 This is the first law  for closed system all of you agree there  are no flux terms so this is very
straightforward to write then for an  open system now you know directly the  Reynolds transport
theorem which links  the closed system to a control volume so  just replace the left-hand side
with the  partial derivative terms okay and  therefore you will finally have your  conservation of
energy for an open  system okay so if you do that  so this will on the left-hand side.

 I'm  going to replace that with the Reynolds  transport theorem formulation I have V D  by DT
of this particular row into u +  half u dot u okay the entire thing okay  anyway + I have I can use
the tensor  notation rather than using the  divergence notation here D by DX K I am  going to use
this particular notation  into Ρ u + half u  dotted with u okay  multiplied by what u K okay the
entire  term DV okay so I am replacing this  control mass derivative with a control  volume
derivative that should be =  to D by DX K okay so this should be just  as it is integral is u naught
P D S +  integral u dot Ρ G DV - integral Q  dot n DS okay where my p  vector here  is nothing
but the viscous stresses okay  so that is Σ  I j into n vector okay.

 So this is my compact notation for these viscous forces which are acting on  this particular
control is it clear so  only the left hand side I am writing in  terms of the Reynolds transport
theorem  control volume derivatives . So now you  can apply the Gauss divergence theorem  you
can also express this and this and  write this in terms of volume  derivatives  so therefore I can
say my integral u dot  P D s will become integral D by DX i UJ  Σ  IJ DV and integral Q dot and
DS will be integral over volume del  Q J by Del XJ into DV  okay so you please understand the
tensor  notation here so in this case you simply  say DQ X by DX + DQ y by DV + DQ Z  by DZ
okay here this is the this is a  tensor okay, Σ  this is a stress tensor  okay you have all the nine
components so  you have to go one by one so you start  with say I = to 1 and  J = to 1 and  then I
= to 2 and  J = to 2 so and  you keep expanding this okay so this is  a very compact way of



writing all those  terms okay you can go back and check  with your Cartesian coordinate system
okay whether  this  makes  sense okay so I   am just  going to  write  this  in  terms  of   volume
derivatives  

and therefore if I put them together I  can say the integrand should be 0  because I can collect all
the terms  which have volume integral okay on  the left hand side and that will be  = to zero and
therefore the  integrand has to be zero therefore the  integral becomes d by DT of my Ρ u  + half
UJ u J so this is the compact  notation again + D by DX K Ρ u +  half UJ u j UK okay  so now
you see if you are going from k  = to 1 to 3 so you are adding all  the special derivative terms
with  respect to XY and z in Cartesian  coordinate system  okay and for each of this you are you
are saying this is u square + v  square + W square so you have two   notice notations here 1 for J
and 1 for K  they are independent ok so this J will  go within the k k loop alright so  then you
have to expand that for  different coordinate systems k = to  1 2 & 3 so on the right hand side you
have UJ ok so this should be D by DX I  into UJ Σ  IJ + UJ into Ρ G J  this is the body force term
-  you have  DQ j by DX J all right so this is your  energy equation .

Now this has to be  closed and one more thing we can do is  this has all these complex terms
which  we can probably simplify once again we  can write the mechanical energy equation  in a
tonsorial  form and we can subtract  that from this ok so the mechanical  energy equation if you
multiply your  momentum equation by the velocity terms  okay and sum all the three momentum
equation .

So your mechanical energy equation in  the tonsorial form can be written as d  by DT Ρ UJ UJ by
2 okay this is like  Ρ u square + v square + W square  by 2 okay that is the + you have D by  DX
K Ρ UJ u J by 2 u K so what you are  doing is you are multiplying with UJ so  that is for  X
momentum you have  multiplication with u Y momentum V and  that momentum W and this K is
basically  your spatial derivative the divergence  operator essentially so you have UD u by  DX +
VD u by DY so that that is taken  care by this K so that K is different. 

 From this J ok that that is that is  = to UJ D Σ  IJ by DX I + Ρ  UJ GJ so for a particular
momentum X  momentum you will have gravity in the X  Direction y direction and so on okay
so  this also is the stress tensor J here  indicates the direction along which that  stress is acting so
in the X direction  you will have Σ  xx and no tau YX and  so on and this is the since it is a
tensor it has to be the gradient in that  particular direction okay so for x  direction you have D Σ
xx by DX the  Y direction you have D tau YX by DY and  so on okay so that is the compact way
of  representing that all those terms in the  Cartesian system so now if you subtract  let us call
this number we all we all  ready use number one no okay somewhere  we use before I think but
let me  redefine as number one and this is two  and subtracting two from one so I will  be left
with an equation for only the  internal energy  



So subtracting two from one I can say  that I will get an equation like D by DT  Ρ u + D by DX K
so these two terms  get cancelled off I will get another  term here Ρ u u K on the right hand  side I
will have Σ  IJ because if you  expand this is Σ  IJ into d UJ  by DX I + UJ into D Σ  IJ by DX X
so u J into D Σ  is n this when  you subtract they are gone okay so you  will have Σ  IJ into d UJ
by what DX I  and the body force term gets cancelled  off directly then you will have - d  QJ by
DX J all right so what I am going  to do. I am writing this term.
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In terms of  total derivative again which you are  which you know is d u by DT and you know
for incompressible fluid now I am going  to bring in the relationship between the  stress and
strain rate so I can say  Σ  IJ = to - P .

So I am going  to write this in terms of than tonsorial  notation and you will see that this is a
very compact you do not have to write  this for each and every component by DX  j + D u J by
DXI does it make sense  where Δ  is your Kroc Necker Δ  so  Δ  IJ will be = to 1 if i =  to j = to 0
if I is not = to  J right so what it means only for your  normal stresses you have - P the  pressure
forces come to balance the  normal stresses whereas the tangential   stresses do not have the
pressure force  to balance that so there they will  disappear because this is your Δ   function okay
so wherever you have  normal for normal stresses only there  the pressure stresses will be there
otherwise it's zero and this is a common  representation okay so this will be said  D u by DY if
you suppose you have I  = to 1 J = to 1 then this will  be D u by DX + D u by DX that is  twice d
u by DX okay if you are writing  your tangential stresses so I = to  say 1 J = to 2 so this will be d
u  by DY + DV by DX which are the  components under shear stresses okay so  depending on the



particular  index I  and  J  this  can  be  written  for  all  the   components  normal  component  or
tangential components.

 It is a very  compact notation ok for those of you who  have probably not known any of you not
heard of tonsorial notation okay so, I  think you may have to brush through any  basic fluid
mechanics book maybe usually  in the appendix there is something on  tonsorial notation or you
can just  quickly read through tensors it is I  mean it is very common since you can see  that from
yourself you do not have to  expand that you can substitute.

(Refer Slide Time: 37:09)

If it is  2 dimension I and J can maximum go to 2  if it is 3 dimensions so you can just  expand it
in that manner and if you  represent something like this that means  this is a summation operation
you do not  just stop like this you have to expand  it ok for different values of J and I  that is what
it means  ok so therefore now if I substitute this  you see how easy it reduces to the final  form in
the tonsorial notation.

 So this  gives me Ρ D u by DT okay so this will  be I am substituting for Σ  IJ in  terms of this so
- P into D  u K or DU j by d XJ + D by DX J of  so I am also using the furriers   heat  conduction
law for Q and I am writing  this in terms of the temperature  gradient DX j okay + you will have
some other  terms  which  form the  viscous  dissipation  right  here  in  fact  this  will   be  0 by
continuity right so what I am  doing is I am clubbing all the pressure  term so if you write this is
P  Δ  IJ and this will be 1 only  if i  = to J therefore if you are J and i  are = only  that term will be
there and when they  are = that is nothing but the  continuity equation for incompressible  flow



okay so that will automatically be  satisfied therefore you will have your  total derivative that is =
to your   laplacian operator right here +  your viscous dissipation term and for  incompressible
flows. So this Φ what I have written here.
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 You can see that for yourself will be new DUI by DX j + d  UJ by DX I times what fill in the
blanks  what plot will be the multiplication  factor. Here, so I am just substituting  this into this
particular term ok The  pressure term I have cancelled it DUJ by  DXI right okay now you can go
back and  check for your Cartesian system whether  you will get all the terms  you know you
can start with say  you I = to 1 J  = to 1 and you will get 2 D U by DX  into D u by D X so that
will be 2 D u by  D X the whole Square to new D u by DX  the whole Square and if you have +
then you have to expand in Y Z Direction. So you have other D DV by DY + DV by  DY the
whole square + DW by DZ 2  whole square +

 Now if you go to I = to 1 J = to 2 then you will get your other terms D u by DY + DV by DX
now this again has to be expanded so for different values of J so again if you if you if you do that
you will get DV by D DX + D u by DY the whole square okay which you have derived in the
Cartesian coordinate system. So this  is a very compact notation alright  so now therefore that
that is your  final energy equation which you have you  can write down in a coordinate free
representation okay for a control volume  so this is finally for a control volume .

Okay so therefore I think this gives you  a pretty good idea how the Reynolds  analogy can be
applied  to  derive  the   conservation  equation  so  all  the   Reynolds  analogy  says  is  you can
transform your variation with respect to  a control mass to a control volume okay  and you have
to write down the  conservation laws for a control mass  which is much simpler and then you



apply  that relationship and then you write the  final equation for a control volume okay  and this
is a completely  ordinate free representation so any  questions.

So what you have to do is go  home and then check once whether all  these tensor notations make
sense to you  and if you have any questions you can  ask me okay so it takes some time for  you
to you know understand this  completely but it is not that difficult  either okay so working with
tensors you  don't make any mistake so that is  another advantage and finally it's up to  you to
expand that in what are  coordinate system that you are working.

Okay so very quickly what I am going to  do is another five minutes I am going to  go over to the
second  law  of   thermodynamics  because  we  have  derived   all  our  required  conservation
equations  applying the first law for energy but we  have to see something about more  important
fact which is entropy  generation okay when you have heat  transfer you have some kind of
entropy  generation inside the system as well  so  the heat  transfer  results  in some  internal
irreversibility and we will see  how this internal irreversibility can be  characterized okay very
briefly  okay I am to go into too much  of detail okay. So I am just talking about the second law
aspects now.

(Refer Slide Time: 43:11)

Okay so I am talking about irreversibility is and entropy generation  and you all know we can
start with the  clashes in= ITY you know which  relates your change in entropy to the  amount of
heat transferred.
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 what it says  if you have a perfectly reversible  process so your D s is = to Δ  P  this is your
perfectly reversible  process okay if you had differential  amount of heat so you can relate your
change in entropy directly with this  particular relationship you can  calculate the change in
entropy if you  integrate this particular equation okay .

 Now if you have some internal  irreversibility what it says is your D s  is greater than or = to this
so  usually for internal if it should be  greater than this so we can also say or  otherwise D s is =
to this + some  entropy which is generated inside the  system due to irreversibility is you know
these irreversibility is  could be one of  them could be from the viscous  dissipation  okay the
energy equation you have a  contribution of viscous dissipation  right so what it says even if you
don't  transfer heat that viscous dissipation  is sufficient to increase the energy of  the system that
means part of the  kinetic energy is converted into energy into internal energy of the  system.

 Okay so that can cause additional  irreversibility is apart from that your  conduction or heat
diffusion itself will  generate some internal irreversibility  okay so we will now try to estimate
okay  what is the contribution of the heat  transfer and your viscous dissipation to  the generation
of heat entropy okay that  is a very important thing because  it is not just enough to understand
the  conservation law we should also  understand and characterize what is the  contribution of
these components to your  entropy generation in a system okay  therefore we will just quickly
expand  this for a closed system .We can write this.
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 in the rate form as DS by DT is greater than or  = to 1 by d DQ by DT okay this is  nothing but
the heat transfer rate okay  so you can call this as Q dot or  whatever heat transfer rate so for an
open system okay. So what I am going to do is I will express this total derivative this is for a
closed  system.  I   can  use  the  Reynolds  transport  theorem   which  I  have  expand  the  total
derivative  in terms of the partial derivatives I  can say that this is my total entropy  now if I
define an entropy per unit  volume as a property.

So I can write this  as rho  into s so this is the entropy per  unit mass Here I am sorry okay this is
me this is your entropy specific entropy  therefore they α which is entropy  per unit volume will
be rho  times s and  integrated over the different entire  volume + what is the second term.
Okay  so this is your s into so this is rho is   times so this will be the  velocity component okay
which will make  your derivative here V dot n DS this is  integrated over the control surface this
should be greater than or = to if  you integrate this again over the  control surface because your
heat  transferred is transferred across the  control volume boundaries okay  DQ by DT okay DS
all right so this is your equation for  conservation of entropy.

 So this is the  entropy conservation equation you can  say for an open system alright so it is  just
like your energy conservation you  can write something in terms of entropy  flux okay and your
rate of change of  entropy with respect to time and that  should be greater than or = to your  heat
transfer which is happening divided  by time the temperature sorry so what we  will do now is
that we will expand this  particular term on the right hand side  okay .

So we will apply Gauss divergence  theorem for this term as well as this  right hand side term
and we can expand  that term a little bit okay so if you  write in terms of the Gauss divergence
theorem so what I am going to do is that  so this difference ideally if you don't  have any internal
irreversibility is this  left hand side - the right hand side  term should be zero right if that is



greater than zero that means you have  some internal irreversibility so what I  am going to say
you are internally  irreversibility is dot gen.
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 Is = to this -. Okay so which is nothing but your rho d s by DT. Okay so I am just  writing this in
terms of the total  derivative + I am going to expand  this particular term I will write that  using
Gauss divergence theorem as del  dot one by T this can be written as del  dot 1 by T del Q by DT
for the entire  control volume  all right so this can be expressed as 1  by T I can write this as del
dot Q  double prime now the del Q by Del T is  nothing but the heat flux primarily so  this can be
written as del dot Q I can  take 1 by T out - I can take 1 by T  Square Q double prime dot del.

 T okay I'm  just splitting this derivative I mean  just expanding I'm just saying this is 1  by T if I
take out this is del dot Q  double prime - if I take Q double prime  out so this is 1 by T Square -
double  prime dot del T I'm just expanding and  rewriting this so this is my final  expression
which says that my generation  term has something like a total  derivative + this + this sofa if
you ideally balance all these terms  together you can calculate your  irreversibility internally
Okay so  we  will  stop  here  and  tomorrow we will   continue  and show what  are  the  final
expressions for the contribution to  internal irreversibility .

Reynolds Transport Theorem

End of Lecture 6



Next: Entropy Generation and streamfunction-
vorticity formulation

Online Video Editing / Post Production

M. Karthikeyan
M.V. Ramachandran

P.Baskar

Camera
G.Ramesh

K. Athaullah

K.R. Mahendrababu
K. Vidhya

S. Pradeepa
Soju Francis

S.Subash
Selvam

Sridharan

Studio Assistants
Linuselvan

Krishnakumar
A.Saravanan

Additional Post –Production

Kannan Krishnamurty & Team

Animations
Dvijavanthi

NPTEL Web & Faculty Assistance Team

Allen Jacob Dinesh
Ashok Kumar

Banu. P
Deepa Venkatraman
Dinesh Babu. K .M

Karthikeyan .A

Lavanya . K
Manikandan. A

Manikandasivam. G



Nandakumar. L
Prasanna Kumar.G
Pradeep Valan. G

Rekha. C
Salomi. J

Santosh Kumar Singh.P
Saravanakumar .P
Saravanakumar. R

Satishkumar.S
Senthilmurugan. K

Shobana. S
Sivakumar. S

Soundhar Raja Pandain.R
Suman Dominic.J
Udayakumar. C

Vijaya. K.R
Vijayalakshmi

Vinolin Antony Joans
Adiministrative Assistant

K.S Janakiraman
Prinicipal Project Officer

Usha Nagarajan
Video Producers
K.R.Ravindranath

Kannan Krishnamurty

IIT MADRAS PRODUCTION
Funded by

Department of Higher Education
Ministry of Human Resource Development

Government of India

Www. Nptel,iitm.ac.in
Copyrights Reserved


