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So very good afternoon and today we will look at the different velocity profiles  the last class we
had  quickly  derived  the  velocity  profile  in  the  laminar  sub  layer  in  the  log  layer  we will
summarize that and then quickly move on to the  heat transfer so far we have not really focused
on heat transfer per se this is  a very generic discussion on turbulence okay which you will find
in any basic  book we will now slowly transition to what happens when you want to consider a
turbulent heat transfer particular focus.

On that and how different it is going to be from modeling the turbulent flow field okay so in fact
we will use some kind of analogies the same way that we did in the laminar flow and as I told
you the most rigorous way of looking at turbulence is to therefore solve the rants equations okay
we have the Reynolds equations for the momentum where you have the turbulent viscosity and
this has to be solved either / a very simple mixing length approach provided you have a boundary
layer.



Which is always attached okay this is the parental idea hypothesis of how the turbulence cascade
happens and then you can solve the energy equation with introduction of a  turbulent parental
number so once you have the turbulent viscosity you can extract the turbulent thermal diffusivity
from this and therefore use  that  the solution of the energy equation so this  has to be done
numerically right but if you want to pass the solution  to these Ran’s equations the only other
option  in fact which works reasonably well for basic flows such as we flow through  ducts and
then boundary layer flow you know so we will use some kind of  analogies which we will look at
in the next couple of classes okay.

So today just let me once again summarize the nature of profiles that  you find indeed within the
boundary layer  of a turbulent flow so usually these are derived either for a simple case like a
flow past a flat plate where you have the turbulent boundary layer and you  have a sub layer okay
or a simple fully developed turbulent fully developed flow  through a duct okay so where you
talk about the boundary  layers merging and then you also have a growth of a small viscous sub
layer the  turbulent boundary layer is much but that is a small viscous sub layer which  is actually
still growing in the case of a turbulent fully developed internal flows.

(Refer Slide Time: 03:16)

So in these cases you classify this is a laminar sub layer and this is your fully turbulent boundary
layer okay.



So we have therefore from the expression for the total shear stress that is τ is = to τ wall which is
= we had μ + τ w /  Ρ we can use and then say this  is your kinematic  laminar  kinematic  +
turbulent kinematic viscosity times D u / d y so from this we arrived at the expression in terms of
the non-dimensional velocity profile and the non-dimensional y ρ coordinate which is y + we had
1 + μ T / μ this is = 1.

(Refer Slide Time: 04:19)

So we had  just manipulated this equation so that we can cast it in non-dimensional u +  + y +
where the non-dimensional y + is = to the dimensional coordinate x u τ / μ this is your frictional
velocity which is √ of wall shear stress / Ρ   so these are your turbulent parameters you know
there is  nothing very logical why we should use a friction velocity here but it is supposed to
scale well for different kinds of Reynolds numbers if you use y +  define in terms of friction
velocity okay and similarly with respect to u  +  we have used u / u T so from this so we have
differentiated x a laminar sub layer.

So for the laminar sub layer case you are new to buy new will be very  small compared to 1 and
therefore we get a linear variation in the velocity  profile so therefore here we got the profile
which was u + is = to y  + whereas in the turbulent boundary layer if you neglect the laminar sub



layer and assume only a turbulent boundary layer which is present  throughout we got the fact
that new T / μ is much  ≥  and therefore  we substituted for μ T from the parental mixing length
model  ok  in the parental  mixing length model  the turbulent  viscosity was assumed to be a
function of what the length scale which is the mixing length and the velocity  scale essentially
you have that for LM square x d u / d y and a kind of a  very empirical crude empirical guess for
the mixing length will be the fun Carmen constant times the actual distance from the vertical
distance from the wall Y ok  so if you consider the effect of laminar sub layer there will be a
damping  function if you consider only a purely turbulent boundary layer.

Then you don't have that so therefore we just  substitute for this x this and when we perform the
integration we come out  with 1 / K non of y + + a constant  so this is the nature of the so this
should  be  yeah  absorb correct  you're  right  okay so  the  prantle  so this  is  this  is  what  was
originally conceived / Prantle himself so this linear layer and the large layer  were derived /
prantle  using his mixing length model and the constant here this   is called the Fon Carmen
constant one Carmen is actually student of Brant on so  this is given as 0.41 and this constant C
do you remember what it is so this is  actually 5.5 so now if you plot this profiles let us say on
the x-axis you  have you are plotting y + in fact you can use a log scale and plot this on the  x
axis and on the y axis you can plot the logarithm of U +.

(Refer Slide Time: 08:12)



Okay  you should understand this y + very several orders of magnitude within the  laminar sub
layer you are talking about the order of y + is around one  whereas in the turbulent boundary
layer it can extend up to a y + of close at the edge of the turbulent boundary layer so therefore
three orders of  magnitude we cannot plot on linear scale so we have to use a log scale to plot
this and similarly the variation of U + also will be quite significant so  if you therefore plot this
on a log scale what do you have for what will happen to this profile u + is = to y + so this is a
linear on a linear scale.

This will look like a straight line but now on a log scale it will look  something like this  okay so
this could be the edge of this will be somewhere around you + need  not be on a logarithm scale
we can actually plot this directly on a linear scale itself but the y + will be on a  logarithmic scale
because y + variation is quite significant for  example if you start from 0 this will be five okay
and I am just plotting the  actual y + how it looks okay suppose you plot it on a log scale directly
okay  and then you have somewhere here variation of about let us say 50 and then we have about
100 and maybe 500  some kind of variation like this.

(Refer Slide Time: 10:14)

Okay so if you plot the linear profile so this will be looking like a curve on the logarithm scale of
the Y ax x axis and  then if you plot the log profile here this is y + is = to lawn of u  + is = log of
y + so that  will  look like a  straight  line  okay so but  this  limit  will  be a  straight  line  from
somewhere like this  okay so the reason being if you look at the extent of the laminar sub layer it



will be usually the order of 1 to 5 and this is not a sudden jumps from the  laminar sub layer x the
fully turbulent boundary layer that is a transition in between when you do the  experiments okay
you find that it does not directly this . directly does not  transition to this okay so the time fully
turbulent boundary layer will  actually start from y+ which is greater than 30 okay so you can
actually  look  at   the  corresponding  x  axis  it  will  be  around  30  so  there  is  a  discontinuity
discontinuous region between the laminar sub layer and the fully turbulent  boundary layer.

So in order to patch this later on Carmen's student of prantle himself he used a simple correlation
again empirical not rigorously derived  like the way we are doing this so he just made sure that
there is a smooth  transition from this region to this region in fact let me draw the slope the  slope
will come out to be something like this in the log line so this is your u + is = to y + this is your u
+ is = to 1 / 0.4 1 Lon  of y + + 5.5 okay now in order to patch  this to this one Carmen
introduced another intermediate layer a buffer  layer so this is y + but I have plotted with a log
scale.

So if you take a graph  with a log scale on the y axis and the x axis okay so then you have a
distribution  of .s like this ok you have 0 to 10 and then suddenly 10 to maybe 100 then  100 mm
so the order of magnitude will quickly increase so on this scale  since you have your plotting
directly lawn of y+ on the x-axis so this will be  a linear curve right so now the intermediate
buffer layer is supposed to  provide a transition from the edge of the laminar sub layer to the
starting of the fully turbulent boundary layer.

So  this was actually called the buffer layer red / von Karman and it uses a  similar kind of
logarithmic variation but with different slopes so this turns  out to be _ 5 times Lon of Y + _
three . 0 five and this is valid for a y + ≥ 5 on  ≤ 30 okay so this is valid the pure log lay law is
valid for y +  greater than thirty and the linear law is valid for y + less than five okay  so this
derivation is just to make sure that your u + recovers at y +  = to five the value of the laminar sub
layer and at y + = to thirty it should recover your Rosina log  value okay so it is just like a buffer
between your turbulent boundary  layer and your laminar sub layer of course.

I know you cannot really visualize this or we cannot really see this in experiments but this is how
it  is conceptualized okay so definitely the discuss a blur exists okay but how the  transition
happens it's  all  concepts  ok so I  mean this  is  what has been  widely accepted  because it  is
reasonably a good mo I mean a good patch work rather than complicating it further okay  so this
is a classically you know accepted variation of velocity profiles.
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From the wall all the way to the fully developed fully turbulent boundary layer  okay so and also
this has to make sure you do not have any adverse pressure readings so if you have adverse
pressure  this is therefore derived for the case of a flat plate boundary layer if what  happens if
you have a favorable or adverse pressure gradient again those pressure gradients will change the
nature of these profiles okay so then you have to do an experiment and then find out how these
profiles way and then  plot them okay so this is the basic you know idea about the variation of
velocity profiles now one thing I just want to emphasize from the rants equations.

We can again write down the boundary layer equations for turbulent  flow because those ran’s
equations again are a generic navies-stokes equation can apply that to you know any kind of flow
the pressure gradient  without  pressure gradient  now with all  kinds  of  diffusion  in different
directions but if you want that to be solved specifically for say  the flat plate boundary layer okay
so we have to write this in a classical  boundary layers form so can you try writing down the
turbulent boundary  layer equations from the ran’s  equation  we use the same order of magnitude
analysis that we did earlier  for the  turbulent boundary for the laminar boundary layer same
conclusions come out  the diffusion in certain direction is  predominant  over the other the y
momentum can be neglected and these same facts can be used and only we are  applying this to a
Ran’s equation.



Okay  so  therefore  the  continuity  equation   remains  the  same  except  that  you  replace  the
instantaneous components with your  main components and out of the 2 momentum equations
the dominant momentum  equation will be in the X direction okay so this is your X and this is
your  Y so therefore we can write this as u bar the u bar / DX so the advection  terms will be as
they are and we can also include the pressure gradient term  and what about the diffusion term
now so you remember that we have 2 diffusion terms and we have also combined the  turbulent
stresses as a diffusion along with the molecular diffusion so we have  diffusion in the X direction
and in the Y direction. So according to the order of magnitude analysis which is the dominant
diffusion in the Y direction so we have to just retain D / d y off so we have μ+ μ T x D u / d y. 

(Refer Slide Time: 18:36)

 

Okay  now in  the  Y momentum equation  y  momentum  itself  is  negligible  compared   to  X
momentum and therefore we have DP / DX is 0 there is no DP / d y 0 there  is no variation
perpendicular to the plate length so you can use bars  everywhere sometimes you know it is
understood implicitly that when you  write this equation they are all for mean flow so you can
actually omit them  becomes painful to use bar every time right and finally the energy equation
also for the turbulent boundary layer  becomes α.

Now when we are using here we have to be again careful D / d y of  α + α T x DT bar / d y  right
so we have the dominant diffusion both momentum and thermal diffusion  happening in the
vertical direction that is where the boundary layer is very you know so well again do you think



that  we  can find analytical  solutions to this  like the Blazes  solution it  looks that   we have
simplified the Ran's equation for the boundary layer but the major  problem is μ T it is not a
thermo physical property we cannot assume that  to be a constant and wherever flashes has used
μ we cannot replace that with μ + μ T okay so now this is where  the problem comes so we
cannot simply find similarity solutions for the  turbulent boundary layer the same way that we
have found it for  the Blazes equation for laminar boundary layer flows.

Okay there have  been some attempts to find you know kind of similarity solutions but the kind
of  effort that we put x it is not worth it so it is better to go for approximate  methods okay so
usually the easiest route to finding the solution to these equations is to use integral equations
momentum integral equations approximate  methods where you solving momentum and energy
integral equations so we will  have the same kind of equations that you had earlier except that
wherever we had  new we will now have μ + μ T.

Okay now how is it going to simplify it's not  going to simplify that but the kind of profile that
we are going to take for  velocity we cannot take a linear profile or for the matter quadratic or
cubic so  you are left with only one option which is to assume what is called as a 1 /  seventh
power law variation that is in the case of flat plate we assume u / u  ∞ as Y / D to the power 1 / 7
so this  is the call  the famous power  law equation it is a reasonably good assumption for a
turbulent velocity  profile.

(Refer Slide Time: 22:41)



Okay so this one seventh power law however has a difficulty unlike your quadratic or linear
profile what is that? so, what happens to the derivative of velocity at the wall you will have a
singularity correct so this is a problem so that is why you cannot use this profile to calculate the
wall shear stress or the gradient of velocity at the wall because you need that when you have
integrate this on the right hand side you will have new + new TD u / d y at y = to 0 and D u / d y
at y = to 0 you cannot determine from the 1/7 power law.

So then what do we do so we do not have any other option but to use some correlation for the
wall shear stress okay although this is the best variation of velocity for turbulent boundary layer
we cannot use it  to integrate  right up to the wall  at  the wall  it  becomes a singular solution
therefore we will have to use some kind of an empirical formulation for the wall shear stress and
usually the variation is used from the C F = 0. 046 times so this is re λ to the power _. 2.

So  this is the kind of  correlation that is the most commonly used for approximating the w shear
stress in turbulent boundary layer okay so this is nothing but τ w / 1/2  ρ ∞ 2   so therefore if you
take the half on the right hand side  this becomes zero point zero two three and this Reynolds
number is based on the  boundary layer thickness okay so therefore this will be u ∞ Δ / µ to the
power _ 0.2 okay  so in the idea and the integral method then is to substitute this for the right
hand side okay at the right hand side we have this entire term is going to be a w correct.

Since we cannot use that  profile we will directly substitute for τ wall from this and now we will
have an  equation which we can solve and find out the expression for boundary layer  thickness Δ
okay so that is the same thing you do in your classical momentum  integral equation except that
the right hand side you integrate the profile up  to the w but in this case you cannot do that so we
have to therefore patch it  with a correlation on the right hand side find out the expression for Δ
so Δ has a function of Reynolds number okay the same expression can also  be used for internal
flows so an internal flows.

You will be replacing  your CF with your friction factor and this friction factor has to be which
one  Fanning or Darcy  fanny because the w /1/2 Ρ u ∞ 2 is the Fanning friction  factor Darcy is
defined based on pressure drop okay ,so the equivalent  will be using the Fanning friction factor
once again which will be τ w / ½ Ρ ∞2 which is the  same thing .046  now only  difference is the
Reynolds number will be now defined based on the diameter of  the duct are not based on the



boundary layer thickness now this is for the fully developed turbulent boundary layer  so there
since your boundary layer thickness does not vary. 

So we will use  the hydraulic diameter rather than the value of Δ okay so these are the  most
famous relations that are used you know if you look at in fact the Moody's chart for internal
flows the turbulent  for the turbulent region it is also plotted as a function of the roughness  of the
surface  so  that  is  a  more  detailed  expression  because  in  turbulent   boundary  layer  surface
roughness also plays a very important role and these correlations are basic they do not account
for surface roughness right so therefore the Moody's chart also  expands this basic correlation to
account for the effect of surface  roughness right so next therefore now that we know the w shear
stress in  turbulent  flow is  turbulent  boundary layer flows is  obtained from this kind  of an
empirical correlation next is to go for the solution to heat transfer  okay so how do we therefore
get  the  solution  to  the  heat  transfer  now what   do  you think  I  mean if  you talk  about  the
approximate methods. 

You will use the  momentum integral method find out the expression for Δ and obviously then
you want to go to the energy integral equation find out an  expression for the thermal boundary
layer thickness but will that give you  the nusselt number well in a laminar boundary layer okay
so  your  Prandtl   number  is  governing  the  ratio  of  your  molecular  diffusion  ratio  of  the
momentum and the energy diffusion but what happens in a  turbulent boundary layer okay if you
talk about this boundary layer this is  actually your turbulent boundary layer thickness so this is
governed by the  turbulent parental number okay. 

So  therefore  now the  question  becomes  I  mean  whether  I  can  use  the  energy  integral  and
integrate it up to Δ T  and what is Δ T here is it only within the laminar sub layer or within  up to
the edge of the turbulent boundary layer so that becomes a problem so  therefore what we will do
is we do not actually solve the energy integral in  this case but we will try to find an analogy
between the momentum and the energy transfer we already saw in  laminar boundary layer there
is a clear analogy between the two if you replace u  by u ∞ with θ the structure of the profiles as
well as the equations  become identical and especially if you have tantalum be equal to 1 they are
exactly the same right. 

You are d u / dy at the w and D θ / dy both the both the Skan friction coefficient and the slope of
the temperature gradient they are identical so what happens in the turbulent boundary layer we
will quickly use these kind of relations and derive the analogy for the turbulent boundary layer so
the first analogy that is quite popular popularly used it is cause they are in also knowledge so
now we are talking about analogies between heat and momentum transfers.

(Refer Slide Time: 31:30)  
 



And the most popular is there our most basic also it is called the Reynolds analogy now we have
the picture of the turbulent boundary layer here which has three layers in fact okay according to
the hypothesis that we have a linear variation in the laminar sub layer we have a buffer layer and
then we have a turbulent boundary layer okay. 

So now we can actually look at all the three  layers together and that brings a very complicated
picture okay but to start  with we will assume the entire boundary layer is turbulent  there is no
laminar sub layer there is no buffer layer so this is called a one  layer model okay and the nonce
analogy is derived based on this one layer model so only turbulent boundary layer extends  all
the way from the w to the edge of the boundary layer okay so in that case  let us again write
down the expression for the shear stress from which we  derived this law of the w so this is your
new + µ T x D u / dy okay  but and how about for the w flux heat flux so this is for the w shear
stress similarly for the heat flux.

We can actually use Q   ‘ by Ρ CP and that should be equal to  - α + α T into DT bar / dy  so this᾿
is your extension to a basic furies law of conduction we also now  include the effect of the
turbulent thermal diffusivity into this right so  therefore if you just assume only one layer which
is completely turbulent so  there will be no effect of the laminar or molecular diffusivity so only
the  turbulent diffusivities will be dominating throughout okay so in that  case we can therefore
divide let us call this as equation one and this is your  equation two we can divide one over two
and we will be therefore so one divided  by two you have τ C P / Q = _ D u bar by DT but if᾿
frontal number turbulent Pranle number =1 okay so I am just making an assumption that right
now my turbulent  prantle number =1.

So  that  the  ratio  of  turbulent  the  momentum to   turbulent  thermal  diffusivity  =1  okay  and
therefore I get  a very simple relationship between Q one shear stress so this is how we are
building the analogy so if you therefore integrate it so for  example if you draw the velocity
profiles  and temperature profile so this is some kind of you let us say mean velocity  outside this
is  T w  and  this  is  TM  and  the  edge  of  the  boundary  layer  okay   this  is  the  variation  of
temperature profile vertically and velocity profile  therefore if you integrate it at y equal to zero



your U is zero and y =  and the edge of the turbulent boundary layer your U becomes um okay I
am using  µ because the µ can be u ∞.

In  the  case  of  external  boundary  layers  internal  boundary  layer  this  is  your  mean  velocity
similarly your temperature can vary from w temperature to mean temperature so I am will just
integrate it and upon integration I can get therefore so if I integrate the shear stress what happens
so I have at the edge of the boundary layer the shear stress is 0 whereas at y = 0 it is τ w okay.

(Refer Slide Time: 37:14)  

Therefore I have the  w CP by similarly the heat flux right this is become w heat flux here on
this side I have / T w - here  okay please check that you integrate it from the w to the edge of the
boundary layer right okay so now I am going to introduce I already introduced  the definition of
Stanton number to you which is nothing but H / Ρ CP um this  is nothing but nusselt number by
re into PR correct  so can you cast the equation let us name this as equation number three here
the integrated one in terms of Stanton number okay and therefore tell me the  relation between
Stanton number and non dimensionalize the shear stress w  shear stress in terms of the friction
factor the finding friction factor. 

Yes  so give out a relation between Stanton number and F use this equation  should be able to
multiply it with some terms so that you can write this in  terms of standard number and hitch is
nothing but Q all ’ / T w  _ TM okay by for example ρ numerator and denominator so Q / T  w _᾿
TM / ρ CP I can multiply numerator and denominator by µ  right so this will be H by I take this ρ
CP µ so that will be standard  number okay and then I have towel by ρ 2 that is nothing but F by 2
right so therefore finally.

(Refer Slide Time: 40:06)

  



I get the relation in terms of standard number F /2 and what is this is your analogy remember you
derived the same thing in laminar boundary layer. We derived it from the expressions for nusselt
number  and skin friction coefficient that we got from exact solutions and we got the  same
expression  in  laminar  flows  now in  turbulent  flows  also  we  are  getting  the   same analogy
assuming that the entire boundary layer is turbulent and also  your turbulent antal number is 1 so
it is not hard to visualize it if  your  entire turbulent boundary layer entire boundary layer is
turbulent and both the  diffusivities are same so once again if you look at  the nature of this
equation  therefore your velocity gradient and temperature gradient have to be having  similar
values okay so therefore the Reynolds analogy is also applicable for  turbulent boundary layers
now if you used for internal flows when internal  flows already we have the relation between F
and the Reynolds number. 

 So please substitute this okay now one more thing so this is your Renault  analogy later on it has
also been extended to various prantle numbers so  it is for the case where parental numbers not
equal to one it has been  extended and this become the Reynolds Colburn analogy where you
have prantle  number factor also so this is your Reynolds Colburn analogy  okay so the effect of
the molecular prandtl lumber is also brought in into this okay this is not this is not turbulent
prantle  number this  is  molecular  prantle   number ok the effect  of molecular  prantle  number
which we have neglected  here has also been brought in later by coal burnt and extended to
different  values of molecular prantle number. 

Because at the w finally molecular  prantle number is important we cannot claim that we can
predict the nusselt  number okay nusselt number is a quantity at the w without accounting for the
laminar diffusion so therefore later on coal burnt adjusted this four values of  molecular prandtl
so now you can therefore substitute the expression of F  into this and get the expression for
nusselt  number as a function of Reynolds  number and prandtl  number can you do that you
already have the announced  number dependents here okay so what will be this constant zero
point zero I am just substituting directly for F 0  .0 23 I have re D  0.2 but Stanton number is
nusselt number by re PR so I have point two this is _ 0.2 into 0.8. 



So you will have into  Reynolds number so it will be re 0.8 right  and what about prantle number
power  so this is again our EPR okay so 2 / 3 _ 1 / 3 so 1 1 / 3 and then this  is the export point 3
okay,  this is therefore a correlation for nusselt number directly derived from the  analogy so we
are not solving your energy integral or anything here okay so this correlation directly gives you a
very simple approach directly from the analogy you know the expression for the  w shear stress
therefore we use the analogy and directly get the expression  for nursultan this correlation is
popularly referred to as latest bolter  equation very fundamental equation that many people know
in heat transfer  turbulent heat transfer in ducts flow through ducts no fully developed  turbulent
flow through ducts but you may not know how it is derived you have used  this as a correlation
without  knowing how it  is  derived  it  is  nothing  but   derived  from a  simple  application  of
Reynolds Colburn analogy okay. 

It is not  very rigorous but it has been found to be a reasonably good approximation  within + or
_ 20% to the experiments so men people do experiments  on fully developed turbulent pipe flow
they compare it with the data sorter  and find that it is very close so now how do we deal with the
external flows  so this is for the internal flow you have the data sorter now in external  flow your
Reynolds number here is defined based on boundary layer  thickness then what do we do so we
use the momentum integral get the expression  for boundary layer thickness as a function of your
local Reynolds number  and that is putting into this substituted into the Reynolds Coburn  and
you will get a similar expression for the external flows okay. 

So only  thing there you have local Reynolds number in fact the variation is similar  same you
have instead of re D you will have re X  .8  prantle number 2  .3 this constant will be slightly
different  it comes out to be something like point zero to nine an external flows because  you are
substituting  Δ from the  momentum integral  so  that  constant  will   be  little  different  but  the
dependence on Reynolds and prantle number will be  the same okay so for the internal flow case
it is a very straightforward thing whereas for the external flow you have  to use the momentum
integral solve it then use the Reynolds Colburn analogy  okay. 

So therefore although the turbulent flows are considered you know theoretically very complex so
very  reasonable simplifications like these have healed and useful results okay so  sometimes it
looks that they are oversimplification but when you do  experiments measurements and compare
so these correlations match agree very well  and they are there therefore they have been well
accepted even in industries okay so this is one simple analogy but  most often used there are
analogies which are taking into account multiple  layers so from one layer we can therefore
transition to two layer  accounting for the viscous sub layer and the turbulent boundary layer so
that is  called the prantle analogy prater tailor analogy and finally. 

We can also include all the three layers including  the buffer layer so that is called as the one
Carmen analogy so we will derive  these two analogies at least I want to derive the Pant anal
analogy parental  tailor analogy or the two layer analogy then I will just give you the expression
for  the three layer  analogy so most  of  the turbulent  heat  transfer  is  dealt  with using these
analogies  okay, so if you go for complex flows where if you have flow separation or  very strong
pressure gradients then these analogies will not work okay, so in  that case you have to solve the
Rance equations and again model the turbulent viscosity whether you  use a one equation model
two equation model so those depending on the level of  complexity. 



In the computational time you can therefore solve them more rigorously  okay but for simple
boundary layer kind of problems these analogies are the most  commonly used okay so we will
stop here and following Tuesday Monday they do not have a time in the studio we will meet on
Tuesday at  our regular  time 10  o’clock there is  the last  class so we will  complete  the other
analogy also and with  that will complete our turbulent boundary layer convective heat transfer
any other questions or discussion if you have time. I think for 10-15 minutes we can do that
Monday is following Friday timetable is it you.
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