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So good morning so today we will look at will complete the derivation of the arnica equations
that we started today so I asked you to work the energy equation derivation of the rants energy
equation I hope you have tried to do that anyway let us just once attempt it   here and then
summarize the equations together so when we look at the energy  equation.

(Refer Slide Time: 00:52)  

So which is nothing but u DT / DX + V DT / du dy so these are the two dimensional steady state
incompressible energy equation α  into T by DX square that is square dy  square right  so now
when we do the Reynolds decomposition substitute for u and T so  we have seen that the Gnostic
composition for you instantaneous  velocity will give Q Bar + u  V is equal to V bar + V ᾿ ᾿
similarly the instantaneous temperature so therefore if you put a thermocouple  the same flat



plate you can consider that we discussed yesterday the now you  heat the bottom wall and you
insert  a thermocouple  somewhere within the  thermal  boundary layer  similar  to  the velocity
fluctuations have drawn you  will get temperature fluctuations okay. 

Therefore  if  you  apply  the  proper  filter   you  should  be  able  to  average  the  instantaneous
temperature using this   filter  and decompose the instantaneous  temperature  into a mean and
fluctuating  parameter okay so now you can substitute for all of these variables and then  average
the entire equation then also average okay so what we are doing here  is time averaging so for the
2d incompressible steady state doesn't  matter whether we do a time or ensemble average so it
will still be the same  on the right hand side you have D ᾿ 2 and DX 2 the right hand side is easy
you can you apply the averaging rule and separate  this into T bar + T  T  bar so T  bar is zero᾿ ᾿ ᾿
okay. 

So the mean  of the fluctuating quantity is 0 therefore this can be simply written as  now once
again looking at the left hand side we have four terms here we have  four terms here and again
when you split this the way we did it for the momentum  equation okay so for example this can
be written as therefore u  do u   by sorry TT  by DX okay so this we have averaged + you᾿ ᾿ ᾿
have u  dt u  bar dt  by DX average of this + you have u  dt bar by DX the  average of this +᾿ ᾿ ᾿
you have u  dt  by DX average so out of this if  you apply the averaging rule. ᾿ ᾿

So this will be 0 and this will be 0 okay so  essentially from this you are left with only u  DT ᾿ ᾿
by DX average okay  and this is nothing but by averaging rule U bar DT bar by  leox similarly
from the second term on the LHS we have V Bar BT bar by dy +  V  DT  by dy average okay᾿ ᾿
the right hand side is as it is so now we  can write this as d by DX of U  T  _ T  into D u by᾿ ᾿ ᾿ ᾿
DX  so therefore if you take T  constant we will have d u  by DX + DV  by dy which will be᾿ ᾿ ᾿
0  satisfying the continuity for the fluctuating component  so essentially you will have therefore
V V Bar DT bar by dy on the left hand side you will have D by DX of U  T   bar okay + you᾿ ᾿
have d by dy of 3 v  t  bar is equal to RHS is it okay clear right. ᾿ ᾿

So let us now therefore summarize the entire set of Rends equations momentum  and the energy
together so when I am going to write it I am going to take  this term the fluctuating term I am
going to use that towards put it towards  the right hand side okay so I will keep the conventional
advection  term  on  the   left  and  take  all  the  new  quantities  arising  out  of  the  turbulent
fluctuations towards the right hand side so we will see why we are doing it okay  so for example.
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Now therefore  the  final  set  of  Trance  equations  so  the  continuity  for  the  mean  velocity  is
satisfied and so is for the fluctuating component and then anyway we are not going to now solve
for the fluctuating component okay. 

We will only construct the equations for the mean  component this is what we are going to solve
we will see how we account for the  fluctuating component could be and then the X momentum
equation will be u bar V  u bar by DX + V bar D u bar by dy so I am going to take the turbulent
stresses towards the right I have _ 1by know DP bar by DX + now I have nu  into v square let me
first write this and then I will combine it now I have  additional terms - what do I have  - τ by τ
X of U  this is in the X momentum equation u   u  bar right and - D by dy u  V  mod is if᾿ ᾿ ᾿ ᾿ ᾿
occur okay I'm  just taking this to the RHS now if you observe the way that we have written  this
okay we can also write this let me multiply throughout by row first. 

Let me  keep the row here this is dynamic viscosity and therefore I can take Ρ inside because this
is incompressible  doesn't matter this term the diffusion term this costs viscous diffusion and
now the turbulent diffusion so the turbulent diffusion is although arising  from the inertial term I
have taken it to the right now I am going to combine  it with the viscous diffusion yeah okay so
therefore I can write this bunch of  terms as d by DX common and this is nothing but µ d u by
DX _  ρ x  u  u  bar this is one set of terms + I have similarly D / dy of  µ D u / dy _ Ρx u  V ᾿ ᾿ ᾿ ᾿
so I am intentionally writing it in this way. 

Because I want to combine the turbulent stresses with the viscous stresses and I want to group
them together so that we will now draw an analogy okay similarly the Z momentum  equation so
Ρ into we have u  u bar DV bar by DX + V Bar DV bar by dy  on the right hand side we have᾿
DP bar by dy + again I'm going to have D by DX  µ into what do I have DV by DX _ Ρ into u ᾿
V  bar  okay.᾿
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I am continuing this + so I am just continuing that so + D by dy of  µ DV by dy and I have again
_ Ρ into V  V  bar okay so this  will be the structure of my Y moment and finally the energy᾿ ᾿
question also I am  going to write it in the same so what I'm going to do this α  is K by Ρ  CP. 

So I am going to multiply throughout by Ρ C so I have Ρ CP into u bar DT  bar by DX + V bar
DT bar by dy okay and on the right hand side I have now d  by DX of what K DT by DX  and -  -
correct row CP x u  t  bar + I have D by D Y of K DT by dy  _ row CP v  T  is it clear  okay᾿ ᾿ ᾿ ᾿
I'm just rearranging combining basically the turbulent diffusion with  your molecular diffusion
terms yeah all these are main quantities you're  absolutely right all these are main quantities zeros
okay  so now I am doing this is I am going to close this problem okay, now we have a  particular
problem in this ranch models. 

Which are called as closure problems so  what it  means is now when you did the Reynolds
decomposition and averaged it you have created a turbulent stress  which is like u  V  u  u ᾿ ᾿ ᾿ ᾿
so on and so forth  similarly in the energy equation okay so now you have your molecular
diffusion  which is giving all this τ  xx τ  XY τ  XZ and so on and so forth  you have your τ  YX τ
YY τ  Y Z τ  ZX thousand Y thousand so apart from  that now you have therefore set of nine
stresses coming from the turbulent  inertial terms so we can therefore group them as what _ Ρ u ᾿
nu   can you fill in all these elements _ Ρ u  V  so if you write it  in a three dimensional form᾿ ᾿ ᾿
so if you derive this for the XYZ momentum  equations then you have _ Ρ x u  W  so like that᾿ ᾿
you have all  the terms. 

We have V  u  _ ρ v  v  _ Ρ V  W   Ρ W  u   w  so apart from your viscous stresses here᾿ ᾿ ᾿ ᾿ ᾿ ᾿ ᾿ ᾿ ᾿
arising due to the molecular diffusion you are now adding  your turbulent stresses okay so when
you do this you can therefore draw an analogy to molecular we name this as  turbulent diffusion



okay although this is not a classical diffusion term like  molecular diffusion this is coming from
the inertial term but we for the sake of  convenience we would like to combine this with pure
molecular diffusion and name this as turbulent diffusion okay so  in doing so what we do is we
want to avoid the closure problem. 

Because now  you have this term in order to solve for these equations you need to solve for
therefore u  v  u  u  all the nine stresses have to be solved then only we can solve these᾿ ᾿ ᾿ ᾿
equations  but  you  don't  have  any  equation  for  the  stresses  you  don't  have   any  governing
equation so then what can we do we can construct a governing  equations for the stresses by
multiplying again the momentum equation  with the fluctuating component for example okay so
like this we can  construct another governing equation for the turbulent stresses but they will
have another term with the higher order moments. 

You will end up with Ρ u   V  u  Ρ V  u  V  V  so all higher order moments will come so᾿ ᾿ ᾿ ᾿ ᾿ ᾿ ᾿
like this it will  keep on going cascading there now if you construct again another governing
equation for the higher order moments you will end up with one higher order moment okay so
therefore this will be a  never-ending problem this is called the closure problem so in order to
close  this we can actually  do at this level itself  we can close it  at   any level you can also
construct a higher-order equation and then close the  higher-order moment but that is not going
to be practically useful so we  will just try to close it here and how are we going to do that by
doing what is called as a boussinesq hypothesis. 

Now  this boussinesq hypothesis is not the same as what you did in natural  convection this is a
different one so here boussinesq what he says intuitively  is that the nature of these turbulent
stresses or turbulent diffusion can be  modeled analogous to the molecular diffusion only that
will  replace  the   molecular  viscosity  with  what  is  called  as  turbulent  viscosity  okay so  for
example in this particular equation we can simply say _ ρ u  v  bar = µ T x V u / dy  just᾿ ᾿
analogous to the molecular diffusion but I am going to replace my  dynamic viscosity molecular
viscosity with what is called as the turbulent  viscosity  correct so in doing so now I have closed
the problem okay. 

So I can now solve this equation using this analogy but still  what is unknown is the turbulent
viscosity and turbulent viscosity µ T is not a property it's not a thermo  physical property like
laminar  viscosity  so  again  you have  to  it  depends  on the   flow just  like  your  heat  transfer
coefficient so for a given flow problem you have to actually understand how µ T  has to be
computed so for that we then solve additional equations and calculate  the turbulent viscosity so
like this we can you woke the business processes  for all the remaining stresses and therefore we
can combine the laminar  diffusion with the turbulent diffusion so therefore for example in this
case  how do. 

We replace this using the boussinesq hypothesis µ + µ T x D u /DX see how simple it is now
okay accept. 
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That µ T is unknown similarly here also this is µ + µ T times D u  bar by dy no µtti will be a
function of position it will not be a constant yeah  so that we are assuming that this is constant
right okay so we are not using  different µting for the X momentum Y momentum its derivative
yes because  already this is an ad-hoc hypothesis which is reasonably good enough so  there's no
point in complicating it so let us make it simple and see if it  works and most of the time with
reasonable approximation it works okay  so same way you can also use this as µ + µ T into this is
DV  by DX so similarly when you look at the stresses the thermal turbulent thermal  stresses we
have combined that with the molecular diffusion due. 

To thermal  conductivity okay so therefore similar hypothesis can also be evoked so what we
can say is _ Ρ CP x therefore u  T  can be written as what  some turbulent thermal conductivity᾿ ᾿
okay times DP bar / DX okay so we can  actually therefore combine this as what K + K T x DT
bar / DX and this  will be a + KT into DT bar / dy  so by this manner we have completely closed
grants equations we have avoided  the closure problem so next therefore when you now calculate
the total  stress  we have to  therefore  include the turbulent  stress  along with the  molecular
stresses similarly with the heat flux. 
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So therefore when we write τ for example when we say τ  xx as I said we are now combining this
+ this  is nothing but nu D u / dy you are combining with your turbulent stresses so for example τ
X τ  xx will be µ  x du / DX _ Ρ u  u  bar understand so this is the way we  calculate the total᾿ ᾿
stress the rotor stress has the molecular or laminar  diffusion and the turbulent diffusion similarly
for the heat flux so when we  say heat flux in the X direction how do we calculate now this is K
into _ K  DT / DX right _ K DT /DX then + we have Ρ CP Q  V  bar  understand so when we᾿ ᾿
say stress. 

In the rants equations we include the combined  action of the laminar and turbulent stresses and
the combined action of the  laminar and turbulent thermal diffusion together now in fact if you
look at  the  turbulent  highly  turbulent  flows and  when we replace  this  with  the boussinesq
hypothesis  so many a times the turbulent diffusion will be at least an order of magnitude  higher
than the laminar diffusion okay for in the turbulent region therefore  most of the time your µ T by
µ will be much greater than one and so is KT / K. 

So most  of  the  times  they  will  be  governed by only  the  turbulent  diffusion  the  molecular
diffusion will have little  role to play in the turbulent region that is why it is very important to
account then we cannot definitely neglect them under any circumstance so  just like your laminar
prantle number now we can define what is called as a  turbulent Prandtl number since we have
now a turbulent thermal conductivity  turbulent viscosity we can now define a turbulent prantle
um okay that is your  µ t CP / kt or this is the ratio of your turbulent momentum diffusivity by
turbulent  thermal  diffusivity  understand okay so this  is  your  definition  of   turbulent  prantle
number okay so I hope this part is clear. 

So now what needs to  be really computed is the value of the turbulent diffusion okay and in
order to  do that either the turbulent viscosity so once you calculate the turbulent  viscosity we
can  actually  fix  the  turbulent  prantle  number  and  therefore   obtain  your  turbulent  thermal



diffusivity okay we do not solve for  turbulent thermal diffusivity separated so usually we only
solve for the turbulent viscosity then fix the  turbulent prantle number usually around 0.9 or
something like then get α  t  so now how do we saw for you P so there are different  approaches
to that so what we call as turbulence modeling. 
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So I will not spend  too much time because I am sure many of you must be already knowing how
do we do  this but just I will summarize it so we start from the simplest model which is  called
zero  equation  model  or  the  mixing  length  model  the  mixing  length  model  was  originally
conceived by Prandtl himself  okay this is one of the simplest models so what he suggested was
to assume that  the turbulent viscosity is a function of some length scale and velocity scale so and
when you look at the effect of  turbulent scale so you have these largely DS which actually
transfer  energy to the smaller Eddie's through what we call as cascading okay. 

So there  is a certain length till which the large Eddie's maintain that size after which  they break
down into smaller Eddie's okay so this length is called the mixing  length so Prandtl came out
with some kind of intuitive hypothesis  which says  that  this  turbulent  viscosity should be a
function of the mixing length and some  velocity scale okay so he represents the velocity scale to
be a function of  mixing length times the derivative of the mean velocity for example if this is
your wife okay and you have a certain mixing length L then the corresponding  velocity scale of
turbulence is given by L M x D U  /D u bar/ dy okay  this is some scaling and some hypotheses.᾿

So therefore he relates this turbulent  viscosity by multiplying another length scale to do this so
this is your length  scale  and this is your velocity speech okay so what is this mixing length so
the mixing  length if it is in a purely turbulent regime it is some constant so mixing  length
actually is some kind of virtual or theoretical length if you have an idea of a given size so it will



actually  break down into a small arity half after it travels down because of the action of  the wall
okay then finally it has to be dissipated as  heat okay so there is a certain length till which it
doesn't break though it  retains its original size. 

So that is called the mixing length okay you cannot  of course measure all this okay unless it is
the large it D for all the ADIZ  you cannot find what is the mixing length the mixing length of
course will  be different but then he did not account for all of these so all he says is that we can
relate  the turbulent  viscosity  to  a  mixing length scale and a velocity  scale  and how do we
calculate the mixing  length so now that we have closed it so in the zero equation model we have
crossed the turbulent viscosity to be a function of the mean velocity now only  unknown is the
mixing length so he is giving a empirical correlation for  mixing length should be some constant
times y. 

(Refer Slide Time: 31:27) 

What is this constant this is called the von Karman constant? Which is equal to 0.4 ones now due
to the presence of the wall in the if it is purely turbulent the mixing length will  be just a constant
times y but due to the effect of all this mixing length  actually varies so as you go closer to the
wall this mixing length will become  smaller and smaller you can imagine that the effective wall
gets very strong so  the mixing length has to reduce it has to break down faster and faster  so
therefore to account for there is a damping function which is multiplied to  this and he proposed
a damping function like something like this so this is  your damping function so what is y + so y
+ is a non-dimensional position  which is Y times what we called as friction velocity divided by
nu and this  friction velocity is nothing but square root of wall shear stress by Ρ and  this constant
a is nothing but 26. 



 So you understand that conceptually prantle had proposed this mixing length  theory in order to
simply close the turbulent viscosity without having to  solve additional equations right so this
works fairly well  if you have a flow  which is attached to the wall  okay so like a classical
boundary layer theory but what happens when there is a  detachment flow separation so in that
case then the mixing length model fails  because there is no boundary layer okay you don't
cannot locate the sub layer and so on okay so all this will fail so  therefore then for separated
flows are flows with pressure gradients this kind  of simple approach will not work okay. 

So then in that case you have to go for more advanced models which will now involve solving
additional  equations  so  these  are  your  classical  turbulence  modeling  equations  we  will  just
quickly list them so you have what is called as a one equation model. 

(Refer Slide Time: 34:24)

Which is slightly more complex than the mixing length model so in this case you solve for one
additional  equation  for  the  turbulent  viscosity  so  you  construct  one  additional  equation  for
turbulent viscosity and solve for multi  so this will be additional partial  differential  equations
along  with  your  momentum  and  energy  equations  okay  now  for  more  complex  flows
recirculation flows  with strong curvatures pressure gradient rotation and so on then we start
going for two equation models. 

So  they involve solving additional equations one for the turbulent kinetic  energy and turbulent
dissipation rate  Epsilon so this is denoted by K so we call this as K epsilon models for  example
so there are several bunch of these two equation models we have K  ε we have K  combinationῷ
of these two which is called the shear  stress transport model this is called actually some kind of
vortices  constructed out of the ε equation and modified so this now so you have  several kinds of



approaches into equation models okay and then you can also solve rather than applying a  closure
the boussinesq hypothesis. 

We can construct equations for the turbulent  stresses okay that is u  u  we can have a partial᾿ ᾿
differential equation  U  V  and then therefore we can solve for  totally how many stresses so᾿ ᾿
we have nine out of that three are symmetric  okay so we have six stresses + one additional
equation for dissipation okay  so therefore we call this as in all stress mode so these turbulent
stresses  are also called Reynolds stresses so we can solve PDS  for u  u  u  V  so on okay᾿ ᾿ ᾿ ᾿
but anyway that has there has to  be a closure for the higher moment which will be u  u  V  so᾿ ᾿ ᾿
that  will be closed in a different way right so therefore in three dimensions we solve for six
stresses + one equation  for dissipation rate  and then without doing any of the Reynolds average
we can actually do what  it's called we you can directly resolve all the dominant structures. 

It is by  using a direct resolution by solving the navier-stokes as it is but we use a  spatial filtering
which is the grid size to filter out the eddies which are smaller than the grid size so those will  be
modeled okay the eddies which are larger than the grid size will be  resolved so this is done in
the large Eddy simulation and finally if you can  resolve all these length and time scales without
any filters okay and without any turbulence model we call this as direct  numerical simulation so
these are the increasing complexity of the turbulence  models okay so most of the industrial
problems are satisfied by stopping here  okay. 

So some of the research problems they want to go deeper they probe into  alias and DNS but
finally for practical purposes you do not need all these data  although you are solving for the
fluctuations and so on what are you going to do with that okay  so we don't have µch ways of
interpreting all the fluctuating  components it may be looking good for understanding how they
interact and so  on but finally for practical engineering purposes working with fluctuations  you
know you  T  does not have any meaning therefore. ᾿ ᾿

We are  more or   less  happy with  stopping with the  two equation  models   so all  these  two
equation models give you is the mean components that is a  mean velocity mean temperature in
turbulent  flow field okay so once you  understand the mean once you can predict  the mean
properties well they are enough  to solve practical problems for example when you now define
heat transfer coefficient it will be the gradient of  the mean temperature okay if you if you know
the gradient of  fluctuation what are you going to do with it you know there is a fluctuation  to
the mean but that is not going to serve any purpose okay so as long as you  can construct a
engineering approach to solving turbulence. 

I think that is a  more sustained practical approach so although we have techniques using Elias
in DNS I do not think these are still in the industry well-absorbed  so they are mostly in the
academic exercises right so most of the practical  engineering problems have been designed with
maximum with the two equation  models right so I think now hopefully you have some kind of
an understanding  about the models that are used now what we will quickly do in the remaining



five minutes we will try to derive  certain relationship between the velocity scale and the position
as we go  across different layers in turbulence okay. 

So very quickly we will do that and stop so as I already pointed out when you for example talk
about turbulent flow past a flat plate. 
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You have a turbulent boundary  layer right and there is a viscous sub layer this is close to the
wall  so when you talk about the laminar prantle number for example okay  so that is going to
govern only the growth of this viscous sub layer whereas  the turbulent Prandtl number is the one
that will govern the growth of the  actual bone delay and since your turbulent diffusion is much
higher than  the laminar diffusion okay so this will be the dominating pattern and the  laminar
sub layer will be confined only close to the wall right so now as you go  from the wall upwards
vertically. 

So you will be passing through initially the  laminar sub layer till a certain height and then into
the turbulent region so  this is a fully turbulent region here and this is the region where it is only
laminar because of the effect of wall there is no turbulent effect seen there  so now what we can
do is derive a relationship between the velocity  profile and the local coordinate so let us start
with the business hypothesis   which says that  we can model  the turbulent  stresses with the
analogy of  the molecular viscosity so we can just write this as µ + µ T x D U   / V Y okay so if᾿
you what I would like you to do is write this in terms of  what we call as a non-dimensional
velocity u superscript + okay. 

So this  is nothing but u by you tout and you τ is nothing but the frictional velocity square root of
τ   w/ Ρ okay and write this in terms of non-dimensional y coordinate y +  this is y into u τ  by



kinematic viscosity so use this relation generic one and express this in terms of U + + y  +  see at
the wall this will be equal to the wall shear stress the wall  so one thing what we can do is
multiply and divide by Newtown right  so therefore D of u bar by u τ  is nothing but u + okay so
we have D u  + and similarly we can combine the Τ  wto this side okay so you should  be able to
write this also in terms of y + u tell me then what will be the  multiplying factor. 

I will also give you the left hand side should come out to be  one so what do you get you will
have 1 + kinematic turbulent kinematic  viscosity by laminar kinematic viscosity  okay  so now
so this is your equation coming out of the definition of the stress so  depending on the regime
now let us first consider the viscous sub layer inside  the laminar sub layer your laminar viscosity
is much more dominant than the  turbulent viscosity so what will happen to this term 1 + nu T by
nu so  suppose let us take discuss a Blair  discuss a Blair your µ is much greater than µ T right so
therefore what will happen to this  entire term 1 okay therefore this will reduce to 1 so if you
integrate this  okay. 

So this is your profile of velocity  within the viscous oblique now what happens in the fully
turbulent layer so  in the fully turbulent layer you are turbulent diffusivity is much greater  than
nu right so then what happens to 1 + nu T by nu will be nu T by µ into  D u + by dy + will be
equal  to 1  okay so now you can substitute  for µ T from the mixing length model  okay so
anyway since µ T is here you have to close it  you τ  square yeah if you are just erased this the
same wall shear stress  will be felt but only you are considering only the turbulent boundary
layer not the laminar sub layer so you can call this in one sense you have a one layer model the
other is a two layer  model okay. 

So in a one layer model you are considering only the fully turbulent  region without accounting
for the viscous sub layer okay it is the simplest  approach that is what we are doing now if you
consider of a fully turbulent  region as the only layer okay so then we actually can write this  like
this correct so now you substitute nu T from the mixing length model so you  have essentially
LM 2 and what is LM 2 one carbon constant square  times y square because in the fully turbulent
region you are done do not have  the damping function so that can be written as K square Y
square into you  have also do you so you have D U bar / dy / nu x D u + by dy + = 1  so can you
now simplify this further  we can also write this as d u + by dy + correct so what do you get if
you  write it so I want to write this as τ  u + by dy + (2)  

So what will be the additional factor this  µ should be absorbed okay so just check that so finally
therefore when we take √of this and  then we integrate it so what would be the profile so we will
have d u + = dy + by Y by Y x K so we' wil have D u + = dy + by we can write this as y + 1by
okay , so if you integrate this gets you + = 1 /K lawn of y +  + another constant so this is called
the log law okay. 

So this is the linear law  it means if you assume only within the viscous sub layer you have a
linear  variation of velocity with Y now if you assume only a fully turbulent region you  have a
logarithmic variation of U with respect to Y okay so the entire boundary  layer can now be



decomposed into profiles in the viscous sub layer you  have a linear variation and in the fully
turbulent  you have a logarithmic variation okay so we will look at this   we will draw these
profiles and try to now next move on to heat transfer  problem where we can use some analogies
like the Reynolds  analogy and calculate the expressions for nusselt number okay.
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